

www.cern.ch

LHCSELUS

window with the

Matteo Solfaroli

Beams Department Operation Group

International symposium on Higgs boson and beyond standard model physics

LHC layout and history

LHC status and plan (performance & operational challenges)

The future...

CERN

1720 Power converters
> 9000 magnetic elements
7568 Quench detection systems
1088 Beam position monitors
~4000 Beam loss monitors

The LHC nominal cycle

LHC Run1 timeline

August 2008 First injection test

29th November

LS1 timeline

main electrical feed-

boxes

1344

LHC layout and history

Image: Markov control in the second second

Markov The future...

Initial goals for Run2

Increase collision energy = 13 TeV

Operate with 25 ns (estimated pile-up of 40 events/bunch crossing)

Increase total number of bunches = 2808 (288 trains)

Reduce beam size (\beta^*): start with a conservative approach (80 cm) then envisage reduction later in 2015 \rightarrow 40 cm

Peak luminosity = 1.3-1.7x10³⁴ cm⁻² s⁻¹

2015 commissioning year (expected 10 fb⁻¹) **2016** first production year (expected 40 fb⁻¹)(100-120 fb⁻¹ for Run2)

Overall machine efficiency

A few problems

SPS BEAM DUMP Limitation to 96 b/inj => 2173 bunches

Weasel climbing on electrical transformer

PS power supply

INJECTION KICKER Limit total intensity (number of bunches vs intensity/bunch)

The big numbers

- Peak luminosity ~1.29 x 10³⁴ cm⁻²s⁻¹
- Delivered luminosity:
 - >20 fb⁻¹ ATLAS & CMS
 - >1 fb⁻¹ to LHCb
 - ~7 pb⁻¹ to ALICE
- 3 fb⁻¹ per (good) week
- Longest fill = 37 h

Max luminosity in one fill = 725 pb⁻¹

The essentials

Enhanced system performance:

- Beam Instrumentation
- RF & transverse feedbacks
- Collimators
- Vacuum
- Machine protection & beam dump system

The essentials

Enhanced system performance:

- Beam Instrumentation
- RF & transverse feedbacks
- Collimators
- Vacuum
- Machine protection & beam dump system
- Aperture better than expected
- Feedbacks on orbit and tune provide stability
- Good magnetic reproducibility
- Optically good, corrected to excellent (< 2%)
- Excellent operation control...EXPERIENCE!

Performance increase & limitations

2016 PERFORMANCE INCREASE

- > Smaller β^* (40 cm)
- Smaller emittance (BCMS scheme)
- Higher number of bunches

FURTHER PERFORMANCE INCREASE

- Maximize number of bunches (once SPS dump exchanged)
- Reduce Xing angle (following analysis of MD results)
- Levelling in IP1/5 to reduce the initial particle losses
- Further squeeze (flat beams, new optics)
- Optimize fill duration (shorter turnaround)
- Energy increase (toward 7 TeV)

KNOWN LIMITATIONS

- E-cloud
- > UFO
- Triplet, cryogenic limit ~1.7x10³⁴ cm⁻²s⁻¹

Un-identified Falling Objects

0.0765

Time sec]

0.077

0.0775

0.078

Dust particle dynamics model predicts:

- Loss duration few ms
- Faster losses for larger
 beam intensities

0.05

0.0755

0.076

Electron cloud

When operating with small bunch spacing an avalanche-like process, (Electron Cloud) can develop in the beam chamber due to the Secondary Emission from the chamber's wall

Consequences:

- impact on beam quality (instabilities, emittance growth, particle losses)
- bad vacuum
- excessive energy deposition

Electron bombardment of a surface proved to reduce drastically the secondary electron yield (SEY)

This technique (scrubbing) provides a mean to suppress e-cloud build-up

Observations confirmed a clear improvement of beam quality thanks also to scrubbing

LHC 2016 schedule

...still 58 days of pp physics ahead!!

	July				Aug				Sep				
Wk	27	28	29	30	31	32	33	34	35	36	37	38	39
Мо	4	11	18	25	1	8	15	22	29	5	12	E m ¹⁹	26
Tu								MD 2				: 2.5 k taking	
We											TS2	eta* = data 1	
Th				MD 1						Jeune G		þé	
Fr													
Sa										MD 3			
Su				beta* 2.5 km dev.									

End of run

	Oct				Nov				Dec		[06:00]	50 51 52					
Wk	40 41		42	43	44	45	46	47	48	49	50	51	52				
Мо	3	10	17	24	31	7	14	4 21	28	5	♦ 12	19	19 26				
Tu	MD 4						lons				Extended	year end					
We						TS3	setup				technic	al stop					
Th								1	on run			Lab closed					
Fr					MD 5				(p-Pb)								
Sa																	
Su										Pb MD		Xmas	New Year				

LHC Run 2 schedule

2015												2	0	1	6)								2	0	1	7		2018																	
JF	M	1 A	M	IJ	J	Α	S	0	N	I D	J	F	M	Α	M	J	J	Α	S	0	Ν	D	J	F	Μ	Α	Μ	J	J	Α	S	0	Ν	D	J	F	Μ	Α	Μ	J	J	Α	S	Ο	N	D
																							EY	′E ⁻	ΓS																					

Shutdown/Technical stop Protons physics Commissioning Ions

EYETS – Extended Year End Technical Stop – 20 weeks

- CMS pixel upgrade
- Push 2 sectors towards 7 TeV

LHC layout and history

Image: Markov control in the second second

Markov The future...

Future projects

HL-LHC

$$L = \frac{n_b \times N_1 \times N_2 \times g \times f_{rev}}{4\rho \times b^* \times e_n} \times F(f, b^*, e, S_s)$$

- Maximize beam intensity
- Minimize beam emittance
- Compensate for 'F'

Crab cavity test in the SPS foreseen for 2018

- → Injector complex (upgrade LIU)
- \rightarrow Minimize beam size (beta^{*}) \rightarrow Wide aperture triplet magnets (Nb₃Sn)

Crab Cavities

Protons per bunch	2.2 x 10 ¹¹
Beta*	15 cm
Peak luminosity	5 x 10 ³⁴ cm ⁻² s ⁻¹
Crossing angle	590 µrad
Geometric reduction factor	0.305
Normalized emittance	2.5 micron
Virtual luminosity	24 x 10 ³⁴ cm ⁻² s ⁻¹
Levelled luminosity	5 x 10 ³⁴ cm ⁻² s ⁻¹
Levelled <pile-up></pile-up>	140

HL-LHC luminosity reach

HE-LHC / FCC

"Natural" continuation of LHC and HL-LHC programs

Step-wise approach \rightarrow each step deployed and operated in a (big) accelerator:

- > HL-LHC: Nb₃Sn technology:
 - 11 T dipoles in dispersion suppression collimators
 - 12-13 T field low- β quads for ATLAS and CMS IR's

December 2015: short Nb₃Sn dipole reached 11.3 T

March 2016: short Nb₃Sn quadrupole reached 18 kA

Parameter	HE-LHC	FCC
Collision energy [TeV]	25	100
Circumference [km]	27	80/100
Dipole field [T]	16	16 or 20
Injection energy [GeV]	450	3000
Peak luminosity [cm ⁻² s ⁻¹]	34 x 10 ³⁴	30 x 10 ³⁴
#event/bunch crossing	1070	Up to 1020
Stored energy [GJ]	1.4	8.4

FCC

LAYOUT OPTIMIZATION

Conclusions

- The tremendous LHC performance is due to outstanding design and excellent preparation
 - Superb models
 - Brilliant performance of all system
 - Impressive work
 - Huge amount of experience and understanding

There is still much to do

- Keep improving models and knowledge
- Overcome limitations
- Push further

A bright future is in front of us

- Increase LHC performance
- > HL-LHC
- ➢ FCC/HE-LHC...

Thank you for the attention!

www.cern.ch

The LHC nominal beam

• 2808 bunches

1.15e¹¹ p/bunch

Energy per beam ~ 360 MJ

Magnetic energy per sector (6.5 TeV) 1.2 GJ

FCC

Among the many challenges:

- Synchrotron radiation heat load
- Collimation
- Interaction region quadrupoles
- Arc quadrupoles (naïve scaling gives 1593 T/m at 50 TeV)

Circumference	80 or 100 km							
Maximum dipole field	20 or 16 T							
Injection energy	> 3.0 TeV							
Maximum energy	100 TeV							
Peak luminosity	5 x 10 ³⁴ cm ⁻² s ⁻¹							
Stored beam energy	~5500 MJ							

LHC nominal beam 90 kg of TNT CC beam ~2 tons of TNT S60 MJ X 22 S60 MJ X 22 S60 MJ S70 MJ S70

Operational challenges – UFO

Implemented in dust particle dynamics model, which predicts (among others):

- Loss duration of a few ms
- Losses become faster for larger beam intensities

Beam loss rate as a function of time for different macroparticle masses. Beam intensity: 1.6.10¹⁴ p

Despite several corrective measures have been implemented during LS1, UFOs could become critical during Run2 due to:

- Much lower BLM threshold
- UFO activity increases by about 5-10 times with 25ns operation

ULO (Unidentified Lying Object)

Aperture restriction measured at injection and 6.5 TeV in 15R8

- Presently running with orbit bumps
 - -3 mm in H, +1 mm in V, to optimize available aperture
- UFOs stopped after second beam screen warm-up
- Behaviour with higher intensities looks OK

...stability of the object remains a concern

2015 scrubbing strategy

Approach with two scrubbing phases

(50 ns and 25 ns beam for 50 ns operation)

50 ns beam → ~1000 bunches

• Excellent beam lifetime, no e-cloud

25 ns beams → ~1000 bunches

 Beam degradation important, slow improvement (main limitation was By the second se

Phase#2

(25 ns and doublets for 25 ns operation):

25 ns beam \rightarrow >2000 bunches

 Injection phase limited by cryo and vac (TDI and MKI) for B2

Doublet beams \rightarrow ~250 bunches

• Larger e-cloud, fast beam quality

MKI vacuum)

ug 2016

Possible energy increase

- Ramp the current until single magnet quenches
 "training quench"
- 164 quenches needed in 2015 to reach 6.5 TeV
- Up to 49 quenches in a single sector

RB Training Quenches - MP3

- Cryogenics recovery time: 6 8 hours
- 2 sectors will be likely used as a type test before the EYETS to estimate the time needed to commission the LHC to 7 TeV

Total intensity limitation High number of bunches vs high intensity/bunch

Crab cavities

- Create a oscillating transverse electric field
- Kick head and tail of the bunch in opposite directions
- Serving to mitigate the effect of the crossing angle at the IP

Figure 4. Electric (left) and magnetic (right) field distributions inside the DQWCC.

R2E SEU Failure Analysis - Actions

2008-2011

- Analyze and mitigate all safety relevant cases and limit global impact
- 2011-2012
 - Focus on equipment with long downtimes; provide shielding
- LS1 (2013/2014)
 - Relocation of power converters
 - LS1 LS2:

- Equipment Upgrades
- LS3 -> HL-LHC
 - Remove all sensitive equipment from underground installations

Topographical constraints, critical areas

