International Symposium on Higgs Boson and Beyond Standard Model Physics

Search for Higgs Rare Decays at ATLAS and CMS

Liang Li Shanghai Jiao Tong University On Behalf of ATLAS and CMS Collaborations

ISHBSM 2016 @Weihai, Liang Li

Outline

- Motivation
- Higgs (Standard Model) Rare Decays
- Higgs (Beyond Standard Model) Exotic Decays
- Summary

Higgs Production and Decay

Why Higgs Rare Decay?

Fully explore Higgs particle

- **Higgs production**
 - **Cross section**
 - Production modes: ggH, VBF, V/ttH, tHq/W
- **Higgs decay**
 - Mass
 - Couplings
 - Width ۲
 - Spin, CP
- **Higgs rare decay: New Physics?**
 - **Poorly constrained** •
 - Coupling $< O(10^{-3})$ •
 - **Big impact on existing coupling**
 - **Higgs portal model** Current limit: $B(H \rightarrow BSM) < 0.34$ •

- Rare decay not observed yet
- Sensitive to BSM
- Yukawa couplings

$H \rightarrow \mu\mu$

0.5

180 200

P⊤^{µµ™}^[GeV]

-0.2

ATLAS-CONF-2016-041

Small but clean signal

120

140

160

៓**៳**៲៲៰៰៴៲

Signal modeling

100

ATLAS Preliminary

vs = 13 TeV, 13.2 fb⁻¹

Events / Ge/ 10⁶

10⁶

107

10⁶

10⁵

10⁴

 10^{3}

102

10

10-2

1.5E

0.5

60

80

Data / MC

10

VBF categorized by MVA classifier

Ge

107 Events / 5

10⁶

10

10

 10^{3}

10²

10

10

10-2

1.5

0.5⊨

0

20 40 60 80 100 120 140 160

Data / MC

- ggF categorized (6) by p_TH and $|\eta_u|$
- Shape parametrized by Crystal-Ball + Gaussian

+ Data

 Z/γ^*

EWK Z+jets

Top Quarks

ggF [125 GeV] × 10

VBF [125 GeV] × 50

Diboson

Dominated by $Z \rightarrow \mu \mu$ (continuum) background

0.2

0.4

0.6

BD'

0.8

BDT Output

output

Shape and normalization derived by fitting to the dimuon mass spectra:

Breit-Wigner \otimes Gaussian (Z-peak) + e^{Ax}/x^3 (continuum)

$H \rightarrow \mu\mu$

Binned maximum likelihood fit to m_{uu} distributions

- Simultaneous fitting in total seven signal regions (two are shown) •
- **Background shape parameters + normalization, signal strength**

6

Entries / GeV

Search for narrow resonance using three-body ($\ell\ell\gamma$) invariant mass distribution over large continuum (Z γ) backgrounds

- High (low) mass di-lepton final states
 - ATLAS (Z_γ): $m_{\ell\ell} > m_z 10$ GeV and $115 < m_{\ell\ell\gamma} < 170$ GeV
 - CMS ($\gamma^*\gamma$): $m_{\ell\ell}$ < 20 GeV and 110 < $m_{\ell\ell\gamma}$ < 170 GeV
- Background modeling: likelihood fit to data to determine background shape and normalization
- Signal modeling: Crystal-Ball + Gaussian function fit to m_{ℓℓγ}

Phys. Lett. B 732C (2014), 8-27

 $H \rightarrow Z\gamma$

- Three-body mass resolution improved after Z-mass kinematic constraint
- One photon (p_T > 15 GeV) and two opposite sign same flavor leptons (p_T > 10 GeV for electrons and p_T > 15 GeV for muons)
- 10 event categories depending on lepton flavor, $\Delta \eta_{Z\gamma}$ and Higgs p_{Tt}
- Likelihood fit with signal strength μ and nuisance parameters
 - μ < 11 (obs.), 9 (exp.) @ 95% C.L for m_H = 125.5 GeV
 - Dominated by statistics uncertainties

Phys. Lett. B 753 (2016) 341

 $H \rightarrow \gamma^* \gamma$

- Clean μμγ topology with 1.6 % mass resolution
- eeγ merged shower in ECAL, 1.8% resolution
- photon and di-lepton p_T > 0.3 m_{ℓℓγ}
- Muon $p_T > 23$ GeV, electron track $p_T > 30$ GeV, $\Delta R_{\ell\gamma} > 1$, $m_{ee} < 1.5$ GeV, $m_{\ell\ell} < 20$ GeV
- Unbinned maximum likelihood fit
- μ < 6.7 (obs.), 5.9 (exp.) for m_H = 125 GeV
- σ(pp→H)B(H→μμγ): μ < 7.3 fb (obs.), 5.2 fb (exp.) for m_H = 125 GeV

$H \rightarrow J/\Psi \gamma$

Phys. Rev. Lett. 114 (2015) 121801

Explore $H \rightarrow cc$ coupling

- ATLAS: inclusive QCD background modelled by data-driven template fitting
- Muon $p_T > 20$ GeV, $p_T^{\mu\mu} > 36$ GeV
- Events/2.0 $|m_{uu} - m_{J/\Psi}| < 0.2 \text{ GeV}$, photon $p_T > 36 \text{ GeV}$
- $\Delta \Phi(\mu\mu,\gamma) > 0.5$, 4 event categories
- Simultaneous unbinned maximum likelihood fit on $m_{\mu\mu\nu}$ and $p_T^{\mu\mu\gamma}$
- $B(H \rightarrow J/\Psi \gamma) < 1.5 \times 10^{-3} (\sim 540 \times SM)$

Similar to $H \rightarrow \gamma^* \gamma$ except 2.9 < m_{uu} < 3.3 GeV

• CMS: B(H \rightarrow J/ $\Psi \gamma$) < 1.5 x 10⁻³

GeV

$H \rightarrow \Phi_{\gamma}$

arXiv:1607.03400

Explore H \rightarrow ss coupling, reconstruct $\Phi \rightarrow K^+K^-$

- Kaon $p_T > 15$ GeV & $|\eta| < 2.5$, isolated track leading $p_T > 20$ GeV
- $|m_{K+K_{-}} m_{\phi}| < 20 \text{ MeV}$, photon $p_{T} > 35 \text{ GeV}$
- ΔΦ(K⁺K⁻,γ) > 0.5, p_T^{KK} > 40-45 GeV
- Inclusive QCD and γ+jet backgrounds shape modelled by datadriven templates, normalization extracted by fitting to data
- Unbinned maximum likelihood fit on m_{K+K-v}
- $B(H \rightarrow \Phi_{\gamma}) < 1.4 \times 10^{-3} (\sim 600 \times SM) (obs.), 1.5 \times 10^{-3} (exp.)$

m_{K⁺K⁻γ} [GeV]

Higgs Rare Decay

- Higgs (Beyond Standard Model) Exotic Decays
 - $H \rightarrow invisible$
 - H → scalar boson (see Kono & Yuan's talks)
 - Higgs decay with Lepton Flavor Violation (see Kono & Yuan's talks)

$H \rightarrow invisible$

Explore BSM scenario using Higgs invisible decays

- Higgs portal: mediator between SM and dark sector
- SM scenario: $H \rightarrow ZZ^* \rightarrow 4v \sim O(10^{-3})$
- Large missing transverse momentum:
 - gluon-gluon fusion: mono-jet final state
 - association with vector boson: mono-V → two leptons or two-jets final state
 - vector boson fusion: two well-separated jets final state

ggH → invisible + jet

- High pT, central jet with large missing energy:
 - p_T^{J} > 100 GeV, $|\eta|$ < 2.5, E_T^{miss} > 200 GeV
- Dominant V+jets backgrounds estimated by fitting redefined E_T^{miss} to data in ten independent control regions
 - Hadronic recoil energy (w/o lepton & photon) mimics E_T^{miss} shape
- Using transfer factors to estimate backgrounds in the signal region

ggH → invisible + jet

- Signal extracted by fitting to E_T^{miss} taking into account uncertainties
- Data agrees with the SM prediction

VH → invisible + jet(s)

- p_T^J > 250 GeV, E_T^{miss} > 250 GeV
- $\Delta \Phi(J, E_T^{miss}) > 0.5$
- Jet substructure $\tau_2/\tau_1 < 0.6$

B(H \rightarrow invisible(mono-jet)) < 0.48 B(H \rightarrow invisible(mono-V)) < 1.17 B(mono-jet+mono-V) < 0.44

ZH → invisible + leptons

0.65 (exp.)

- Leptonic Z decay provides clean final state: one opposite sign ee/µµ pair within M_z window, no b-tagged jet
- Dominant ZZ bkgs from NLO, other normalization from data, shape from MC
- Maximum likelihood fit of E_T^{miss}
 B(ZH→invisible+II) < 0.98 (obs.)

CMS-PAS-HIG-16-008

Aug 16, 2016

VBF(H) → invisible + jets

JHEP 01 (2016) 172

Two high pT jets with large rapidity gap and large dijet mass, high E_T^{miss}

- Dominant V+jets bkgs from W/Z control samples in data, QCD data-driven method
- ATLAS Run-1: Maximum likelihood fit to yields in all signal and control regions
 B(H→invisible+jets) < 0.28 (0.31) obs. (exp.
- CMS Run-2: counting experiment with in-situ backgrounds estimation via simultaneous fitting in all signal and control regions

B(H→invisible+jets) < 0.69 (0.62) obs. (exp.)

Combination

CMS-PAS-HIG-16-016

JHEP11(2015)206

Decay channels	Coupling parameterisation	κ_i assumption	Upper limit on BRinv	
			Obs.	Exp.
Invisible decays	$[\kappa_W, \kappa_Z, \kappa_t, \kappa_b, \kappa_\tau, \kappa_\mu, \kappa_g \kappa_\gamma, \kappa_{Z\gamma}, BR_{inv}]$	$\kappa_{W,Z,g} = 1$	0.25	0.27
Visible decays	$[\kappa_W, \kappa_Z, \kappa_t, \kappa_b, \kappa_\tau, \kappa_\mu, \kappa_g \kappa_\gamma, \kappa_{Z\gamma}, BR_{inv}]$	$\kappa_{W,Z} \leq 1$	0.49	0.48
Inv. & vis. decays	$[\kappa_W, \kappa_Z, \kappa_t, \kappa_b, \kappa_\tau, \kappa_\mu, \kappa_g \kappa_\gamma, \kappa_{Z\gamma}, \mathbf{BR}_{inv}]$	None	0.23	0.24
Inv. & vis. decays	$[\kappa_W, \kappa_Z, \kappa_t, \kappa_b, \kappa_\tau, \kappa_\mu, \kappa_g \kappa_\gamma, \kappa_{Z\gamma}, BR_{inv}]$	$\kappa_{W,Z} \leq 1$	0.23	0.23

ATLAS Run-1 data: B($H \rightarrow invisible$) < 0.23 (obs.) 0.24 (exp.) CMS Run-1+2015 data: B(H→invisible) < 0.24 (obs.) 0.23 (exp.)

Summary

Many searches for Higgs rare decays have been done at LHC

- Standard Model rare decays not yet observed
 - H → μμ,ee
 - $H \rightarrow Z/\gamma^* \gamma$
 - $H \rightarrow J/\psi\gamma, \Upsilon\gamma$
 - Η → φγ
- Higgs (Beyond Standard Model) Exotic Decays
 - $H \rightarrow invisible$
 - No evidence found
 - $H \rightarrow scalar boson$
 - Higgs decay with Lepton Flavor Violation
- Largely limited by statistics but systematics are becoming important, expect to make observation at ~10³ fb⁻¹ (e.g. H→μμ)