Higgs Boson Production in the Standard Model

Li Lin Yang Peking University

International Symposium on Higgs Boson and Beyond Standard Model Physics Shandong University, Weihai

- ☑ SM: first EFT which might be valid up to exponentially high scales (too good to be true?)
- **A new era for particle physics!**

- ***** Are there more than one Higgs?
- * Phase transition? Vacuum stability? Naturalness?
- * Relations to inflation / dark matter / matter-antimatter asymmetry / neutrino masses / ... ?

simple, elegant! predictive, testable!

Theory vs. data

 ATLAS and CMS: 1606.02266

 ATLAS and CMS
 -• Observed ±1σ

Theoretical uncertainty

ATLAS and CMS: 1606.02266

 $\mu = 1.09^{+0.11}_{-0.10} = 1.09^{+0.07}_{-0.07} \text{ (stat)} {}^{+0.04}_{-0.04} \text{ (expt)} {}^{+0.03}_{-0.03} \text{ (thbgd)} {}^{+0.07}_{-0.06} \text{ (thsig)}$

Theoretical uncertainty

Reason well-understood:

$$\left[\frac{\alpha_s}{2\pi}C_A\ln^2\left(\frac{-m_H^2}{m_H^2}\right)\right]^n$$

Ahrens, Becher, Neubert, LLY: 0808.3008

Resummed results hint at lower renormalization and factorization scales (m_H/2 instead of m_H) for fixed-order calculations; now widely adopted!

$gg \rightarrow H: NNNLO$

Anastasiou, Duhr, Dulat, Herzog, Mistlberger: 1503.06056

Beyond SM: Higgs EFT

Buchmuller, Wyler (1986); Grzadkowski, Iskrzynski, Misiak, Rosiek: 1008.4884

$$\begin{split} &+ \frac{c_H}{2\Lambda^2} (\partial^{\mu} |H|^2)^2 - \frac{c_6}{\Lambda^2} \lambda |H|^6 \\ &- \left(\frac{c_t}{\Lambda^2} y_t |H|^2 \bar{Q}_L H^c t_R + \frac{c_b}{\Lambda^2} y_b |H|^2 \bar{Q}_L H b_R + \frac{c_\tau}{\Lambda^2} y_\tau |H|^2 \bar{L}_L H \tau_R + \text{h.c.}\right) \\ &+ \frac{\alpha_s c_g}{4\pi\Lambda^2} |H|^2 G^a_{\mu\nu} G^{\mu\nu}_a + \frac{\alpha' c_\gamma}{4\pi\Lambda^2} |H|^2 B_{\mu\nu} B^{\mu\nu} \\ &+ \frac{ig c_{HW}}{16\pi^2\Lambda^2} (D^{\mu} H)^{\dagger} \sigma_k (D^{\nu} H) W^k_{\mu\nu} + \frac{ig' c_{HB}}{16\pi^2\Lambda^2} (D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu\nu} \\ &+ \frac{ig c_W}{2\Lambda^2} (H^{\dagger} \sigma_k \overleftrightarrow{D}^{\mu} H) D^{\nu} W^k_{\mu\nu} + \frac{ig' c_B}{2\Lambda^2} (H^{\dagger} \overleftrightarrow{D}^{\mu} H) \partial^{\nu} B_{\mu\nu} \\ &+ \mathcal{L}_{\rm CP} + \mathcal{L}_{\rm 4f} \,, \end{split}$$

A more consistent theoretical framework to quantify deviations from the SM than "anomalous couplings"

Higgs+jet: high p_T Higgs

NNLO for Hj

- Validation of various NNLO subtraction methods for colored final states
- Shape only changes slightly: good news for searches!

Boughezal, Caola, Melnikov, Petriello, Schulze: 1302.6216; 1504.07922; Chen, Gehrmann, Glover, Jaquier: 1408.5325; Boughezal, Focke, Giele, Liu, Petriello: 1505.03893; Chen, Cruz-Martines, Gehrmann, Glover, Jaquier: 1607.08817

Top and Higgs

ATLAS and CMS: 1606.02266

Theoretical uncertainty (again)

ttH: approximate NNLO

Broggio, Ferroglia, Pecjak, Signer, LLY: 1510.01914

First fully differential prediction beyond NLO

It is unlikely that exact NNLO for ttH will become available very soon!

See also Kulesza, Motyka, Stebel, Theeuwes (1509.02780) for total rate

Higgs self-couplings

How can we verify these two interactions?

Important for EW phase transition as well as vacuum stability!

Higgs pair & self-coupling

However, notoriously difficult to detect!

HL-LHC and 100 TeV physics!

Detecting HH production

Requires combination of various decay channels!

Hot topic since Higgs discovery!

Dolan et al.: 1206.5001; Papaefstathiou, **LLY**, Zurita: 1209.1489; Baglio et al.: 1212.5581; Barr et al.: 1309.6318; de Lima et al.: 1404.7131; Barr et al.: 1412.7154; Li, Li, Yan, Zhao: 1503.07616; Papaefstathiou: 1504.04621; Kotwal et al.: 1504.08042; He, Ren, Yao: 1506.03302; Lü, Du, Fang, He, Zhang: 1507.02644; Zhao, Li, Li, Yan: 1604.04329; Kling et al.: 1607.07441; ...; sorry for limited space!

HH constraints on EFT

See also: Azatov, Contino, Panico, Son (1502.00539); He, Ren, Yao (1506.03302); Cao, Yan, Zhang, Zhang (1508.06512)

NNLO for Higgs pair

de Florian, Mazzitelli: 1309.6594; de Florian, Grazzini et al.: 1606.09519; See also Shao, Li, Li, Wang (1301.1245) for NLO+NNLL resummed prediction

Higgs pair at NLO with top-mass dependence

A highly non-trivial calculation!

 $\sigma^{\rm NLO} = 27.80^{+13.8\%}_{-12.8\%}\,{\rm fb}$

14% smaller than Bornimproved HEFT result

Prospect of observing this process at LHC reduced!

Borowka, Greiner, Heinrich et al.: 1604.06447

Higgs self-coupling from ratios of cross sections

- NNLO corrections to HH cross section are large, but suffer from uncertainties related to top-mass
- May use ratios of cross sections to reduce theoretical uncertainties!

Goertz, Papaefstathiou, LLY, Zurita: 1301.3492

- Now known with exact topmass dependence at NLO!
- Smaller higher order corrections and PDF/ α_s dependences

Alternative

Additional handle: allows for bbbb final state (largest BR)

NNLO for WHH: Li, Wang (1607.06382)

Other possibilities (e.g., HHjj and HHtt): Dolan, Englert, Greiner, Spannowsky (1310.1084); Englert, Krauss, Spannowsky, Thompson (1409.8074); Liu, Zhang (1410.1855); Ling, Zhang, Ma, Guo, Li, Li (1410.7754); He, Ren, Yao (1506.03302)

Towards Higgs factories

High precision measurements of ZH cross section (and HZZ coupling) at CEPC

CEPC preCDR

Z decay mode	ΔM_H (MeV)	$\Delta\sigma(ZH)/\sigma(ZH)$	$\Delta g(HZZ)/g(HZZ)$
ee	14	2.1%	
$\mu\mu$	6.5	0.9%	
$ee + \mu\mu$	5.9	0.8%	0.4%
q ar q		0.65%	0.32%
$ee + \mu\mu + q\bar{q}$		0.51%	0.25%

Even higher accuracies claimed by FCC-ee!

Bicer et al.: 1308.6176; d'Enterria: 1601.06640; 1602.05043

Precision measurements and new physics

Lots of discussions on probing new physics using precision measurements at Higgs factories; sorry that I can't cover all!

Indirect probe of Higgs self-coupling

McCullough: 1312.3322

Shen, Zhu: 1504.05626

(possibly because LEP2 didn't find the Higgs ⊜)

Towards NNLO $\sigma(ZH)$

Gong, Li, Xu, **LLY**:1608.xxxx

- The "simpler": $O(\alpha \alpha_s)$
 - *41 master integrals, many involve 4 mass scales
 - ***** Two methods:
 - ***** Expansion in 1/m_t
 - * Numeric evaluation using sector decomposition

*** Preliminary result:** ~1% **for CEPC; important effect!**

The more difficult (but also important): $O(\alpha^2)$

Agree well!

Summary

* A new era for particle physics after Higgs discovery

- * Many things waiting to be explored through various production and decay channels: gauge couplings, Yukawa couplings, Higgs self-couplings, Higgs width, CP, ...
- * New precision calculations for $gg \rightarrow H$, Hj, ttH, HH, WHH

* Precision $\sigma(e^+e^- \rightarrow ZH)$: fundamental theoretical input for Higgs factories

Thank you!