

Selected results from LHCb Experiment

Yuanning Gao On Behalf of the LHCb Collaboration Tsinghua University

International Symposium on Higgs Boson and Beyond Standard Model Physics August 15-19, 2016 Shandong University, Weihai

Outline

- LHCb experiment
- Recent results (very selective)
 - -charm decays
 - Electroweak measurements
 - Discovery of pentaquark states
 - -Heavy ion program at LHCb
 - -First physics from RUNII
- Summary

Physics from B decays (Yuehong Xie's talk)

LHC is a *powerful* flavor factory

- Huge numbers of beauty and charm hadrons produced
- All types of b-hadrons $B^0, B^{\pm}, B_s, B_c, \Lambda_b^0, ...$ and c-hadrons $D^0, D^{\pm}, D_s, \Lambda_c, ...$

LHCb Detector

LHCb, Int. J. Mod. Phys. A30 (2015) 1530022

Forward spectrometer running in pp collider

LHCb Trigger at RUNI

Versatile two stage trigger

- Hardware-based LO trigger: moderate P_T cut
- Software high level trigger: full detector information sent to trigger farm @1.1 MHz
- 3 kHz output rate (2011), 5 kHz (2012)

Physics program at LHCb

- Not only precision measurements in *b, c* sectors
 - CKM and CP-violation parameters
 - rare decays
 - testing lepton universality
 - ...
- But also a general purpose experiment
 - electroweak measurements: $\sin\theta_W$, W/Z, top quark, ...
 - spectroscopy, exotic hadrons
 - soft QCD
 - heavy ions

- ...

LHCb data taking

Recent results from B decays

- Measurements of CKM matrix elements
- CP violation
- Rare decays and tests of lepton universality

→ Yuehong Xie's talk on Tuesday morning

Recent results

- Measurement of *CP* asymmetry in $D^0 \rightarrow K^- K^+$ decays LHCb-PAPER-2016-035 (in preparation)
- Search for mixing and CP violation with Wrong-Sign $D^0 \rightarrow K\pi$ from $\overline{B} \rightarrow \mu D^*X$ LHCb-PAPER-2016-033 (in preparation)
- Search for $D^0 \rightarrow e^+ \mu^-$ decay

LHCb-PAPER-2016-035 (in preparation)

$$A_{CP}(D^0 \to KK)$$

LHCb-PAPER-2016-035 (in preparation)

- Experimental method
 - raw asymmetry

$$A_{\rm raw}(D^0 \to KK) = \frac{N(D^0 \to KK) - N(\overline{D}{}^0 \to KK)}{N(D^0 \to KK) + N(\overline{D}{}^0 \to KK)}$$

measure the CP asymmetry

$$A_{CP}(D^0 \to KK) = A_{\text{raw}}(D^0 \to KK) -A_P(D^{*+}) - A_D(\pi_s^+) + O(A^3)$$

detection/production asymmetries eliminated by control processes

$$D^{*+} \rightarrow D^0 (\rightarrow K^- \pi^+) \pi_s^+, D^+ \rightarrow K^- \pi^+ \pi^+, D^+ \rightarrow \overline{K}^0 \pi^+$$

 $A_{CP}(D^0 \to KK)$

LHCb-PAPER-2016-035 (in preparation)

• Use 3fb⁻¹ data collected at RUNI

 $A_{CP}(KK) = (0.14 \pm 0.15 \pm 0.10)\%$

consistent with CP conservation

• Previous measurements

 $- \Delta A_{CP} = A_{CP}(KK) - A_{CP}(\pi\pi) = (-0.10 \pm 0.08 \pm 0.03)\%$

(now agrees with SM, PRL 116 (2016) 191601)

$$\rightarrow A_{CP}(\pi\pi) = (0.24 \pm 0.15 \pm 0.11)\%$$

combine muon tagged results (JHEP 07 (2014) 041)
 with full correlations

 $A_{CP}^{\text{comb}}(KK) = (0.04 \pm 0.12 \pm 0.10)\%$ $A_{CP}^{\text{comb}}(\pi\pi) = (0.07 \pm 0.14 \pm 0.11)\%$

LHCb-PAPER-2016-033 (in preparation)

• $D^0 - \overline{D}^0$ mixing

 $\begin{array}{l} -\operatorname{mxing} \to \operatorname{mass} \, \operatorname{eigenstates} \, \neq \, \operatorname{flavor} \, \operatorname{eigenstate} \\ -\operatorname{mass} \, \operatorname{eigenstates} \quad |D_{1,2}\rangle = p |D^0\rangle + q |\overline{D}^0\rangle \\ |p|^2 + |q|^2 = 1, x = \frac{m_2 - m_1}{\Gamma}, y = \frac{\Gamma_2 - \Gamma_1}{2\Gamma}, \Gamma = \frac{\Gamma_1 + \Gamma_2}{2} \end{array}$

• CP violation

 $\mathcal{A}_{f} = \langle f | \mathcal{H} | \mathbf{D} \rangle, \, \overline{\mathcal{A}}_{\overline{f}} = \langle \overline{f} | \mathcal{H} | \overline{\mathbf{D}} \rangle$ $- \text{ Direct CP violation: } \left| \frac{\overline{\mathcal{A}}_{\overline{f}}}{\mathcal{A}_{f}} \right| \neq \mathbf{1}$ $- \text{ CP violation in Mixing: } \left| \frac{q}{p} \right| \neq \mathbf{1}, \text{ weak phase } \boldsymbol{\phi} = \arg\left(\frac{q}{p}\right) \neq \mathbf{0}$ $- \text{ CP violation in Interference between Mixing & Decay: } \arg\left(\frac{q}{p} \frac{\overline{\mathcal{A}}_{\overline{f}}}{\mathcal{A}_{f}}\right) \neq \mathbf{0}$

LHCb-PAPER-2016-033 (in preparation)

• $D^0 - \overline{D}^0$ mixing in SM

- Mixing enters at 1 loop level in SM, GIM and CKM suppressed
- Non-perturbative long-range effects may dominate short-range interactions,
 difficult to calculate
- -x, y expected to be $\leq 0.5\%$
- CP violation expected to be $\mathcal{O}(10^{-3})$ in SM. If enhancement seen, could be the signal for new physics

LHCb-PAPER-2016-033 (in preparation)

• Time dependent wrong-sign/right-sign ratio

• Flavor doubly tagged by μ^- , π^+_s ; Extremely clean signal sample

LHCb-PAPER-2016-033 (in preparation)

- Three scenarios
 - -mixing only
 - -no direct CP violation
 - all CP violation allowed

consistent with mixing only

Combined with results from prompt *D*^{*} decays LHCb, PRL 111 (2013) 251801

Parameter	DT+prompt combination	Prompt alone	% Error Improvement
No CPV			
$R_D[10^{-3}]$	3.533 ± 0.054	3.568 ± 0.067	19
$x'^{2}[10^{-5}]$	3.6 ± 4.3	5.5 ± 4.9	12
$y'[10^{-3}]$	5.23 ± 0.84	4.80 ± 0.94	11
χ^2/NDF	96.594/111		
-			

No Direct CPV				
$R_D[10^{-3}]$	3.533 ± 0.054	3.568 ± 0.067	19	
$x'^{2+}[10^{-5}]$	4.9 ± 5.0	6.4 ± 5.6	11	
y'+[10 ⁻³]	5.14 ± 0.91	4.80 ± 1.08	16	
$x'^{2-}[10^{-5}]$	2.4 ± 5.0	4.6 ± 5.5	9	
y'-[10-3]	5.32 ± 0.91	4.8 ± 1.08	16	
χ^2 /NDF	96.147/109			

All CPV Allowed					
$R_D^+[10^{-3}]$	3.474 ± 0.081	3.545 ± 0.095	15		
$x^{\prime 2+}[10^{-5}]$	1.1 ± 6.5	4.9 ± 7.0	7		
$y'^{+}[10^{-3}]$	5.97 ± 1.25	5.10 ± 1.38	9		
$R_D^{-}[10^{-3}]$	3.591 ± 0.081	3.591 ± 0.090	10		
x^{2} [10 ⁻⁵]	6.1 ± 6.1	6.0 ± 6.8	10		
$y'^{-}[10^{-3}]$	4.50 ± 1.21	4.50 ± 1.39	13		
χ^2/NDF	94.960/108				

Search for $D^0 \rightarrow e^+ \mu^-$

• Predicted to occur in R-parity violating MSSM

PRD 66 (2002) 014009, Int. J. Mod. Phys. A29 (2014) 1450169

• Previous 90% CL limits on the branching ratio

3. 3×10^{-7} (BaBar) PRD 86 (2012) 032001, **2.** 6×10^{-7} (Belle) PRD 81 (2010) 091102R

• Use $D^{*\pm} \rightarrow D^0 \pi^{\pm}$ decays at LHCb, new world best limit

Recent results

• Measurement of Z forward-backward asymmetry

JHEP 11 (2015) 190

Z forward-backward asymmetry at LHC

• Define

More asymmetries in the forward region

Z forward-backward asymmetry at LHCb, JHEP 11 (2015) 190

 $sin^2 \theta_{W,eff} = 0.23142 \pm 0.00073 (stat.) \pm 0.00052 (syst.) \pm 0.00056 (th.)$

Y. Gao, Selected Results from LHCb Experiment

Recent results

• The discovery of pentaquark states

LHCb, PRL 115(2015) 072001 LHCb, Chin. Phys. C 40 (2016) 011001 LHCb-PAPER-2016-009 LHCb-PAPER-2016-015

 $\Lambda_b^0 \to J/\psi p K^-$ at LHCb

Surprise in $\Lambda_h^0 \to J/\psi p K^-$

LHCb, PRL 115(2015) 072001

- Unexpected large yield found with 1 fb⁻¹ LHCb, PRL 111(2013) 102003
- Used to measure Λ_b^0 lifetime LHCb, PL B734 (2014) 122

Amplitude analysis of $\Lambda_b^0 o J/\psi p K^-$

LHCb, PRL 115(2015) 072001

- 6D amplitude: m_{pK^-} & 5 decay angles
- 2 models for $\Lambda^* o pK^-$ contributions based on PDG
 - *Extended model* allows all LS couplings of each resonance, and include poorly motivated states
 - *Reduced model* uses only well motivated states
 - Other possibilities checked
- Model independent analysis confirmed that conventional pK⁻ contributions cannot describe the data, with minimal assumptions on their spin, and no assumptions on their number, shapes, masses, widths, and interference patterns

LHCb-PAPER-2016-009

Discovery of pentaquark states

LHCb, PRL 115(2015) 072001

• Need two new states in $J/\psi p$ to fit the data (no $J/\psi K^-$ states!)

Discovery of pentaquark states

LHCb, PRL 115(2015) 072001

• Need two new states in $J/\psi p$ to fit the data (no $J/\psi K^-$ states!)

	$P_{c}(4380)^{+}$	$P_{c}(4450)^{+}$
JP	$\frac{3}{2}$	$\frac{5}{2}^{+}$
Mass [MeV/ c^2]	$4380 \stackrel{-}{\pm} 8 \pm 29$	$4449.8 \pm 1.7 \pm 2.5$
Width [MeV]	$205\pm18\pm86$	$39\pm5\pm19$
Significance	9σ	12σ

- Best fit has $J^p = \frac{3}{2}^-$ (lower mass) and $\frac{5}{2}^+$ (higher mass), $(\frac{5}{2}^+, \frac{3}{2}^-)$ or $(\frac{3}{2}^+, \frac{5}{2}^-)$ also give good fit, opposite parity is highly significant.
- Branching ratios measured

LHCb, Chin. Phys. C 40 (2016) 011001

$$\mathcal{B}(\Lambda_b^0 \to P_c^+(4380)K^-)\mathcal{B}(P_c^+ \to J/\psi\,p) = (2.56 \pm 0.22 \pm 1.28 \,{}^{+0.46}_{-0.36}) \times 10^{-5} \\ \mathcal{B}(\Lambda_b^0 \to P_c^+(4450)K^-)\mathcal{B}(P_c^+ \to J/\psi\,p) = (1.25 \pm 0.15 \pm 0.33 \,{}^{+0.22}_{-0.18}) \times 10^{-5}$$

Discovery of pentaquark states

LHCb, PRL 115(2015) 072001

• Argand plots

Still large errors, not conclusive!

Pentaquark states in $\Lambda_h^0 \rightarrow J/\psi p \pi^-$ LHCb-PAPER-2016-015

- Cabbibo suppressed decay, more than a factor of 10 lower statistics than in $\Lambda_h^0 \to J/\psi p K^-$.
- More complex because of Z_c^-

- Full amplitude analysis performed: Significance of 2 P_c states is
 - 3.3 σ , if assuming production of $Z_c(4200)$ is negligible \rightarrow Not an independent confirmation of the P_c states

Data

LHCb

Recent results

• Heavy ion program at LHCb

Heavy ion run at LHCb

- LHCb fully instrumented in the forward region ($2 < \eta < 5$)
 - heavy ion collisions in a unique kinematic area:

low p_T , large y, very small or large x

Heavy ion run at LHCb

• Heavy flavor productions in $pPb \& Pbp : J/\psi, \psi(2S), Y(ns), D$

LHCb, JHEP 02 (2014) 072, JHEP 07 (2014) 094, JHEP 03 (2016) 133, LHCb-CONF-2016-003

Open heavy flavor & quarkonia as tools to study cold nuclear effect (CNM)

Heavy ion program in fixed target mode

• LHCb collects data from colliding beams & fixed targets

SMOG: System for Measuring the Overlap with Gas

Used for a precise luminosity determination: 1.1% accuracy at RUNI LHCb, JINST 9 (2014) P12005

Heavy ion program in fixed target mode

• Data taking, more in 2016

Different sizes of colliding system

Heavy ion program at LHCb

• Fixed target runs

• Expect more results in 2016

Bridge the gap from SPS to LHC with a single experiment

Recent results

- J/ψ Production at 13 TeV JHEP 10 (2015) 172
- $b\overline{b}$ cross-section at 13 TeV from $b \rightarrow X_c \mu \nu X$

LHCb-PAPER-2016-031 (in preparation)

LHCb Trigger in RUN II

TURBO stream introduced in 2015

- 5 kHz of 12 kHz go to TURBO
- Only trigger information saved
 - \rightarrow smaller event, faster analysis

 \rightarrow Used for high yield exclusive trigger lines: J/ψ , D^0 , D^+ , ...

First **QUICK** results at 13 TeV:

- J/ψ production JHEP 10 (2015) 172
- charm production JHEP 03 (2016) 159
- Z production LHCb-PAPER-2016-021

LHCb 2015 Trigger Diagram

J/ψ cross section at $\sqrt{s}=13$ TeV

LHCb, JHEP 10 (2015) 172

• A quick measurement of J/ψ cross-section at $\sqrt{s} = 13$ TeV based on 3.02 ± 0.12 pb⁻¹ of data

quasi proper lifetime variable to separate J/ψ from prompt/from b

$$t_z = rac{(z_{J/\psi} - z_{\rm PV})M_{J/\psi}}{p_z}$$

$b\overline{b}$ cross section from $b \rightarrow X_c \mu \nu X$

LHCb-PAPER-2016-031 (in preparation)

• Measuring right-sign combination of charmed hadron

$$D^0$$
 , D^+ , D_s , $\Lambda_{
m c}$

and μ not pointing at the primary vertex, but forming a good vertex

• Measured cross section $\sigma(pp \rightarrow H_b X)$,

including contributions from

$$= B^0, \overline{B}^0; B^+, B^-; B^0_s, \overline{B}^0_s$$

 $= \Lambda^0_b, \overline{\Lambda}^0_b$ + other *b* baryons

$b\overline{b}$ cross section at $\sqrt{s} = 7, 13$ TeV

LHCb-PAPER-2016-031 (in preparation)

Same measurements at 7 TeV & 13 TeV

Cross-section ratio

LHCb-PAPER-2016-031 (in preparation)

Some tensions with theoretical predictions

Summary

- LHCb has made great progress with RUNI & RUNII data
 - Precise measurements from b and c decays
 - Electroweak measurements
 - Discovery of two pentaquark states $P_c(4450)$ and $P_c(4200)$ and $P_c(4200)$
 - $P_c(4380)$, and other exotic states
 - Promising results from the heavy ion program
 - First results from RUNII data
- Aim to collected 6 fb⁻¹ in RUNII
- LHCb major upgrade in 2019-2020, 50 fb-1 after upgrade

Stay tuned !