Higgs boson properties (ATLAS and CMS)

Marcello Fanti [University of Milano and INFN]

(on behalf of the ATLAS and CMS collaborations)

Run-II : Higgs boson strikes back!

 $H
ightarrow \gamma \gamma$

Higgs boson production at LHC

Experimental identification of VBF and VH productions ("tagging"):

M. Fanti (Physics Dep., UniMi)

Higgs boson decay modes

For a mass $m_H \simeq 125 \text{ GeV}$, several decay modes are kinematically accessible \Rightarrow a thorough study of its properties is possible

If it is the Standard Model Higgs boson, its properties are:

• spin-parity : $J^{CP} = 0^{++}$ • couplings to vector bosons : $g_V = 2 \frac{m_V^2}{v}$ • couplings to fermions : $g_f = \frac{m_f}{v}$

 \Rightarrow can probe several couplings and J^{CP} states

Observation of $H \rightarrow \gamma \gamma \Rightarrow C = +1$ and $J \neq 1$ (Landau-Yang theorem)

From run-I, combined ATLAS+CMS measurement Now repeated at Run-II

Cross-sections, Couplings

Fiducial and total cross-sections at 7, 8, 13 TeV Couplings from run-I combined ATLAS+CMS measurement, and being repeated in Run-II ttH production and $H \rightarrow b\bar{b}$

Spin and CP properties, width, differential cross-sections

From Run-I, being repeated in Run-II

[arXiv:1503.07589v1 [hep-ex] 26 Mar 2015 PRL 114 (2015) 191803]

Using the $H \to \gamma \gamma$ and $H \to ZZ^* \to 4\ell$ decay channels that allow a full kinematics reconstruction with good invariant mass resolution ($\mathcal{O}(1 \text{ GeV})$)

(main source of systematic: energy scale)

 $\hat{m}_H = 124.50^{+0.47}_{-0.45}(stat)^{+0.13}_{-0.15}(syst) \,\,\mathrm{GeV}$

In the Standard Model, m_H is the only free parameter of the Higgs sector

The Higgs sector has two parameters: μ and λ related to the VEV v and the Higgs mass m_H by: $\mu = \frac{m_H}{\sqrt{2}}$ and $\lambda = \frac{1}{2} \left(\frac{m_H}{v}\right)^2$. Since $v = \sqrt{\frac{1}{\sqrt{2} G_F}}$ is known, m_H is the only free parameter.

 \Rightarrow everything else is calculable, once m_H is given.

[https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageBR]

Cross sections

Cross-section from $\gamma\gamma$ and 4ℓ final states [CMS-PAS-HIG-16-033 , CMS-PAS-HIG-16-020]

Fiducial cross-section vs \sqrt{s}

Improved theory calculations for gluon fusion:

Run-I: NNLO+NNLL: $\pm 8\%$ from scale and $\pm 7\%$ from α_S +PDF Run-II: N3LO: $\pm 4\%$ from scale and $\pm 3\%$ from α_S +PDF ... now experiments need to catch up!

Total cross-section vs \sqrt{s} ($\gamma\gamma$ and 4 ℓ combined)

Cross-section for ggF vs VBF

Measurements of couplings

[arXiv:1606.02266v1 [hep-ex] 7 Jun 2016 accepted by JHEP]

Couplings — the " κ -framework"

Reminder: in SM Higgs couplings are $g_f^{SM} = \frac{m_f}{v}$ and $g_V^{SM} = 2\frac{m_V^2}{v}$

Assume weak gauge boson universality: $\kappa_W = \kappa_Z = \kappa_V$ and fermion universality: $\kappa_t = \kappa_b = \kappa_\tau = \kappa_f$

Loop-mediated interactions described as in SM: $gg \rightarrow H$ (mainly) through top/bottom virtual loop $\Rightarrow \kappa_g = \kappa_{t,b} = \kappa_f$

 $H \rightarrow \gamma \gamma$ through top and W virtual loops $\Rightarrow \kappa_{\gamma}^2 = (1.26 \kappa_W - 0.26 \kappa_t)^2 = (1.26 \kappa_V - 0.26 \kappa_f)^2$

Exploit final state topologies (e.g. VBF, VH)

 \Rightarrow measure κ_V , κ_f for each decay channel

 \Rightarrow then combine decay channels

 \Rightarrow all measurements compatible with SM prediction (\bigstar)

$$(\kappa_V = 1, \kappa_f = 1)$$

Testing the ggH and H $\gamma\gamma$ interactions

ggH and $H\gamma\gamma$ interactions in SM are mediated by loops \Rightarrow particularly sensitive to new particles in the loops

 \Rightarrow consider κ_g , κ_γ as free and profile others

 \Rightarrow again, compatibility with SM (\bigstar)

Summary of the rates (wrt Standard Model predictions)

Summary of the couplings

Recall: in SM

$$g_f = \frac{m_f}{\upsilon}$$
 and $g_V = 2\frac{m_V^2}{\upsilon}$
 \Rightarrow plot measured $g_f vs m_f$ and
measured $\sqrt{\frac{g_V}{2\upsilon}} vs m_V$

 \Rightarrow all scale like $\frac{m}{v}$ as expected, over more than 3 orders of magnitude!

 \Rightarrow Standard Model works pretty well

Testing decays to BSM particles

- important to probe directly the ttH Yukawa coupling
- \bullet cross-section 4× higher @ 13 TeV wrt 8 TeV

Table 2: Observed and expected asymptotic 95% CL upper limits on and best fit value of the signal strength parameter (μ).

Category	Obs. limit	Exp. limit $\pm 1\sigma$	Best fit $\mu \pm 1\sigma$
Same-sign dileptons	4.6	$1.7^{+0.9}_{-0.5}$	$2.7^{+1.1}_{-1.0}$
Trileptons	3.7	$2.3^{+1.2}_{-0.7}$	$1.3^{+1.2}_{-1.0}$
Combined categories	3.9	$1.4^{+0.7}_{-0.4}$	$2.3^{+0.9}_{-0.8}$
Combined with 2015 data	3.4	$1.3^{+0.6}_{-0.4}$	$2.0^{+0.8}_{-0.7}$

[CMS, 13 TeV, 12.9 fb⁻¹]

Significance wrt no-signal hypothesis: 3.2 σ (CMS) , 2.8 σ (ATLAS)

CMS: 8 TeV

$H \rightarrow b\overline{b}$	Best fit (68% CL)	Upper limits (95% CL)		Signal significance	
Channel	Observed	Observed	Expected	Observed	Expected
VH	0.89 ± 0.43	1.68	0.85	2.08	2.52
tīH	0.7 ± 1.8	4.1	3.5	0.37	0.58
VBF	$2.8^{+1.6}_{-1.4}$	5.5	2.5	2.20	0.83
Combined	$1.03_{-0.42}^{+0.44}$	1.77	0.78	2.56	2.70

CMS: 13 TeV (VBF production)

ATLAS: (VH production)

Spin hypothesis test and parity measurements

ATLAS: [Eur. Phys. J. C75 (2015) 476], CMS: [PRD 92 (2015) 012004]

Spin/parity measurement

 $H
ightarrow \gamma\gamma$: flat $|\cos heta^*|$ for spin-0, sensitive to spin-2

 $H \to WW^* \to \ell
u \ell
u$: W^+/W^- spin correlation

 $H \rightarrow ZZ^* \rightarrow 4\ell$:

5 angular observables $+ m_{12}, m_{34}$ can probe polarization of both H and Zs sensitive to spin and parity

Spin-2 tests

effective lagrangian [HiggsCharacterization]

$$\mathcal{L}_{2} = \frac{1}{\Lambda} \left[\sum_{V} \kappa_{V} X^{\mu \nu} \mathcal{T}^{V}_{\mu \nu} + \sum_{f} \kappa_{f} X^{\mu \nu} \mathcal{T}^{f}_{\mu \nu} \right]$$

$$[ext{ below, } ilde{q} \equiv -2 \ln \left(rac{L_{JP}}{L_{0^+}}
ight)]$$

effective transition amplitude [JHU]

$$\begin{split} A(\mathbf{X}_{J=2}\mathbf{V}\mathbf{V}) &\sim \Lambda^{-1} \left[2c_{1}^{\mathbf{V}\mathbf{V}} t_{\mu\nu} f^{*1,\mu\alpha} f^{*2,\nu\alpha} + 2c_{2}^{\mathbf{V}\mathbf{V}} t_{\mu\nu} \frac{q_{\alpha}q_{\beta}}{\Lambda^{2}} f^{*1,\mu\alpha} f^{*2,\nu\beta} \\ &+ c_{3}^{\mathbf{V}\mathbf{V}} t_{\beta\nu} \frac{\tilde{q}^{\beta} \tilde{q}^{\alpha}}{\Lambda^{2}} (f^{*1,\mu\nu} f^{*2}_{\mu\alpha} + f^{*2,\mu\nu} f^{*1}_{\mu\alpha}) + c_{4}^{\mathbf{V}\mathbf{V}} t_{\mu\nu} \frac{\tilde{q}^{\nu} \tilde{q}^{\mu}}{\Lambda^{2}} f^{*1,\alpha\beta} f^{*2}_{\alpha\beta} \\ &+ m_{\mathbf{V}}^{2} \left(2c_{5}^{\mathbf{V}\mathbf{V}} t_{\mu\nu} \epsilon_{\mathbf{V}1}^{*\mu} \epsilon_{\mathbf{V}2}^{*\nu} + 2c_{6}^{\mathbf{V}\mathbf{V}} t_{\mu\nu} \frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}} \left(\epsilon_{\mathbf{V}1}^{*\nu} \epsilon_{\mathbf{V}2}^{*\alpha} - \epsilon_{\mathbf{V}1}^{*\alpha} \epsilon_{\mathbf{V}2}^{*\nu} \right) + c_{7}^{\mathbf{V}\mathbf{V}} t_{\mu\nu} \frac{\tilde{q}^{\mu} \tilde{q}^{\nu}}{\Lambda^{2}} \epsilon_{\mathbf{V}1}^{*} \epsilon_{\mathbf{V}2}^{*} \right) \\ &+ c_{8}^{\mathbf{V}\mathbf{V}} t_{\mu\nu} \frac{\tilde{q}^{\mu} \tilde{q}^{\nu}}{\Lambda^{2}} f^{*1,\alpha\beta} \tilde{f}^{*2}_{\alpha\beta} \\ &+ m_{\mathbf{V}}^{2} \left(c_{9}^{\mathbf{V}\mathbf{V}} t^{\mu\alpha} \frac{\tilde{q}_{\alpha} \epsilon_{\mu\nu\rho\sigma} \epsilon_{\mathbf{V}1}^{*\nu} \epsilon_{\mathbf{V}2}^{*q}}{\Lambda^{2}} + c_{10}^{\mathbf{V}\mathbf{V}} t^{\mu\alpha} \frac{\tilde{q}_{\alpha} \epsilon_{\mu\nu\rho\sigma} q^{\rho} \tilde{q}^{\sigma} \left(\epsilon_{\mathbf{V}1}^{*\nu} (q \epsilon_{\mathbf{V}2}^{*}) + \epsilon_{\mathbf{V}2}^{*\nu} (q \epsilon_{\mathbf{V}1}^{*}) \right) \right] \end{split}$$

 \Rightarrow data favour spin-0

Parity and CP-mixing

$$\mathcal{L}_{0}^{V} = X_{0} \cdot \left\{ \cos \alpha \ \kappa_{\mathrm{SM}} \left[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \right] - \frac{1}{4\Lambda} \left[\cos \alpha \ \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + \sin \alpha \ \kappa_{AZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu} \right] - \frac{1}{2\Lambda} \left[\cos \alpha \ \kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + \sin \alpha \ \kappa_{AWW} W_{\mu\nu}^{+} \tilde{W}^{-\mu\nu} \right] \right\}$$

Standard Model :
$$\alpha = 0$$
 , $\kappa_{HVV} = 0$, $\kappa_{AVV} = 0$

Beyond SM :
$$\kappa_{HVV} \Rightarrow CP$$
-even , $\kappa_{AVV} \Rightarrow CP$ -odd

... not worrisome at this stage, though

29 / 48

Width measurement

 \Rightarrow cannot measure it from the observed resonance width (experimental uncertainty $\mathcal{O}(\text{GeV})$)

Use $H \to ZZ^{(*)} \to 4\ell$ decays. Compare Higgs on-shell $(gg \to H \to ZZ^*)$ and off-shell $(gg \to H^* \to ZZ)$ production cross-sections: $\sigma_{gg \to H \to ZZ^*} \propto \frac{g_{Hgg} \cdot g_{HZZ}}{\Gamma_H m_H}$; $\sigma_{gg \to H^* \to ZZ} \propto \frac{g_{Hgg} \cdot g_{HZZ}}{(2m_Z)^2}$

 \Rightarrow under specific assumptions on how g_{Hgg} , g_{HZZ} scale with \hat{s} , $\frac{\sigma_{gg \rightarrow H^* \rightarrow ZZ}}{\sigma_{gg \rightarrow H \rightarrow ZZ^*}}$ gives a measurement of Γ_H

8 TeV

13 TeV

 $\Rightarrow \Gamma_H < 22 \text{ MeV} (at 95\% \text{ CL})$

 $\Rightarrow \Gamma_H < 41 \text{ MeV} (at 95\% \text{ CL})$

Differential cross-sections

Differential cross-sections @ Run-I

[EPJC 76 (2016) 13, JHEP 04 (2016) 005, HIG-15-010], [Phys. Rev. Lett. 115 (2015) 091801, arXiv:1604.02997]

CMS: $H \rightarrow \gamma \gamma, \ H \rightarrow 4\ell, \ H \rightarrow WW^* \rightarrow e \nu \mu \nu$

ATLAS: $H \rightarrow \gamma \gamma$, $H \rightarrow 4\ell$ combined, $H \rightarrow WW^* \rightarrow e\nu\mu\nu$

$H \to ZZ^* \to 4\ell$

$H \to \gamma \gamma$

Conclusions

Conclusions

Run-I analyses well mature, ATLAS+CMS combined results available for mass and couplings:

Run-II: efficient data-taking, analyses progressing fast, (cross-section)×(luminosity) already beated Run-I

 \Rightarrow We are still compatible with Standard Model prediction ... but uncertainties are still large.

Theory uncertainties improved a lot. Important to pursue precision measurements in the Higgs sector, in Run-II and beyond, to investigate possible deviations from SM

Thanks for your attention

More material

Statistical models used in measurements

Extended likelihood function: $\mathcal{L}(\vec{\alpha}; \vec{\nu})$:

$$-\ln \mathcal{L}(\vec{\alpha}; \vec{\nu}) = (n_s + n_b) - \sum_{e} \left[\underbrace{n_s \cdot f_s(\vec{x_e} | \vec{\alpha}, \vec{\nu_s})}_{\text{ancillary pdfs}} + \underbrace{n_b \cdot f_b(\vec{x_e} | \vec{\nu_b})}_{\text{ancillary pdfs}} \right]$$

2 In A

Test statistic: "Profiled Likelihood Ratio" (PLR)

n_s, *n_b*: signal / background yields

 \vec{x} : observables

f_s, *f_b*: signal / background pdfs

 $\vec{\alpha}$: parameters of interest (mass, cross-section, couplings, ...)

 $\vec{\nu}$: "nuisance parameters" (shape parameters, systematics, . . .)

 π_k : pdfs obtained from auxiliary

measurements

 $q_{ec lpha} = -2 \ln \Lambda(ec lpha) = -2 \ln rac{\mathcal{L}(ec lpha; \hat{\hat{
u}}(ec lpha))}{\mathcal{L}(\hat{lpha}; \hat{
u})}$

 $\leftarrow \mathcal{L}(\vec{\alpha}; \hat{\hat{\nu}}(\vec{\alpha})): \text{ likelihood for fixed } \vec{\alpha} \text{ and "profiled" } \vec{\nu} \\ \leftarrow \mathcal{L}(\hat{\alpha}; \hat{\nu}): \text{ maximum likelihood for free } \vec{\alpha}, \vec{\nu}$

Wilks' theorem : if $\vec{\alpha} = \vec{\alpha}^{true}$, then $q_{\vec{\alpha}}$ follows a χ_D^2 distribution, with D being the number of parameters of interest $\vec{\alpha}$

 \Rightarrow compute confidence intervals for $\vec{\alpha}$

Higgs observation in Run-I : $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$

 $H
ightarrow \gamma \gamma$

41 / 48

Higgs candidates : $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$

 $H \rightarrow \gamma \gamma$ candidate at CMS

$H ightarrow ZZ^* ightarrow e^+ e^- \mu^+ \mu^-$ candidate at ATLAS

Use the $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channels

that allow a full kinematics reconstruction with good invariant mass resolution ($\mathcal{O}\left(1~\mathrm{GeV}
ight)$)

4ℓ channel $-2\ln \Lambda(m_{_H})$ ATLAS and CMS TLAS CMS *LHC* Run 1 6 Combined $H \rightarrow ZZ \rightarrow 4l$ Stat. only uncert. 5 4 3 2 1 0 124 123 125 126 127 m_{μ} [GeV]

 $\hat{m}_{H}^{4\ell} = 125.15 \pm 0.37(stat) \pm 0.15(syst) \text{ GeV}$

Good signal/background, low statistics e, μ energy scales from $J/\psi, \Upsilon, Z \rightarrow \ell \ell$

$\gamma\gamma$ channel

 $\hat{m}_{H}^{\gamma\gamma} = 125.07 \pm 0.25(stat) \pm 0.14(syst) \text{ GeV}$

Large background, good statistics γ energy scale from $Z \rightarrow e^+e^-$ and $e \rightarrow \gamma$ extrapolation

Comparison with SM expectations

Parameterisation	<i>p</i> -value D	OF	Parameters
Global signal strength	40%	1	μ
Production processes	24%	5	$\mu_{ggF}, \mu_{VBF}, \mu_{WH}, \mu_{ZH}, \mu_{ttH}$
Decay modes	65%	5	$\mu^{\gamma\gamma}$, μ^{ZZ} , μ^{WW} , $\mu^{ au au}$, μ^{bb}
Decay modes with $H - \mu\mu$	→ 75%	6	$\mu^{\gamma\gamma},\mu^{ZZ},\mu^{WW},\mu^{ au au},\mu^{bb},\mu^{\mu\mu}$
μ_V and μ_F per decay	90%	10	$\mu_V^{\gamma\gamma}, \mu_V^{ZZ}, \mu_V^{WW}, \mu_V^{\tau\tau}, \mu_V^{bb}, \mu_F^{\gamma\gamma}, \mu_F^{ZZ}, \mu_F^{WW}, \mu_F^{\tau\tau}, \mu_F^{bb}$
μ_V/μ_F ratio	75%	6	$\mu_V/\mu_F,\mu_F^{\gamma\gamma},\mu_F^{ZZ},\mu_F^{WW},\mu_F^{ au au},\mu_F^{bb}$
$\sigma_i \cdot \mathbf{B}^f$ product	20%	23	$ \begin{array}{l} (\sigma \cdot \mathbf{B})_{ggF}^{\gamma\gamma} \left(\sigma \cdot \mathbf{B} \right)_{ggF}^{ZZ} \left(\sigma \cdot \mathbf{B} \right)_{ggF}^{WW} \left(\sigma \cdot \mathbf{B} \right)_{ggF}^{\tau\tau} \left(\sigma \cdot \mathbf{B} \right)_{VBF}^{\gamma\gamma} \\ (\sigma \cdot \mathbf{B})_{VBF}^{ZZ} \left(\sigma \cdot \mathbf{B} \right)_{WBF}^{WW} \left(\sigma \cdot \mathbf{B} \right)_{VBF}^{\tau\tau} \left(\sigma \cdot \mathbf{B} \right)_{WH}^{\gamma\gamma} \\ (\sigma \cdot \mathbf{B})_{WH}^{ZZ} \left(\sigma \cdot \mathbf{B} \right)_{WH}^{WW} \left(\sigma \cdot \mathbf{B} \right)_{WH}^{\tau\tau} \left(\sigma \cdot \mathbf{B} \right)_{WH}^{b\mu} \\ (\sigma \cdot \mathbf{B})_{ZH}^{\gamma\gamma} \left(\sigma \cdot \mathbf{B} \right)_{ZH}^{ZZ} \left(\sigma \cdot \mathbf{B} \right)_{WH}^{WW} \left(\sigma \cdot \mathbf{B} \right)_{ZH}^{\tau\tau} \left(\sigma \cdot \mathbf{B} \right)_{ZH}^{bb} \\ (\sigma \cdot \mathbf{B})_{tH}^{\gamma\gamma} \left(\sigma \cdot \mathbf{B} \right)_{tH}^{ZZ} \left(\sigma \cdot \mathbf{B} \right)_{HH}^{WW} \left(\sigma \cdot \mathbf{B} \right)_{TH}^{\tau\tau} \left(\sigma \cdot \mathbf{B} \right)_{EH}^{bb} \end{array} $
Ratios of σ and BR relative to $\sigma(gg \rightarrow H \rightarrow ZZ)$	e 16%	9	$ \begin{array}{l} \sigma(gg \rightarrow H \rightarrow ZZ), \sigma_{\rm VBF} / \sigma_{ggF}, \sigma_{\rm WH} / \sigma_{ggF}, \sigma_{ZH} / \sigma_{ggF}, \\ \sigma_{ttH} / \sigma_{ggF}, {\sf B}^{\rm WW} / {\sf B}^{ZZ}, {\sf B}^{\gamma\gamma} / {\sf B}^{ZZ}, {\sf B}^{\tau\tau} / {\sf B}^{ZZ}, {\sf B}^{bb} / {\sf B}^{ZZ} \end{array} $
Ratios of σ and BR relative to $\sigma(gg \rightarrow H \rightarrow ZZ)$ and 7/8 TeV	e 26% d	14	$ \begin{array}{l} \sigma(gg \rightarrow H \rightarrow ZZ), \sigma_{\rm VBF} / \sigma_{ggF}, \sigma_{WH} / \sigma_{ggF}, \sigma_{ZH} / \sigma_{ggF}, \\ \sigma_{itH} / \sigma_{ggF}, B^{WW} / B^{ZZ}, B^{\gamma\gamma} / B^{ZZ}, B^{\tau\tau} / B^{ZZ}, B^{bb} / B^{ZZ}, \\ \sigma_{ggF}^{TeV} / \sigma_{ggF}^{STeV}, \sigma_{VBF}^{TeV} / \sigma_{WH}^{STeV}, \sigma_{ZH}^{TeV} / \sigma_{ZH}^{STeV}, \\ \sigma_{itH}^{TeV} / \sigma_{itH}^{STeV} \end{array} $
Coupling ratios	12%	7	$\kappa_{gZ}, \lambda_{Zg}, \lambda_{tg}, \lambda_{WZ}, \lambda_{\gamma Z}, \lambda_{\tau Z}, \lambda_{bZ}$
Couplings, SM loops	74%	6	$\kappa_Z, \kappa_W, \kappa_t, \kappa_\tau, \kappa_b, \kappa_\mu$
Couplings vs mass	55%	2	Μ, ε
Couplings, BSM loops	11%	7	$\kappa_Z, \kappa_W, \kappa_t, \kappa_\tau, \kappa_b, \kappa_g, \kappa_\gamma$
BSM loops only	87%	2	$\kappa_{g}, \kappa_{\gamma}$
Fermion and vector couplings	- 64%	2	λ_{FV},κ_{VV}
Up vs down couplings	72%	3	$\lambda_{du}, \lambda_{Vu}, \kappa_{uu}$
Lepton vs quark cou plings	- 79%	3	$\lambda_{lq}, \lambda_{Vq}, \kappa_{qq}$

"Compatibility with the SM prediction of fit results as a whole under the asymptotic approximation. For each parameterisation, the unconditional best fit is compared with the conditional fit where all parameters are set to their SM values. The conversion from $-2 \ln \Lambda$ to the quoted *p*-value is performed assuming a two-sided distribution with the specified number of degrees of freedom (DOF). The quoted *p*-values are partially correlated between the different parameterisations."

Extraction of signal yield per category ...

- divide events in categories (e.g. number of jets, bins of $p_T^{\gamma\gamma}$, bins of $Y_{\gamma\gamma}$, etc . . .)
- from the invariant mass spectrum, extract the signal yield in each category / bin

then unfold the experimental effects (efficiencies, migrations, ...)
 ⇒ get the cross-section per category / bin

Differential cross-sections

$H ightarrow \gamma \gamma$

$H \rightarrow ZZ^* \rightarrow 4\ell$

・ロト・日本・モー・モー うへの

[to be updated if new results arrive from CMS 2016 data]

Total cross-section from $\gamma\gamma$ and 4 ℓ final states <code>[ATLAS-CONF-2016-081]</code>

- * ロ * * @ * * 注 * * 注 * のへ()