





# di-Higgs searches and prospects CMS and ATLAS experiments

Martino Dall'Osso \* on behalf of CMS and ATLAS collaborations

International Symposium on Higgs Boson and Beyond Model Physics Shandong University - Weihai, August 17th 2016

\* Università di Padova

# OUTLINE

- 1. Why and which Higgs pair (di-Higgs) productions?
  - resonant
  - non-resonant
- 2. Searches status per decay channel (focus on Run 2 results):
  - bb bb
  - bb WW
  - bb ττ
  - bb yy
  - γγ WW
- 3. BSM in non-resonant hh searches
- 4. Future prospects



Results from CMS and ATLAS collaborations. New analysis shown at ICHEP 2016 plus two brand new results.

# **MOTIVATIONS**

### Search for Standard Model (SM) di-Higgs (hh) production at LHC is:

- a baseline SM topic.
- *important for measuring Higgs self-coupling* ( $\lambda_{hhh}$ ).



Di-Higgs are produced mainly via gluon-gluon fusion at LHC. Destructive interference among diagrams leads to small prod. cross section:

> $\sigma^{SM}_{hh}(p-p \ 8 \ TeV) = 10.16 \ fb^{[1]}$  $\sigma^{SM}_{hh}(p-p \ 13 \ TeV) = 33.45 \ fb^{[2]}$

- Measurements possible starting from 3 ab<sup>-1</sup>.
   However, BSM effects lead to:
  - the presence of **resonant** hh process.
  - the enhancement of the **non-resonant** hh production cross section.

[1] +4.1% -5.7% (scale unc.) ± 4.0% (PDF+ $\alpha_s$  unc) -- NNLO+NNLL. [2] +4.3% -6.0% (scale unc.) ± 3.1% (PDF+ $\alpha_s$  unc) -- NNLO+NNLL.

# MOTIVATIONS



Resonant di-Higgs predicted in at least three possible BSM models:

• **MSSM/2HDM** (250-400 GeV) -> additional Higgs doublet  $\rightarrow$  CP-even scalar H.

\*see Ning Chen's talk

- Singlet model (250-1000 GeV) -> Additional Higgs singlet with an extra scalar H. Sizeable BR beyond 2xm<sub>top</sub>, non negligible width at high m<sub>H</sub>.
- Warped Extra Dimensions (250-3000 GeV) ->
   <u>spin-2 (KK-graviton) <sup>[1]</sup> and spin-0 (radion) <sup>[2]</sup> resonances</u>.

   Different phenomenology if SM particles are allowed (bulk RS) or not (RSI model) in the extra dimensional bulk.
- Searches for resonant di-Higgs production at LHC cover a wide resonance mass range. Above 1 TeV performed on bbbb channel only.
- > Different analysis techniques depending on the mass region.
- Results usually compared with prediction from spin-2 and spin-0 scenarios.

[2] Radion phenomenology, Csaba Csaki et al

<sup>[1]</sup> Goldberger-Wise mechanism

# **SEARCHES**

### di-Higgs searches can be performed looking at different final states

### Considering the low production cross section,

one Higgs is mainly searched for in bb decay to exploit the higher branching ratio.

### Four main decay channels:

- **bb bb** -> highest BR, high QCD/tt bkg
- **bb WW** -> high BR, large irreducible tt
- **bb ττ** -> relatively low background
- **bb γγ** -> high purity, very low BR

### In addition:

- γγ WW -> studied by ATLAS.
- WW WW -> first studies done. See Maosen Zhou's talk

#### 34% bb 10<sup>-1</sup> BR(H→ a am 10% 25% $BR(HH \rightarrow XXYY)$ 10<sup>-2</sup> 10<sup>-3</sup> 7% ττ 10-4 CC **10**⁻⁵ ZZ γγ 1e-3 3e-3 **10**⁻<sup>6</sup> Zγ 10<sup>-7</sup> μμ 10<sup>-8</sup> μμ ττ Zγ γγ 77 CC gg ww bb $BR(H \rightarrow XX)$

### All challenging searches $\rightarrow$

'add' one more Higgs to 'standard' single Higgs analysis.

# **SEARCHES**

## LHC Run1 (8 TeV, ~20 fb<sup>-1</sup>):

|           | ATLAS                             | CMS                                                             |                       |
|-----------|-----------------------------------|-----------------------------------------------------------------|-----------------------|
|           | resonant && non-res               | resonant                                                        | non- res              |
| hh-> bbbb | <u>10.1103/PhysRevD.92.092004</u> | <u>PLB 749 (2015) 560,</u><br>arXiv:1602:08762                  | -                     |
| hh-> bbWW | -                                 | -                                                               | -                     |
| hh-> bbττ | 10.1103/PhysRevD.92.092004        | PLB 755 (2016) 217,<br>PAS-EXO-15-008,<br><u>PAS-HIG-15-013</u> | <u>PAS-HIG-15-013</u> |
| hh-> bbγγ | 10.1103/PhysRevD.92.092004        | arxiv:1603.06896                                                | arxiv:1603.06896      |
| hh-> γγWW | 10.1103/PhysRevD.92.092004        | -                                                               | -                     |

- channels combination performed by Atlas producing: <u>10.1103/PhysRevD.92.092004</u>.
- bbWW channel not exploited by any experiment in Run 1.
- BSM effects on non-resonant hh studied by CMS in bbγγ channel.

No excess observed for resonant searches, upper limit set on SM non-resonant hh production: **best observed limit: ATLAS (hh->bbbb) > 63 X σ**<sub>SM</sub>



LHC Run2 (13 TeV):

|                           | ATLAS                       |                        | CMS                                                         |                       |
|---------------------------|-----------------------------|------------------------|-------------------------------------------------------------|-----------------------|
|                           | resonant                    | non- res               | resonant                                                    | non- res              |
| hh-> bbbb                 | arXiv:1606<br>ATLAS-CONF-20 | .04782*<br>)16-049_*** | <u>CMS-PAS-HIG-16-002</u> *,<br><u>CMS-PAS-B2G-16-008</u> * | CMS-PAS HIG-16- 026*  |
| hh-> bbWW                 | -                           |                        | <u>CMS-PAS-HIG-16-011_</u> *                                | CMS-PAS-HIG-16-024_*  |
| hh-> bbττ                 | -                           |                        | CMS-PAS-HIG-16-029_**                                       | CMS-PAS-HIG-16-028_** |
| hh-> bbγγ                 | ATLAS-CONF-                 | 2016-004*              | CMS-PAS HIG-16-032_*                                        |                       |
| hh-> γγWW                 | ATLAS-CONF-2                | 016-071_**             | -                                                           |                       |
| $201E data (~ 2 fb^{-1})$ |                             |                        |                                                             |                       |

| *   | 2015 data (~ 3 fb <sup>-1</sup> )                   | Now maculta                                 |  |
|-----|-----------------------------------------------------|---------------------------------------------|--|
| **  | 2016 data (~ 13 fb <sup>-1</sup> )                  | <u>New results:</u>                         |  |
| *** | 2015+2016 data combination (~ 13 fb <sup>-1</sup> ) | Green -> shown at ICHEP2016                 |  |
|     |                                                     | <b>Red</b> -> shown here for the first time |  |

• Details of these analysis in next slides.



LHC Run2 (13 TeV):

# RESONANT hh

### **RESOLVED ANALYSIS:**

- Resolve all decay products
- 2 strategy for CMS: Low mass (m<sub>H</sub><400 GeV) and High mass (m<sub>H</sub><1200 GeV) regions.</li>
- Exploit b-tagging  $\rightarrow$  off-line cut: >= 4 b-tagged jets per event. on-line cut: >= 2 (3) b-tagged anti-k<sub>T</sub> R=0.4 jets for ATLAS (CMS)

RESONANT

- High QCD and tt contamination (2-10%).
- First 4 jets sorted in bTag + selection on jet/di-jet  $\Delta R/\Delta m$ .
- Bkg shape extracted from sidebands on data in 2D mass plane (with request of >=2 b-tag for ATLAS).

### • Limit extraction on m<sub>4j</sub> distribution.



## **BOOSTED ANALYSIS:**

- Optimised for higher mass (m<sub>hh</sub>>1TeV) resonant hh.
- high-momentum Higgs bosons->
   high boosted 2 b-jets are in a 'large' jet.
- Apply substructure techniques.
- Limit extracted on M of 2 'large' jets.



#### ATLAS-CONF-2016-049 CMS-PAS-B2G-16-008

# RESONANT

10

- For CMS -> 2 complementary techinques: double b-tagger: BDT from jet properties + bkg estimation from multiple sidebands. subjet b-tag: bkg fit + 3 categories based on number of b-tagged sub-jets.
- For ATLAS ->

>=2 anti- $k_t$  jet (R=0.1) with  $p_T$ >250 per event >=1 b-tagged anti- $k_t$  jet (R=0.2) 'inside' each large jet data-driven bkg extraction for QCD and tt in sidebands.



Unique channel which covers mass range above 1TeV. No evidence of new resonance over large mass range.

### Exclusion at 95% CL :

CMS:  $1000 < M_{H} < 1720$  GeV for Radion ( $\Lambda_{R} = 1$  TeV) -boosted.  $350 < M_{H} < 725$  GeV and  $M_{H} > 850$  GeV for Graviton.

ATLAS:  $360 < M_{H} < 869$  GeV for Radion.



ATLAS-CONF-2016-049 RESONANT CMS-PAS-HIG-16-002 CMS-PAS-B2G-16-008 2.3 fb<sup>-1</sup> (13 TeV) CMS Expected Upper Limit Preliminary Expected  $\pm 1\sigma$ Expected  $\pm 2 \sigma$ Observed Upper Limit KK-Graviton, kL=35, k/Mn=0.1 Resolved

 $\sigma(pp \rightarrow X) BR(X \rightarrow H(bb) H(bb)) (fb)$ 

10<sup>3</sup>

10<sup>2</sup>



# **SEARCHES** – hh>bbττ

### IN THIS CHANNEL IN RUN2, CMS SEARCHES ONLY.

- 3 final states:  $e \tau_{H'} \mu \tau_{H'} \tau_{H} \tau_{H}$
- •Final state:  $1\tau_{H} + 1$  isolated leptons (e,  $\mu, \tau_{H}$ ) + 2 b-jets
- •Main bkgs: tf (from MC),
  - QCD multijet (from data in control regions).
- BDT to enrich signal region.
- Limit extraction on kinematic fit of the resonant  $m_{\rm H}$
- 3 categories: 1b-jet, 2 b-jet, boosted b-jets category.





• Th. interpretation not computed yet.

# Results on 2016 datasets.

CMS-PAS-HIG-16-029

RESONANT

# SEARCHES – hh>bbyy



RESONANT

- Lowest BR among all channels, but excellent resolution on  $m_{yy}$ Main backgrounds:
  - SM yy+Jets production
  - SM y+Jets (one jet identified as a photon)
  - Multijet (two jets identified as photons)

### Similar event selection both for CMS and ATLAS ->

Accordingly to signal hypothesis, select mass window in  $M(jj\chi\chi)$  around resonance mass. Two categories based on b-tagging (one for high mass region).

#### Different Signal Extraction -> 2D unbinned fit in $m_{ii}$ and $m_{vv}$ for CMS $\rightarrow$ selection on $m_{H}$ region Counting experiment with fit on $m_{yy}$ for ATLAS. **CMS-PAS HIG-16-032**

#### ATLAS-CONF-2016-004



# **SEARCHES** – hh>bbyy

- ATLAS search stop at low mass regime.
- CMS search divided into low and high mass regime with different b-tag categorization.



Exclusions at 95%:

CMS-> Spin-0 Radion below 750 GeV (except 650 GeV vicinity)



σ(pp→X→HH→bbγγ) [fb]

102

CMS-PAS HIG-16-032

**CMS** Preliminary

 $pp \rightarrow X \rightarrow HH \rightarrow b\overline{b}\gamma\gamma$ 

Spin-2 Resonance

---- Bulk Graviton, k/Mpi = 1

RESONANT

 $L = 2.70 \text{ fb}^{-1} (13 \text{ TeV})$ 

 Observed 95% upper limit Expected 95% upper limit

Expected limit  $\pm 1\sigma$ 

Expected limit  $\pm 2\sigma$ 

# SEARCHES – hh>yyWW



IN THIS CHANNEL ATLAS SEARCHES ONLY.

Large h->WW BR -- Clean h-> signature

## Final state yylvqq'

- Events with 2 photons, at least 2 jets and no b-jet
- 105 GeV< m<sub>νν</sub> < 160 GeV</li>

### Signal Region:

- One lepton region requiring at least one lepton
- The diphoton mass  $m_{\gamma\gamma}$  to be within a  $2\sigma$  window of the Higgs boson mass ( $\sigma_{\gamma\gamma}$  = 1.7 GeV)

### Control Region:

Zero lepton region - requiring no lepton

Side-Band Region:

- Reversing the tight mass window in either the onelepton region or the zero-lepton region
- Used for the data-driven estimation of the continuum diphoton background

Limits on  $\sigma(pp \rightarrow X \rightarrow hh)$ 47.7 pb (expected 24.3 pb ) at m<sub>X</sub>= 260 GeV 24.7 pb (expected 12.7 pb) at m<sub>X</sub> = 500 GeV



ATLAS-CONF-2016-071

di-Higgs at LHC

ISHBSM 2016 - Martino Dall'Osso

m<sub>x</sub> [GeV]

# **SEARCHES – hh>ALL**



CMS -> Summary plot of limit on spin-0 resonant including all the results performed on 8 TeV:

- Coverage ranges from  $2 \times m_H$  to few TeVs.
- 4b channel provides tighter limit for high mass



ATLAS -> combination of all the analysis performed on 8TeV.

- Combination improves each single AN limit.
- No boosted regime in the combination. ATLAS search in hh->4b above 1 TeV also do not provide any excess.



di-Higgs at LHC

# **SEARCHES – hh>ALL**







ATLAS -> no excess in each channel. No official combination yet.

CMS -> Summary plots including all the latest results: Range from 2 x m<sub>H</sub> to few TeVs covered. hh->4b still provides best limit in a wide mass range. hh->bbγγ has strong power in low mass regions.





LHC Run2 (13 TeV):

# NON-RESONANT hh

# **BSM non-resonant hh**

The non-resonant Higgs bosons pair is a golden channel to study the **Higgs potential.** It allows to directly probe the Higgs trilinear coupling ( $\lambda_{hhh}$ ). No sensitivity to measure SM  $\lambda_{hhh}$  in Run2.

- Variation of  $\lambda_{hhh}$  wrt to SM value can be investigated with di-Higgs.
- A more general extension to **BSM effects** is modelled in EFT adding dim-6 operators<sup>[2]</sup>. The physics can be described with **5 parameters** following this Lagrangian:  $\lambda_{HHH}$  y<sub>T</sub> C<sub>2</sub> C<sub>g</sub> C<sub>2g</sub>

$$\mathcal{L}_{h} = \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - \frac{1}{2} m_{h}^{2} h^{2} - \kappa_{\lambda} \lambda_{SM} v h^{3} - \frac{m_{t}}{v} (v + \kappa_{t} h + \frac{C_{2}}{v} h h) (t_{L} t_{R} + h.c.)$$
where  $\mathbf{k}_{\lambda} = \lambda_{\text{HHH}} / \lambda_{\text{HHH}}^{\text{SM}}$ ;  $\mathbf{k}_{t} = \mathbf{y}_{T} / \mathbf{y}_{T}^{\text{SM}}$ ;  $+ \frac{1}{4} \frac{\alpha_{s}}{3\pi v} (c_{g} h - \frac{c_{2g}}{2v} h h) G^{\mu\nu} G_{\mu\nu}$ .
$$\frac{g}{0000} + \frac{1}{h} e^{-h} h g = 0.129$$
SM processes:
$$g = 0.129$$

$$\frac{g}{0000} + \frac{1}{h} e^{-h} h g = 0.000$$
Final processes:
$$g = 0.129$$

$$\frac{g}{0000} + \frac{1}{h} e^{-h} h g = 0.000$$

$$\frac{1}{h} e^{-h} h g = 0.000$$

$$\frac{1}{h$$

# **BSM non-resonant hh**



### The previous parametrization leads to 5-dimensional space

-> Need to identify benchmarks to be analyzed.

Variation of the 5 parameters (couplings) implies a variation of the di-higgs kinematics.

Developed a technique based on test statistic (TS) to group parameters space points and to identify benchmarks of each cluster based on final state kinematics.



## **NON-RESONANT**

- In hh->bbbb channel studied only the SM production so far.
  - First CMS result in this channel approved yesterday.
  - Tighten upper limit set by Atlas looking at 2015+2016 data.

### ATLAS -> same analysis strategy of the low mass resonant hh search.



Sensible changes in the analysis strategy wrt 2015 data analysis -> Limit was 108 X  $\sigma_{SM}$ .



CMS -> dedicated analysis to the non-resonant search. Preliminary result performed on 2015 data.

- Same trigger as resonant (3b-tag).
- First 4 jets sorted in b-tag.
- BDT trained on QCD and tt (di-jet kinematics).
- 2D fit in [m(bb), m(bb)] plane to extract the limit.
- **Background extraction** based on data-driven method: *hemisphere mixing technique* 
  - -> divide data events into two parts and get new events (bkg template) from them
  - 1. Fill hemisphere library from data dividing each events 1 to the transverse thrust axis (max of  $\Sigma p_{T}$  projections).
  - 2. Create new events dataset choosing per each event the 2<sup>nd</sup> nearest neightbour\* hemispheres from library. Events / 1 bin

Background shape well reproduced and not dependent on small signal contaminations.

 $\rightarrow$  no sidebands, extracted from whole 2D plane.

### SM Observed (exp) limit on 2015 data:

 $\sigma(pp \rightarrow hh \rightarrow bbbb) < 3880 (3490) fb$ -> equal to 342 X  $\sigma_{SM}$ 





\*kin variables: #jets, #b-tag, ΣpTcosθ, ΣpTsinθ, Σpz, hemisphere mass.

2D bin

**NON-RESONANT** 

#### **CMS-PAS HIG-16-026**

# **SEARCHES – hh>bbWW**

CMS

IN THIS CHANNEL CMS SEARCHES ONLY.

### Search for hh $\rightarrow$ bbWW $\rightarrow$ bb2l2v

- 2 isolated OS leptons + 2 b-jets in the final state
- Main backgrounds: tt, DY, single top

Differences wrt resonant search:

- 1 single BDT trained for non-resonant searches.
- 2D fit in [m(bb), BDT score] to extract the limits

CMS-PAS-HIG-16-024\_

# **NON-RESONANT**

<u>SM observed (exp) LIMIT:</u>  $\sigma(pp \rightarrow hh \rightarrow bb2l2\nu) < 166.7$  (92.8) fb -> equal to ~ 400 x σ<sub>SM.</sub>

### **BSM SEARCHES:**

Performed on 12 benchmarks and then extended to the 5-D parameter space  $\rightarrow$  excl. limit in some  $k_{\lambda}$   $k_{t}$  combinations.



# SEARCHES – hh>bbττ



IN THIS CHANNEL IN RUN2, CMS SEARCHES ONLY.

- 3 final states:  $e \tau_{H}, \mu \tau_{H}, \tau_{H}, \tau_{H}$
- Final state:  $1\tau_{\mu}$  + 1 isolated leptons + 2 b-jets
- Main bkgs: tt (from MC),

QCD multijet (from data in control regions).

- BDT discriminant to reduce tt, only angular information.
- BDT trained on the SM sample has good performances on BSM samples  $(k_{\lambda} \neq 1)$  too.

CMS-PAS-HIG-16-028

• limit extracted on four body mass.

SM observed (exp) LIMIT:  $\sigma(pp \rightarrow hh \rightarrow bb\tau\tau) < 508 (420) \text{ fb}$ -> equal to ~ 200 x  $\sigma_{SM}$ .

### **BSM SEARCHES:**

Results on 2016 datasets.

- k<sub>λ</sub> variations investigated ( $k_t$ ,  $c_2$ ,  $c_g$ ,  $c_{2g}$  = SM value). Still not enough sensitivity.
- Extension to the 5-D parameter space will be performed soon.



# **NON-RESONANT**



# SEARCHES – hh>bbyy

Almost same strategy of resonant search for both ATLAS and CMS.



### SM – Observed upper limit on $\sigma(pp-hh)_{SM} \times BR$ :

|           | ATLAS                                                             | CMS                                                               |              |
|-----------|-------------------------------------------------------------------|-------------------------------------------------------------------|--------------|
|           | SM                                                                | SM                                                                | BSM searches |
| hh-> bbbb | <b>29 X σ<sub>SM</sub></b> (13.3 fb <sup>-1</sup> )**             | <b>342 X <math>\sigma_{SM}</math></b> (2.32 fb <sup>-1</sup> )    | -            |
| hh-> bbWW | -                                                                 | <b>410 X <math>\sigma_{SM}</math></b> (2.3 fb <sup>-1</sup> )     | DONE         |
| hh-> bbττ | -                                                                 | <b>200 X <math>\sigma_{SM}</math></b> (12.9 fb <sup>-1</sup> ) ** | DONE         |
| hh-> bbγγ | <b>115 X <math>\sigma_{SM}</math></b> (3.2 fb <sup>-1</sup> )     | <b>91 Χ σ<sub>SM</sub></b> (2.7 fb <sup>-1</sup> )                | DONE         |
| hh-> γγWW | <b>700 X <math>\sigma_{SM}</math></b> (13.3 fb <sup>-1</sup> ) ** | -                                                                 | -            |

## Assuming  $\sigma(pp-hh)_{SM}$  =33.45 fb<sup>1</sup>, values are indicatives for channels comparisons.

No excess even in Run 2 searches.

\*\* 2016 data [1] <u>LHCHXSWG Yellow Report 4</u>.

- **green** -> shown at ICHEP2016 r**ed** -> shown here for the first time
- Upper limits on SM prod. cross section extracted on 2015 data only are compatible with Run1.
- Result on hh->bbbb from ATLAS, based on 2016 data, set tighter limit on SM process.
- CMS started searches to BSM effects, looking at Higgs anomalous couplings. No excess seen but exclusion limit set to points of the parameters space, mainly on point with 'high' k<sub>λ</sub> and k<sub>t</sub> values -- far from 1 (SM).





What can we expect from HL-LHC (>2024)?

Main focus is on SM non-resonant production since most the BSM should be already constrained.

• Study performed by CMS on bbττ, bbγγ and bbWW channels

HL-LHC operating condition assumed  $\rightarrow$  3000 fb<sup>-1</sup>

Delphes simulation used.

Simplified Run1 analysis flow followed. Phase II Upgrade conditions included.

Combining **bbττ and bbγγ**: the expected significance for Higgs boson pair production is 1.9 standard deviation.

The bbbb final state promises the largest potential for improvement but still not investigated  $\rightarrow$  waiting for first result on 13TeV data.



di-Higgs at LHC

# PROSPECTS



### What can we expect from HL-LHC (>2024)?

HL-LHC operating condition assumed  $\rightarrow$  3000 fb<sup>-1</sup>

### • bbττ channel:

Simple cut based analysis.

Assuming SM background and SM signal, set an upper limit of the cross section for di-Higgs production of **4.3 x σ(hh->bbττ)** at 95% CL.

- BSM → using an effective Lagrangian for the Higgs potential, exclusion of  $k_{\lambda}$ <-4 and  $k_{\lambda}$ >12 \*
- bbyy channel:

Gen-level MC used. Simple cut based analysis.

<u>8 events expected  $\rightarrow$  significance = 1.3 std dev.</u>

BSM  $\rightarrow$  exclusion of k<sub> $\lambda$ </sub><-1.3 and k<sub> $\lambda$ </sub>>8.7 \*

 $jjjj, jjj, bc, bjj, ttH(\rightarrow bb), H(\rightarrow bb), H(\rightarrow bb) j, H(\rightarrow bb) jj,$ fully hadronic *tt* decays,  $Z(\rightarrow bb)$ , also considered but almost zero events expected.

\*different notation/parametrization wrt the one previously shown.

#### ATL-PHYS-PUB-2015-046 ATL-PHYS-PUB-2014-019



# CONCLUSIONS

### <u>LHC Run 2:</u>

- di-Higgs searches at LHC started to be an interesting topic.
- Several final states lead to competing analysis within each experiment and provide excellent coverage in different decay modes.
- SM process still not accessible but tight limit set by ATLAS with 2016 dataset.
- Higgs anomalous couplings -> 5-D parameter space. Developed a cluster technique to identify benchmarks. First exclusion limits set by CMS searches.
- No excess seen in BSM resonant di-Higgs searches.

### Prospects:

- Considering current LHC performances, whole 2016 dataset will provide a strong improvements in each final state searches.
- Deep investigation of BSM effects on non-resonant hh production using Run2 data.
- Update of HL-LHC prediction is planned for ECFA based on 2015-2016 experience. \*see also DongMing Zhan's talk

# Thank you



di-Higgs at LHC

![](_page_31_Picture_0.jpeg)

# RESONANT

### **RESOLVED ANALYSIS:**

- Resolve all decay products
- 2 strategy for CMS: Low mass (m<sub>H</sub><400 GeV) and High mass (m<sub>H</sub><1200 GeV) regions.</li>
- Exploit b-tagging  $\rightarrow$  off-line cut: >= 4 b-tagged jets per event. on-line cut: >= 2 (3) b-tagged anti-k<sub>T</sub> R=0.4 jets for ATLAS (CMS)
- High QCD and tt contamination (2-10%).
- Additional selection on jet  $\Delta R$  in ATLAS (see later).
- Bkg shape extracted from sidebands on data in 2D mass plane with request on 2 b-tag only.

• Limit extraction on m<sub>4i</sub> distribution.

![](_page_32_Figure_10.jpeg)

ATLAS-CONF-2016-049

CMS-PAS-HIG-16-002

![](_page_33_Picture_1.jpeg)

ATLAS - RESOLVED

RESONANT

### Thanks to Tülin Varol @ICHEP2016

ATLAS-CONF-2016-049

Optimised for non-resonant or low-mass hh systems

**RESOLVED ANALYSIS** 

**Resolve all decay products** 

- Large  $h \rightarrow bb$  branching fraction
- High statistics control regions
- Suffers from large multi-jet background
- Four anti-kt jets with R=0.4 selected
  - Each b-tagged (70% working point),
  - With  $p_{\pi} > 30$  GeV and  $|\eta| < 2.5$
- · Forming di-jets with selected jets

•

- Three possible ways to build two Higgs candidates out of the four jets
- $m_{4i}$ -dependent requirements applied on the Higgs candidate  $\Delta R(j,j)$
- Minimising the distance  $D_{hh}$
- (120 GeV, 115 GeV) account for energy losses through semi-leptonic decays
  - Correspond to the median values of the narrowest intervals that contain 90% of the signal in simulation

![](_page_33_Figure_18.jpeg)

 $D_{hh} = \sqrt{\left(m_{2j}^{\text{lead}}\right)^2 + \left(m_{2j}^{\text{subl}}\right)^2} \left|\sin\left(\tan^{-1}\left(\frac{m_{2j}^{\text{subl}}}{m_{2j}^{\text{lead}}}\right) - \tan^{-1}\left(\frac{115}{120}\right)\right)\right|$ 

- Mass dependent cuts as a function of m<sub>4</sub> applied on the three variables; Leading and sub-leading Higgs candidate  $p_{T} & |\Delta \eta_{hh}|$
- Vetoing events with  $\Delta R(h,h) < 1.5$

# **SEARCHES**

BSM non-resonant hh --- cluster analysis

# 2. Define a Test Statistic to identify kinematical similarities:

• A 2-D binned histogram created on  $m_{HH}$  and  $cos\theta^*$  (i == bin).

• If 2 samples share the same parent distribution, the likelihood function is the product over the bins of probability to observe  $n_{i,1}$  and  $n_{i,2}$  events (1,2 == samples).

 $\rightarrow$  product of two Poisson distributions (*P\*P*) with estime:  $\hat{\mu}_i = (n_{i,1} + n_{i,2})/2$ 

All information on samples diversity are contained in this binomial (factorized out from *P\*P*):

$$Binomial(n_{i,1}/(n_{i,1}+n_{i,2})) = \frac{(n_{i,1}+n_{i,2})!}{n_{i,1}!n_{i,2}!} \left(\frac{1}{2}\right)^{n_{i,1}} \left(\frac{1}{2}\right)^{n_{i,2}}$$

Considering  $L_s$  the *Binom*. with sample1 = sample2 (*saturated hypothesis*), we got:

$$TS = -2\log\left(\frac{L}{L_S}\right) = 2\sum_{i=1}^{N_{bins}} \log(n_{i,1}!) + \log(n_{i,2}!) - 2\log\left(\frac{n_{i,1} + n_{i,2}}{2}!\right)$$
TS does not depend on the sample under test.

![](_page_34_Figure_10.jpeg)

![](_page_34_Figure_11.jpeg)

# PROSPECTS

![](_page_35_Picture_1.jpeg)

## What can we expect from HL-LHC (>2024)?

HL-LHC operating condition assumed  $\rightarrow$  3000 fb<sup>-1</sup>

• bbtt channel:

![](_page_35_Figure_6.jpeg)

• bbyy channel:

![](_page_35_Figure_8.jpeg)