

International Symposium on Higgs Boson and Beyond Standard Model Physics

## **ATLAS Status Overview**

### A. Polini (INFN Bologna)

#### on behalf of the ATLAS Collaboration

### **Outline:**

- The ATLAS detector
- Run-2 Status and Performance
- Recent Physics Highlights\*
- Upgrade Plans



International Symposium on Higgs Boson and Beyond Standard Model Physics

# \*Only few Highlights shown here: See dedicated presentations:

- Higgs properties (ATLAS+CMS) Marcello Fanti
- BSM Higgs searches in ATLAS Takanori Kono
- Search for Higgs pair production → WWγγ at 13 TeV Qi Li
- Higgs boson production and decays in ATLAS Haifeng Li
- Higgs rare decays (ATLAS+CMS) Liang Li
- Data driven W+Jet background for WW→lvlv final state Weimin Song
- Study on VBF H  $\rightarrow$   $\gamma\gamma$  Yu Zhang
- High mass  $H \rightarrow WW \rightarrow IvIv$  search Yongke Zhao
- Early Search for Supersymmetry at ATLAS Xuai Zhuang
- Searches for heavy ZZ and ZW resonances in llqq and vvqq final states S. Patrick Alkire
- Exotics searches at ATLAS Chunhui Chen
- Search for pair production of Higgs bosons in the bb bb final state Baojia Tong
- Collider Dark Matter searches (ATLAS+CMS) Francesca Ungaro

Tile Calorimeter

**Muon Detector** 

Toroid Magnet

3

#### **ATLAS**

August 15 2016

- Central detector:
  - 25 meters high
  - 44 meters long
  - Weight 7000 tons
- Forward detectors not shown

SCT

Solenoid Magnet

Liquid Argon Calorimeter

TRT

**Pixel Detector** 

#### **Inner Detector (ID) Tracking**

- Silicon Pixels
   (4 layers barrel, 3 endcap)
- Silicon Strips (SCT) (4 layers barrel, 9 endcap)
- Transition Radiation Tracker (TRT) up to 36 points/track
- 2T Solenoid Magnet



#### Calorimeter system EM and Hadronic energy

- Liquid Ar (LAr) EM barrel and end-cap
- LAr Hadronic end-cap
- Tile calorimeter (Fe – scintillator) hadronic barrel





#### August 15 2016

### **The ATLAS Detector in Run-2**



#### New detectors in Run-2:

- Innermost pixel layer IBL, 3.4 cm from interaction point
- Muons: MDT in  $1.1 < |\eta| < 1.3$ , RPC in Barrel Feet Sectors
- Forward proton detectors, AFP (one arm in 2016, 205+217m from IP)
- In addition, various consolidations provide improved running at high luminosities and rates (tracking, calorimetry, muon, luminosity measurement, etc.)

A. Polini, ISHBSM 2016, Weihai

## **The ATLAS Detector in Run-2**



#### Trigger system (Run-2)

- L1 hardware
  - output rate: 100 kHz latency: < 2.5 ms
  - New Central Trigger Processor
  - Improved resolution in calorimetry readout and trigger
  - Topological trigger at L1 (Calo+Muons)
- HLT software
  - output rate: 1 kHz
  - proc. time: ~ 550 ms
- Wide upgrade to DAQ infrastructure



## ATLAS data taking from 2015 to 2016

| Year      | C.M.S. Energy | β*    | Peak Inst Lum.                                           | Bunch Spacing | y [fb <sup>-1</sup> ] |      |
|-----------|---------------|-------|----------------------------------------------------------|---------------|-----------------------|------|
| 2010-2012 | 7+8 TeV       | 80 cm | 7.73 x 10 <sup>33</sup> cm <sup>-2</sup> s <sup>-1</sup> | 50 ns         | nosit                 |      |
| 2015      | 13 TeV        | 80 cm | 5.02 x 10 <sup>33</sup> cm <sup>-2</sup> s <sup>-1</sup> | 25 ns         | -umi                  | 4    |
| 2016      | 13 TeV        | 40 cm | 1.16 x 10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> | 25 ns         | ted I                 | - To |



Mean Number of Interactions per Crossing

- Exceptional LHC performance in 2016 following 13 TeV commissioning in 2015
  - Run-2 results reported with 3-15 fb<sup>-1</sup>

Luminosity uncertainty ±2.1% (2015) ±3.7% (2016, preliminary) ±2.9% (2015+2016, prel.)



### **Run-2 Operation: the Trigger Challenge**



August 15 2016

### **Run-2 Data Quality**

#### Many challenges:

- Detectors (occupancies, SEUs ...)
- Trigger (thresholds, rates)
- Readout (bandwidth)
- Offline (Tier-0, Grid)

#### → ATLAS has risen to meet these challenges:

#### Data quality overall good

- 2015: 2 fills with IBL off due to FE current raising. Understood.
- 2016: few occasional short toroid-off periods (power glitches)

Detector operational channel fractions remains at Run-1 levels

#### End of 2015 data sample

#### ATLAS pp run: August-November 2015

| Inner Tracker |      |      | Calorir | neters | Muon Spectrometer |     |     | Magnets |          |        |
|---------------|------|------|---------|--------|-------------------|-----|-----|---------|----------|--------|
| Pixel         | SCT  | TRT  | LAr     | Tile   | MDT               | RPC | CSC | TGC     | Solenoid | Toroid |
| 93.5          | 99.4 | 98.3 | 99.4    | 100    | 100               | 100 | 100 | 100     | 100      | 97.8   |

#### All Good for physics: 87.4% (3.3 fb<sup>-1</sup>)

Luminosity weighted relative detector uptime and good data quality (DQ) efficiencies (in %) during stable beams in pp collisions with 25ns bunch spacing at  $\sqrt{s}$ =13 TeV between August-November 2015, corresponding to an integrated luminosity of 3.8 fb<sup>-1</sup>. The lower DQ efficiency in the Pixel detector is due to the IBL being turned off for two runs, corresponding to 0.2 fb<sup>-1</sup>. Analyses that don't rely on the IBL can use those runs and thus use 3.5 fb<sup>-1</sup> with a corresponding DQ efficiency of 93.4%.

#### 2016 Summer Conferences data sample

#### ATLAS pp 25ns run: April-July 2016

| Inner Tracker |      |     | Calorin | neters | Muo  | n Speo | ctrom | eter | Magr     | nets   |
|---------------|------|-----|---------|--------|------|--------|-------|------|----------|--------|
| Pixel         | SCT  | TRT | LAr     | Tile   | MDT  | RPC    | CSC   | TGC  | Solenoid | Toroid |
| 98.9          | 99.9 | 100 | 99.8    | 100    | 99.6 | 99.8   | 99.8  | 99.8 | 99.7     | 93.5   |

#### Good for physics: 91-98% (10.1-10.7 fb<sup>-1</sup>)

Luminosity weighted relative detector uptime and good data quality efficiencies (in %) during stable beam in pp collisions with 25ns bunch spacing at  $\sqrt{s}$ =13 TeV between 28th April and 10th July 2016, corresponding to an integrated luminosity of 11.0 fb<sup>-1</sup>. The toroid magnet was off for some runs, leading to a loss of 0.7 fb<sup>-1</sup>. Analyses that don't require the toroid magnet can use that data.

| Subdetector                      | Number of Channels  | Approximate Operational Fraction |
|----------------------------------|---------------------|----------------------------------|
| Pixels                           | 92 M +12M           | wrt Run-1 98.2%                  |
| SCT Silicon Strips               | 6.3 M               | 98.7%                            |
| TRT Transition Radiation Tracker | 350 k               | 97.2%                            |
| LAr EM Calorimeter               | 170 k               | 100%                             |
| Tile calorimeter                 | 5200 + <b>0.8</b> % | 6 wrt 2015 100%                  |
| Hadronic endcap LAr calorimeter  | 5600                | 99.6%                            |
| Forward LAr calorimeter          | 3500                | 99.7%                            |
| LVL1 Calo trigger                | 7160                | 100%                             |
| LVL1 Muon RPC trigger            | 383 k +13k          | wrt 2015 99.8%                   |
| LVL1 Muon TGC trigger            | 320 k               | 100%                             |
| MDT Muon Drift Tubes             | 357 k               | 99.7%                            |
| CSC Cathode Strip Chambers       | 31 k                | 98.4%                            |
| RPC Barrel Muon Chambers         | 383 k +13k          | wrt 2015 96.6%                   |
| TGC Endcap Muon Chambers         | 320 k               | 99.6%                            |
| ALFA                             | 10 k                | 99.9 %                           |
| AFP NEW for 2016                 | 188 k               | 98.8 %                           |

#### August 15 2016

### **Physics Performance**





August 15 2016

### Results

- After a little more than a year the Run-2 pp sample is approaching the integrated luminosity of Run-1, at 1.6 times higher Vs
- Major new physics sensitivity has opened up



#### ATLAS:

- In total 64 new results from for the Summer Conferences: 56 using 13 TeV data and 45 with 2015+2016
- 40 papers with Run-2 data (576 total with collision data) have been submitted while Run-1 results are still coming

### **Inclusive Cross-Sections**

#### Standard Model Production Cross Section Measurements

Status: August 2016



### **Z+Jets**

Access and measure high jet multiplicities in 13 TeV data

- Test NLO generators on easily triggered events with high jet multiplicities
- Vector-boson plus jet events are a major background in searches Fully corrected fiducial and differential cross-sections





Jet multiplicity: main NLO generators do a good job, at least up to 6 jets



6000 g

LO generators over-predict high- $p_{\tau}$  tail NLO generators provide better description

### **Massive Diboson Production**



## tt Production



August 15 2016

## **Refining the Higgs Investigation**

Run: 280464 Event: 517140616 2015-09-28 04:21:57 CEST



#### In Run-1 we measured:

- Its spin-parity, and its mass precisely (±0.2%)
- Production via gluon-fusion, vector-boson fusion, and with a W or Z
- The decays to γγ, WW, ZZ, and the fermionic decay to ττ

#### Run-2 priorities:

- Establish and measure at 13 TeV
- Search for ttH production to probe ttH vertex directly
- Search for  $H \rightarrow bb$  decays
- Search for rare decays
- Refine measurements of couplings, mass, etc.
- Expand use of H as a tool to find new physics

## Higgs: $H \rightarrow \gamma \gamma$



## H→4ℓ & Cross-Section Combination



August 15 2016

### **Total Production Cross Section**





### **New Physics Searches**

- Major extension of reach compared to Run-1
- All results shown here include 2016 data
- They probe well into the TeV, even multi-TeV, mass scale range
- Many more searches will yet come with the 2016 dataset

### **Dijet Search**



August 15 2016

A. Polini, ISHBSM 2016, Weihai

### **Dilepton Resonance Searches**



## **Di-photon Search**

Localised excess seen in 2015 ATLAS data:
 2.1σ global (3.9σ local) significance at 750 GeV (spin-0 search), width ~50 GeV
 After reprocessing, new 2016 reconstruction → 3.4σ local, at ~730 GeV





- 730-750 GeV, and 3.8 times more data
- 2015 and 2016 consistent at the  $2.7\sigma$  level
- It appears that the 2015 excess was very likely a statistical fluctuation
- With 2015+2016 data:
  - Small excess at 710 GeV (Γ/m~10%)
  - Local significance 1.4σ, global <1σ</li>

### **SUSY Searches**

Very broad set of SUSY search results reported with 2015+2016 data

Just one example shown:

*ğ*/*q̃* search with jets+E<sub>T</sub>miss



Standard ATLAS approach in many searches:

- Focus on specific signatures, simplified models guide optimisation
- Data-driven backgrounds: multiple control regions to constrain MC predictions and systematics
- Validation regions: verify background descriptions
- Signal regions: sensitivity!

#### August 15 2016

## SUSY: Jets + $E_{\tau}^{\text{miss}}$ (0%)





August 15 2016



## Upgrade Plans





## LHC and ATLAS Upgrade Roadmap



#### • Detector challenges:

- 10 times more radiation (~  $10^{16}$  neq/cm<sup>2</sup>; 10 MGy)
- 10 times more pile-up:

• Run-1  
• HL-LHC x 10 
$$\langle +\mu \rangle = 20$$
;  $\langle n_{PU \text{ jets } pT > 30 \text{GeV}} \rangle \sim 0.04$   $\rangle$  x 185

#### Upgrade goal:

- Keep performance (tracking, b-tag, jet/E<sub>T</sub><sup>miss</sup>,...)
- Trigger rates acceptable with low PT thresholds
- Pile-up mitigation up to large η is needed

2012: 20 collisions | HL-LHC 200 collisions

### Motivations

#### Electroweak Symmetry Breaking

- Higgs precision measurements (coupling and spin-CP quantum numbers)
- Higgs rare and invisible decays  $(H \rightarrow \mu \mu, H \rightarrow Z\gamma,...)$
- Top Yukawa coupling (ttH)
- Higgs self coupling
- Beyond the Standard Model
  - Higgs sector (search for deviations from SM)
  - Dark matter
  - SUSY
  - Exotics

ATL-PHYS-PUB-2013-003, 2014-007

| ATLAS Mass reach for Exotic signatures |                             |                                          |                                |  |  |  |  |
|----------------------------------------|-----------------------------|------------------------------------------|--------------------------------|--|--|--|--|
| ATLAS @14 TeV                          | Z' → ee SSM<br>95% CL limit | g <sub>KK</sub> → t t RS<br>95% CL limit | Dark matter M*<br>5σ discovery |  |  |  |  |
| 300 fb <sup>-1</sup>                   | 6.5 TeV                     | 4.3 TeV                                  | 2.2 TeV                        |  |  |  |  |
| 3000 fb <sup>-1</sup>                  | 7.8 TeV                     | 6.7 TeV                                  | 2.6 TeV                        |  |  |  |  |

ATL-PHYS-PUB-2014-010 , 2013-011, 2015-032

|                       | ATLAS Mass reach for SUSY particles                 |         |         |         |                                  |                                  |  |  |  |
|-----------------------|-----------------------------------------------------|---------|---------|---------|----------------------------------|----------------------------------|--|--|--|
| ATLAS<br>projection   | gluino squark stop sbottor<br>n mass mass mass mass |         |         |         | χ <sub>1</sub> ⁺ mass<br>WZ mode | χ <sub>1</sub> ⁺ mass<br>WH mode |  |  |  |
| 300 fb <sup>-1</sup>  | 2.0 TeV                                             | 2.6 TeV | 1.0 TeV | 1.1 TeV | 560 GeV                          | None                             |  |  |  |
| 3000 fb <sup>-1</sup> | 2.4 TeV                                             | 3.1 TeV | 1.2 TeV | 1.3 TeV | 820 GeV                          | 650 GeV                          |  |  |  |

#### ATLAS Simulation Preliminary

 $\sqrt{s} = 14 \text{ TeV}: \int Ldt = 300 \text{ fb}^{-1}; \int Ldt = 3000 \text{ fb}^{-1}$ 



#### August 15 2016

## ATLAS Phase 1 Upgrades (2019-2020)

#### Fast Track Trigger (FTK) (ATLAS-TDR-021-2013)

HW based tracking of Si-tracking layers at "Level 1.5" **Status/Plans:** 

- 2016: Commissioning
- 2017: Full coverage operation (already in Run-2)

#### High Granular L1 Calorimeter Trigger (ATLAS-TDR-022-2013)

#### Status/Plans:

- 2014: Installed FE demonstrator
- 2015: Successful data taking
- On-going: FE-BE prototype and production
- 2019: Installation

#### Muons: New Small Wheel (NSW)

(ATLAS-TDR-020-2013)

sTGC + MicroMegas (trigger & precise tracking) Status/Plans:

- Now: Modules 0 construction in various sites
- 2016: Final Design Review and PRR for all sites
- 2017/2018: Production
- 2019: Installation

Trigger/DAQ Phase 1 Upgrade (ATLAS-TDR-023-2013)

- **L1Calo:** improved lepton triggering, feature extractors for  $e/\gamma$ , jets, MET...
- L1Muon: new/improved sector logic (and information to central trigger), NSW

#### Main Target:

- Better trigger capabilities (efficiency, fake rejection)
- Maintain same acceptance/ $p_T$  thresholds with higher pileup.

## ATLAS Phase 2 Upgrades (HL-LHC 2024-2026)



#### Large eta scenarios (part of the reference detector layout)\*

**ATLAS References:** 

- Phase II LoI CERN-LHCC-2012-022
- Scoping doc. CERN-LHCC-2015-020 (Impact of different cost scenarios on physics/perf.)
- All Initial Design Reports-IDRs until end 2016 → Technical Design Reports-TDRs until end 2017

August 15 2016

### Conclusions

- The LHC has gone beyond its design and is now in full production phase
- ATLAS Enhanced detectors and trigger systems working very well
  - ATLAS coping well with pileup levels approaching twice design
- Wealth of measurements already from 13 TeV data
  - Simple and complex final-states
  - Inclusive cross-sections to multi-boson, top, b-physics
  - Starting precise measurements of H(125) at 13 TeV
- Exploring the 2016 data in many topologies



- No significant excesses yet, though some ~2-3σ effects more data will tell if they will remain
- Huge thanks to the LHC and injector teams for the excellent performance
- An intense program of upgrade will allow ATLAS to run at its best as LHC and HL-LHC will deliver up to 3000 fb<sup>-1</sup> of luminosity



## Conclusions

- The LHC has gone beyond its design and is now in full production phase
- ATLAS Enhanced detectors and trigger systems working very well
  - ATLAS coping well with pileup levels approaching twice design
- Wealth of measurements already from 13 TeV data
  - Simple and complex final-states
  - Inclusive cross-sections to multi-boson, top, b-physics
  - Starting precise measurements of H(125) at 13 TeV
- Exploring the 2016 data in many topologies



- No significant excesses yet, though some  $\sim 2-3\sigma$  effects more data will tell if they will remain
- Huge thanks to the LHC and injector teams for the excellent performance
- An intense program of upgrade will allow ATLAS to run at its best as LHC and HL-LHC will deliver up to 3000 fb<sup>-1</sup> of luminosity

### **Thank You!**

More results in the several

ATLAS and ATLAS+CMS

talks in the coming days