

Measurement of differential and integrated fiducial cross sections of Higgs boson production in the H \rightarrow 4 ℓ decay channel in proton-proton collisions at 7, 8 and 13 TeV

Muhammad Ahmad on behalf of CMS Collaboration IHEP, CAS, Beijing

ISHBSM, 15-19 Aug 2016, Shandong University, weihai, China.

Outline

- Introduction
- Event selection and background estimation
- Analysis strategy
- Results
- Conclusions

Introduction

- An important property to measure of the discovered Higgs boson is its (differential) fiducial cross section
 - → Important test of SM predictions and probe of BSM effects
- Similar measurements (nearly) available:

```
ATLAS H \rightarrow \gamma\gamma (RUN1), 4\ell (RUN1), combination (RUN1&RUN2)
ATLAS H \rightarrow WW (RUN1)
CMS H \rightarrow \gamma\gamma (Run1,RUN2)
```

- To minimize model dependence, we perform the measurement in a fiducial space close to experimental acceptance
- The definition can be reproduced by theorists/phenomenologists, such that the experimental results can be compared to any theoretical calculation

Datasets and Event Selection(Run 1)

Datasets, triggers, and event selection follows the legacy H → 4ℓ analysis

Phys. Rev. D 89 (2014) 092007

		/ /	\ \	
Channel	4e	4μ	2e2µ	
$5.1 \text{fb}^{-1} (7 \text{TeV})$				
$\overline{q\overline{q} ightarrow ZZ}$	0.8 ± 0.1	1.8 ± 0.1	2.2 ± 0.3	
Z + X	0.3 ± 0.1	0.2 ± 0.1	1.0 ± 0.3	
gg o ZZ	0.03 ± 0.01	0.06 ± 0.02	0.07 ± 0.02	
Total background expected	1.2 ± 0.1	2.1 ± 0.1	3.4 ± 0.4	
$H \rightarrow 4\ell (m_H = 125.0 \text{GeV})$	0.7 ± 0.1	1.2 ± 0.1	1.7 ± 0.3	
Observed	\ 1\	3	6	
19.7 fb ⁻¹ (8 TeV)				
$q\overline{q} o ZZ$	3.0 ± 0.4	7.6 ± 0.5	9.0 ± 0.7	
Z + X	1.5 ± 0.3	1.2 ± 0.5	4.2 ± 1.1	
gg o ZZ	0.2 ± 0.1	0.4 ± 0.1	0.5 ± 0.1	
Total background expected	4.8 ± 0.7	9.2 ± 0.7	13.7 ± 1.3	
$H \rightarrow 4\ell (m_H = 125.0 \text{GeV})$	2.9 ± 0.4	5.6 ± 0.7	7.3 ± 0.9	
Observed	9	15	15	
	•			

Event counts in the range 105 GeV < m(4ℓ) < 150 GeV

Datasets and Event Selection(Run 2)

Event counts in the range 118 GeV < m(4ℓ) < 130 GeV

CMS-PAS-HIG-16-033

Fiducial Volume Definition

 The fiducial volume definition is chosen to closely match the reconstruction level selection, defined using leptons at the hard scattering level

Requirements for the H $ ightarrow 4\ell$ fiducial phase space				
Lepton kinematics and isolation				
Leading lepton $p_{\rm T}$	$p_{\mathrm{T}} > 20\mathrm{GeV}$			
Sub-leading lepton p_T	$p_{\mathrm{T}} > 10\mathrm{GeV}$			
Additional electrons (muons) $p_{\rm T}$	$p_{\rm T} > 7 (5) {\rm GeV}$			
Pseudorapidity of electrons (muons)	$ \eta < 2.5 (2.4)$			
Sum of scalar p_T of all stable particles within $\Delta R < 0.4$ from lepton	n $< 0.4p_{\mathrm{T}}$			
Event topology				
Existence of at least two SFOS lepton pairs, where leptons satisfy criteria above				
Inv. mass of the Z_1 candidate	$40 < m(Z_1) < 120\text{GeV}$			
Inv. mass of the Z_2 candidate	$12 < m(Z_2) < 120\text{GeV}$			
Distance between selected four leptons	$\Delta R(\ell_i \ell_i) > 0.02$			
Inv. mass of any opposite-sign lepton pair	$m(\ell_i^+\ell_i^-) > 4 \text{GeV}$			
Inv. mass of the selected four leptons	$105 < m_{4\ell} < 140\text{GeV}$			

- ► For jets, $p^T>30$ GeV and $|\eta|<4.7$
- > A crucial point is the inclusion of isolation in the fiducial selection
 - → Does not include neutrinos or FSR photons
 - → Without isolation, the difference in efficiency between production modes can be more than 50%

Fiducial Cross Section Overview

• Fiducial cross sections are necessary because acceptance has a strong model dependence, for example between SM production modes by up to 60%

Fiducial Cross Section Overview

Fiducial cross sections are necessary because acceptance has a strong model dependence, for example between SM production modes by up to 60%

SERVICED && fid)

Analysis strategy

The signal component is extracted from a fit to the m(4l) distribution

Fiducial Signal Shape (P_{res}):

Double Sided Crystal Ball

- \rightarrow norm proportional to $\sigma_{\mbox{\tiny fid}}$
- → efficiencies (ε) from simulation

"Non-Fiducial" Signal shape:

Same as fiducial shape

- \rightarrow fraction of fiducial signal (f_{nonfid})
- → fraction depends on model

"Non-resonant" Signal Shape (P_{nonres}): One or more leptons not directly from H decay (e.g. WH, ZH, ttH)

- → Landau distribution
- → shape constrained from simulation
- → norm +/- 10 times SM (uniform prior)

qqZZ,ggZZ shape and norm from MC Z+X shape and norm from control regions in data

$$\begin{split} N_{\text{obs}}^{\text{f},i}(m_{4\ell}) &= N_{\text{fid}}^{\text{f},i}(m_{4\ell}) + N_{\text{nonres}}^{\text{f},i}(m_{4\ell}) + N_{\text{nonfid}}^{\text{f},i}(m_{4\ell}) + N_{\text{bkg}}^{\text{f},i}(m_{4\ell}) \\ \text{f = final state} &= \left(1 + f_{\text{nonfid}}^{\text{f},i}\right) \cdot \sigma_{\text{fid}}^{\text{f},j} \cdot \varepsilon_{i,j}^{\text{f}} \cdot \mathcal{L} \cdot \mathcal{P}_{\text{res}}(m_{4\ell}) \\ \text{i = observable bin at reco level} &+ N_{\text{nonres}}^{\text{f},i} \cdot \mathcal{P}_{\text{nonres}}(m_{4\ell}) + N_{\text{bkg}}^{\text{f},i} \cdot \mathcal{P}_{\text{bkg}}(m_{4\ell}), \end{split}$$

Systematic Uncertainties

- Experimental systematic uncertainties mostly from Legacy paper:
 - → Background estimation
 - QCD scale (~3% qqZZ, ~24% ggZZ) and PDF (~3% qqZZ, 7% ggZZ)
 - Reducible Background (20%-40%)
 - → Lepton reconstruction efficiency (10% 4e, 4% 4mu)
 - → Signal Shape
 - Lepton energy scale (0.3% 4e, 0.1% 4mu)
 - Lepton energy resolution (20%)
 - → Non-resonant signal contribution
 - Effect on the final measurement is ~+4%/-11%
 - → Integrated Luminosity (2.2% at 7 TeV, 2.6% at 8 TeV)
 - Lepton energy scale (0.3% 4e, 0.1% 4mu)
 - Lepton energy resolution (20%)
- For observables involving jets, Jet Energy Scale
 - → Correlated across differential bins to preserve unity
 - → 3%-12% for signal, 2%-16% for background

Model depdence

- Model dependence of the measurement procedure is estimated by repeating the measurement using the efficiencies and non-fiducial ratios from a range of different models of production, decay, and spin-parity (exotic models taken from anomalous HVV couplings paper PRD 92 (2015) 012004)
 - → In the inclusive measurement the model dependence is less than 7%
 - → For differential measurements, in particular jet related observables, can be up to 25% for a particular bin
- If only SM production modes are considered, along with their existing experimental constraints (EPJC 75 (2015) 212), the model dependence is at most 3% for any measurement, and typically much smaller
- We quote the full model dependence without any experimental constraints as a separate systematic effect

Inclusive H → 4ℓ Results

Measured

Measured

Measured

- The acceptance is calclulated using Powheg at 13 TeV and HRes for 7,8 TeV
- The model dependence uses experimental constraints on the relative fraction of the various production modes
- All total cross sections taken from LHCHXSWG

$$\sigma_{\text{fid.}} = 2.29^{+0.74}_{-0.64}(\text{stat.})^{+0.30}_{-0.23}(\text{sys.})^{+0.01}_{-0.05}(\text{model dep.}) \text{ fb}$$

$$\sigma_{
m fid.}^{
m SM} = 2.53 \pm 0.13 \ {
m fb}$$

CMS-PAS-HIG-16-033

H → 4ℓ Differential Results

Differential observable $p^{T}(H), Y(H)$

 Sensitive to gluon fusion production mechanism and PDFs of colliding proton

H → 4ℓ Differential Results

RUN 1 RUN 2

Differential observable N(jets), p^{T} (leading jet), y(H)-y(jet)

 Sensitive to theoretical modeling of hard quark radiation and relative contribution of different Higgs Boson production mechanism

$H \rightarrow 4\ell$ Differential Results(RUN1)

|y(H)-y(jet)|

Simultaneous measurement of $H \rightarrow 4\ell$ and $Z \rightarrow 4\ell$ cross sections (RUN1)

The $H \rightarrow 4\ell$ and $Z \rightarrow 4\ell$ are measured independently using mass range

[105-140 GeV] and [50-105 GeV]

In addition the methodology is generalized to measure $H \rightarrow 4\ell$ and $Z \rightarrow 4\ell$ simultaneously using mass range [50-140 GeV]

Part of systematics to be canceled (still dominated by statical uncertainty

S channel and t/u channel of qqZZ are treated independently Interference is account In systematics

JHEP 04 (2016) 005

Conclusion

- > Performed inclusive and differential measurement fiducial cross sections and several ratios using H \rightarrow 4 ℓ decay and compared to different theoretical predictions using Run 1 and Run 2 data
 - → Differential observable
 - \rightarrow p^T(H), Y(H), p^T(leading jet), Y(H)-Y(leading jet), N(jets) (RUN1)
 - > p^T(H), N(jets) (RUN 2)
 - → Estimated model dependence using wide range of models
- The measurements are found to be compatible with theoretical calculations based on the standard model