Search for Higgs boson pair production in the final state of $\gamma\gamma WW^*(\rightarrow l\nu jj)$ using 13.3 fb⁻¹ of pp collision data recorded at \sqrt{s} =13 TeV with the ATLAS detector

International Symposium on Higgs Boson and Beyond Standard Model Physics Shangdong University, Weihai August 15-19, 2016

Qi Li on behalf of ATLAS Collaboration IHEP, CAS

中國科學院為能物現為統 Institute of High Energy Physics Chinese Academy of Sciences

Introduction

- Higgs pair production has a small XS in SM (~33 fb @ 13 TeV) with triangle and box destructive interference.
- BSM can effectively enhance Higgs pair production.
 - non-resonance: altered Higgs self-coupling or ttH coupling. [Fig. (a) and (b)]
 - resonance: BSM resonance decay, such as heavy Higgs and Kaluza-Klein graviton. [Fig. (c)]
- This has been extensively searched with $hh \rightarrow bb\gamma\gamma$, bbbb, $bb\tau\tau$ and $WW\gamma\gamma$ in RUN I and $hh \rightarrow bb\gamma\gamma$, bbbb, $\gamma\gamma WW$, bbWW, $bb\tau\tau$ and $\gamma\gamma WW$ in RUN II

Phys. Rev. D 92, 092004 (2015)

$hh \rightarrow \gamma \gamma WW^*$ analysis

- Search for Higgs pair with $\gamma \gamma WW \rightarrow \gamma \gamma l \nu j j$
 - Benefit from a clean signature from $h
 ightarrow \gamma \gamma$ and a large BR from h
 ightarrow WW
 - Explore non-resonant production
 - Explore resonance in low mass region: 260, 300, 400, 500 GeV
- Share the same selections in non-resonant and resonant searches
- <u>ATLAS-CONF-2016-071</u>

Selection

Photons

Two well identified and isolated photons with the following p_T and $m_{\gamma\gamma}$ selections:

 $\frac{p_T(\gamma 1)}{m(\gamma \gamma)} \ge 0.35, \frac{p_T(\gamma 2)}{m(\gamma \gamma)} \ge 0.25;$ $m(\gamma \gamma) \in [105, 160] \text{ GeV.}$

Jets

Anti-kt jets with R = 0.4; $p_T > 25 \text{ GeV}; |\eta| < 2.5;$ Jet Vertex Tagging algorithm (JVT) used to suppress the pileup jets;

Electrons / Muons

 $p_T > 10$ GeV;

Event selection

- Start with the selections aiming at identifying $h \rightarrow \gamma \gamma$ events
- At least two central jets
- B-veto (Working Point: 70%)
- At least one lepton
- Tight mass window (TMW), $\left|m_{\gamma\gamma} 125.09\right| < 2 \times 1.7 \ (\sigma_{m_{\gamma\gamma}})$ GeV
- [SR] Signal Region (above)
- [SB] Sideband Region (reverse "Tight Mass Window")
- [CR] Control Region (reverse "Tight Mass Window" & N(lepton) = 0)

Background estimations

- SM Higgs background is estimated with MC.
- Continuum background is estimated with data-driven method.

$$N_{SR}^{continuum} = N_{SB}^{continuum} \times \frac{\epsilon_{\gamma\gamma}}{1 - \epsilon_{\gamma\gamma}}$$

 $\epsilon_{\gamma\gamma}$ is extracted from CR ($N_{lep} = 0$) with a fit.
 $\epsilon_{\gamma\gamma} = \frac{\int_{TMW} f(m_{\gamma\gamma}) dm_{\gamma\gamma}}{\int_{105}^{160} f(m_{\gamma\gamma}) dm_{\gamma\gamma}}$, $f(m_{\gamma\gamma}) \rightarrow$ fit function

$\epsilon_{\gamma\gamma}$ measurement

- $\epsilon_{\gamma\gamma}$ is measured in zero-lepton control region with data
- The exponential with 2nd order polynomial is used to model background

$$N_{SB}^{continuum} = 46 \text{ events}$$

$$\epsilon_{\gamma\gamma} = 13.64\%$$

$$N_{bkg}^{continuum} = 7.26 \text{ events}$$

$$N_{bkg}^{continuum} = 7.26 \text{ events}$$

Uncertainties (1)

- The uncertainties are related to the continuum background.
- Statistical uncertainty of events in sideband: 14.7%.
- The uncertainties on $\epsilon_{\gamma\gamma}$ measurement
 - From lepton multiplicity: 7.4%,
 - From fitting functions: 3.8%,
 - From sideband definition: 1.2%,
 - From statistics : 1.3%.

Uncertainties (2)

- Luminosity error, 2.9%, combining errors on luminosity in 2015 and 2016
- Theoretical uncertainties
 - +2.1/2.0% on $br(h \rightarrow \gamma \gamma)$ and $\pm 1.5\%$ on $br(h \rightarrow WW)$.
 - Scale and PDF uncertainties on $\sigma(gg \rightarrow hh)$ and cross section of SM Higgs processes. Details are shown as next slide.
 - Special 37.5% assigned to Wh process for high jet multiplicity, comparing Pythia8 (parton shower jets) and MadGraph5 (matrix element jets) both with 2 jets inclusively.
- Experimental uncertainties:
 - Pileup reweighting, photons, jets, leptons, b-tagging
 - See next slide.

Uncertainties (3)

Source of uncertainties		Non-resonant hh	$X{ ightarrow} hh$	Single- h bkg	Cont. bkg
		All numbers are in $\%$			
Luminosity 2015+2016		2.9	2.9	2.9	-
Trigger		0.4	0.4	0.4	-
Pileup re-weighting		0.8	0.2	1.8	-
Event statistics		2.0	1.8	2.7	14.7
Photon	energy resolution	2.0	1.8	1.2	-
	energy scale	4.2	4.1	1.6	-
	identification	4.2	4.2	4.2	-
	isolation	1.0	1.0	1.1	-
Jet	energy resolution	0.8	0.2	8.0	-
	energy scale	3.5	3.5	5.2	-
b-tagging	b-jets	0.06	0.05	5.4	-
	c-jets	0.5	0.5	0.3	-
	light jets	0.4	0.4	0.4	-
	extrapolation	0.006	0.06	0.8	-
Lepton	electron	0.7	0.7	0.7	-
	muon	0.3	0.3	0.6	-
$\epsilon_{\gamma\gamma}$	lepton dependence	-	-	-	7.4
	background modelling	-	-	-	3.8
	sideband definition	-	-	-	1.2
	statistics on $\epsilon_{\gamma\gamma}$	-	-	-	1.3
Theory	PDF	(2.1)	-	2.2	-
	α_S	(2.3)	-	1.5	-
	scale	(6.0)	-	3.7	-
	HEFT	(5.0)	-	-	-
	jet multiplicity	-	-	12.5	-
	$BR(h \rightarrow \gamma \gamma)$	2.1	2.1	2.1	-
	$BR(h \rightarrow WW^*)$	1.5	1.5	1.5	-
Total		12.0	8.4	18.6	17.0

Event yields

The signal and background yields in the signal region. Assuming hh production cross section in SM is 33.41 fb and $\mathcal{L} = 13.3 \text{ fb}^{-1}$.

Process	Number of events		
Continuum background SM single-Higgs SM di-Higgs	$7.26 \\ 0.616 \\ 0.0187$	$\pm 1.23 \\ \pm 0.115 \\ \pm 0.00224$	
Observed		15	

$m_{\gamma\gamma}$ distributions

The invariant mass of diphoton system in zero-lepton control region (left) and the one-lepton signal region (right).

Expected upper limits

Histfactory is used to build up the statistical model for an event-counting experiment. Asymptotic approximation is used (was validated with throwing toy MCs).

In the non-resonant search, a 95% CL upper limit is set: the expected limit on $\sigma(gg \rightarrow hh)$ is 12.9 pb, and the observed one is 25.0 pb. For resonant search, the expected limit on the resonant production times the branching fraction of $X \rightarrow hh$ ranges from 24.3 – 12.7 pb and the observed limit ranges from 47.7 – 24.7 pb.

Summary

No significant excess is observed with respect to the SM background-only hypothesis.

A 95% confidence-level upper limit is set.

For non-resonant production, the observed limit is 25.0 pb and expected limit is 12.9 pb.

For resonant production, the observed limit ranges from [47.7, 24.7] pb and the expected limit ranges from [24.3, 12.7] pb.

Backup

$\epsilon_{\gamma\gamma}$ measurement (a)

Test against different lepton multiplicities with MC to quantify the impact on $\epsilon_{\gamma\gamma}$. MC *jjlv* $\gamma\gamma$ and *jj* $\gamma\gamma$ are compared. The difference on the $\epsilon_{\gamma\gamma}$ is 2.2%.

Test against different lepton multiplicities with data control regions to quantify the impact on $\epsilon_{\gamma\gamma}$.

As the MC samples have high diphoton purity, $\epsilon_{\gamma\gamma}$ has been measured with regions by inverting either the photon isolation or the photon identification to check the impact of lepton multiplicities.

The difference on the $\epsilon_{\gamma\gamma}$ is 7.4% and considered as one of uncertainties conservatively introduced by lepton multiplicities.

Test against different sideband region definitions to quantify the impact on $\epsilon_{\gamma\gamma}$. The difference (1.2%) on $\epsilon_{\gamma\gamma}$ between nominal definition and varied one is considered as one of uncertainties introduced by the SB definition.

$\epsilon_{\gamma\gamma}$ measurement (b)

- Test against various fitting functions of background modeling to quantify the impact on $\epsilon_{\gamma\gamma}$.
- Fitting functions: 0 order polynomial, 1st-order polynomial, 2nd-order polynomial, exponential.
- The largest difference on $\epsilon_{\gamma\gamma}$ to the nominal is taken as uncertainty except comparing the 0 order polynomial due to this function is improper to fit the $m_{\gamma\gamma}$ shape.
- The difference between the 1st order polynomial and nominal fit model is 3.8% and is considered as uncertainty introduced by the choice of fitting functions.