

Yuehong Xie Central China Normal University On behalf of LHCb Collaboration

International Symposium on Higgs Boson and Beyond Standard Model Physics

Weihai , 15-19 August 2016

Outline

- Flavour physics & LHCb experiment
- CP violation
- Rare decays & lepton universality
- Summary and outlook

Quark mixing & CKM

EWSB & diagonalisation of Yukawa mass matrix ⇒ CKM quark mixing matrix

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = V_{CKM} \begin{pmatrix} d\\ s\\ b \end{pmatrix}$$

$$V_{CKM} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1 \\ L.Wolfenstein PRL 51 (1983) 1945 \end{pmatrix}$$

 $\eta \neq 0 \Rightarrow$ complex matrix element \Rightarrow CP violation (CPV) in weak interactions

Where we are with CKM

Very successful to describe collider data. However,

 CPV from CKM short by 10¹⁰ to explain the observed matter –antimatter asymmetry

Dynamic origin of patterns of fermion masses and mixing unclear
 New physics (NP) beyond standard model (SM) at higher energy scale 4

Opportunities in flavour sector

Flavour as a window to NP, complementary to direct searches

- > Exploring NP scale >> TeV
- Distinguishing NP models

Generic bounds on New Physics scale (for $g_{X\sim}1$)

NP could have significant effect in processes where SM contribution is suppressed and well understood

- Mixing processes
- Rare loop decays
- SM forbidden decays

- Decay rates
- CP asymmetries
- Angular correlations

LHC: a flavour factory

Huge numbers of beauty and charm hadrons produced

 $\sigma_{bb}^{\ -}$ ~ 1% of total pp cross section

- A few×10⁸ beauty pairs/hour generated at LHCb luminosity
- All species: B^0 , B^{\pm} , B_s , B_c , Λ_b , ...

About 20 times more charm!

Detectors

LHCb: forward single arm detector for study of heavy flavour physics ATLAS, CMS: general purpose, covering some flavour physics topics

This talk will be mostly about LHCb results on B physics

LHCb spectrometer

Excellent tracking, vertexing and particle identification. Powerful trigger at low transverse momentum.

Run 1 pp data-taking at 7/8 TeV

Results of this talk are based on run 1 data: 3 fb⁻¹

CP violation

Neutral B mixing

Weak states mix via box diagram: flavour oscillation

$$\left| \overline{B}_{q} \right\rangle = \left| b \overline{q} \right\rangle$$

Mass eigenstaes $\Delta m_q = m_H - m_L$, $\Delta \Gamma_q = \Gamma_L - \Gamma_H$

CPV observables

- CPV in mixing: a^q_{sl}
- Mixing-induced CPV: $\phi_{s}, \phi_{d} = 2\beta$

 a^{q}_{sl} , ϕ_{q} and Δm_{q} are very sensitive to NP in mixing

sin2β: a milestone in particle physics

 $B_d \rightarrow J/\psi K_S$

Babar, PRL 87 (2001) 091801 $\sin\phi_d = \sin 2\beta = 0.59 \pm 0.14 \pm 0.05$

Belle, PRL 87 (2001) 091802 $\sin\phi_d = \sin\phi_1 = 0.99 \pm 0.14 \pm 0.06$

First observation of CPV in B decays confirms SM prediction!

11

LHCb result of $sin 2\beta$

LHCb precision approaches that of B factories

ϕ_s : a crucial goal of LHCb

10% of b-hadrons in pp collisions are B_s mesons!

Measuring B_s CPV is LHC(b) territory.

For b→cc̄s decay such as $B_s \rightarrow J/\psi\phi$ $\phi_s \equiv -\arg(\eta_{f_{CP}} \frac{q}{p} \cdot \frac{\overline{A}_{\overline{f}_{CP}}}{A_{f_{CP}}})$

 ϕ_s is precisely predicted in SM $\phi_s^{SM} = -0.038 \pm 0.001$ rad (up to small correction for penguins)

 ϕ_s is very sensitive to NP in mixing $\phi_s = \phi_s^{SM} + \Delta \phi^{NP}$

Analysis strategy of $B_s \rightarrow J/\psi \phi$

$$A_{\rm CP} \equiv \frac{\Gamma\left(\overline{B}_s^0 \to f\right) - \Gamma\left(B_s^0 \to f\right)}{\Gamma\left(\overline{B}_s^0 \to f\right) + \Gamma\left(B_s^0 \to f\right)} \sim \eta_f \sin\phi_s \sin(\Delta m_s t)$$

Requirements

- Good performance to tag initial flavour of B_s
- > Good time resolution to resolve fast B_s oscillation and determine Δm_s
- Angular analysis to separate CP eigenstates

Tagging the initial flavour

Opposite side (OS): using charges of decay products of the other B hadron LHCb, EPJC 72 (2012) 2022

Same side (SS): using charges of particles produced in association with the signal B LHCb, JINST 11 (2016) P05010

category	Effective ε(1-2ω)²(%)	Q _{vtx} b→Xl ⁺ OSµ OSe
only OS tagged	1.19 ± 0.06	PV b PV b Opposite Side
only SS tagged	0.84 ± 0.11	Same Side
OS&SS tagged	1.7 ± 0.08	
Total	3.73 ± 0.15	K ⁺ SSK

Decay time reconstruction

Impact of decay time resolution, $\Delta m_s \approx 17.7 \text{ ps}^{-1}$ \blacktriangleright If $\sigma_t = 45$ fs, dilution factor $\exp(-\Delta m_s^2 \sigma_t^2/2) \approx 0.73$ \blacktriangleright If $\sigma_t = 90$ fs, dilution factor $\exp(-\Delta m_s^2 \sigma_t^2/2) \approx 0.28$

Method to measure $\Delta m_{s/d}$

Choose a flavour specific decay mode
 e.g., B⁰→D^{(*)-} μ⁺ν, B_s→D_s⁻π⁺

 $\begin{array}{ccc} B^{0} \longrightarrow f \\ \hline B^{0} \not \longrightarrow f \\ \swarrow B^{0} \not \end{array}$

- For each event
 - Identify the initial B flavour (at production point)
 - Reconstruct the decay time *t*
- Measure the decay rate as a function of *t*, and determine the oscillation frequency $\Delta m_{s/d}$

$$N^{\text{unmix}}(t) = N \left(B^0 \to D^{(*)-} \mu^+ \nu_\mu X \right)(t) \propto e^{-\Gamma_d t} \left[1 + \cos(\Delta m_d t) \right]$$
$$N^{\text{mix}}(t) = N \left(B^0 \to \bar{B}^0 \to D^{(*)+} \mu^- \bar{\nu}_\mu X \right)(t) \propto e^{-\Gamma_d t} \left[1 + \cos(\Delta m_d t) \right]$$

$$A(t) = \frac{N^{\text{unmix}} - N^{\text{mix}}}{N^{\text{unmix}} + N^{\text{mix}}} = \cos(\Delta m_d t)$$

$\Delta m_{s/d}$ measurements

B_s→D_s⁻ π⁺ (1 fb⁻¹) LHCb, New J.Phys. 15 (2015) 053201

B⁰→D^{(*)-}
$$\mu^+ \overline{\nu}$$
 (3 fb⁻¹)
LHCb, EPJC 76 (2016) 412

SM predictions suffer large uncertainties in Lattice QCD calculation of hadronic parameters

Time-dependent angular analysis

ϕ_{s} results

LHCb, PRL 114 (2014) 041801 $B_s \rightarrow J/\psi \phi$, $J/\psi \pi^+ \pi^-$: $\phi_s = -0.010 \pm 0.039$ rad In agreement with $\phi_s^{SM} = -0.038 \pm 0.001$ rad

LHCb result most precise but still statistically limited

Exp.	Mode	Dataset	$\phi_s^{c\overline{c}s}$	$\Delta\Gamma_s \ (\mathrm{ps}^{-1})$	Ref.
CDF	$J\!/\!\psi\phi$	$9.6{\rm fb}^{-1}$	[-0.60, +0.12], 68% CL	$+0.068\pm 0.026\pm 0.009$	Phys. Rev. Lett. 109, 171802 (2012)
D0	$J\!/\!\psi\phi$	$8.0{\rm fb}^{-1}$	$-0.55^{+0.38}_{-0.36}$	$+0.163\substack{+0.065\\-0.064}$	Phys. Rev. D85, 032006 (2012)
ATLAS	$J\!/\!\psi\phi$	$4.9{\rm fb}^{-1}$	$+0.12 \pm 0.25 \pm 0.05$	$+0.053\pm0.021\pm0.010$	Phys. Rev. D90, 052007 (2014)
ATLAS	$J\!/\!\psi\phi$	$14.3{\rm fb}^{-1}$	$-0.123 \pm 0.089 \pm 0.041$	$+0.096\pm 0.013\pm 0.007$	arXiv:1601.03297
ATLAS	above 2	combined	$-0.098 \pm 0.084 \pm 0.040$	$+0.083\pm0.011\pm0.007$	arXiv:1601.03297
CMS	$J/\psi \phi$	$19.7 {\rm fb}^{-1}$	$-0.075 \pm 0.097 \pm 0.031$	$+0.095 \pm 0.013 \pm 0.007$	Phys Lett B757 97–120 (2016)
LHCb	$J/\psi K^+K$	$-3.0{\rm fb}^{-1}$	$-0.058 \pm 0.049 \pm 0.006$	$+0.0805\pm0.0091\pm0.0033$	3 Phys. Rev. Lett. 114, 041801 (2015)
LHCb	$J/\psi \pi^+\pi^-$	$3.0{\rm fb}^{-1}$	$+0.070\pm0.068\pm0.008$	_	Phys. Lett. B736 , 186 (2014)
LHCb	above 2	combined	$-0.010 \pm 0.039(tot)$	_	Phys. Rev. Lett. 114 , 041801 (2015)
LHCb	$D_{s}^{+}D_{s}^{-}$	$3.0{ m fb}^{-1}$	$+0.02\pm 0.17\pm 0.02$	_	Phys. Rev. Lett. 113 , 211801 (2014)
All comb	bined		-0.033 ± 0.033	$+0.084 \pm 0.007$	

More b \rightarrow ccs modes for ϕ_s

- $B_s \rightarrow D_s^+ D_s^-$: supplementary mode LHCb, PRL 113 (2014) 211801 $\phi_s = 0.02 \pm 0.17 \pm 0.02$ rad
- $B_s \rightarrow \psi(2S)\phi$: supplementary mode $\phi_s = 0.23 \pm 0.29 \pm 0.02$ rad LHCb-PAPER-2016-027, in prep.
- $B_s \rightarrow J/\psi\eta$: CP-even mode, lifetime measured so far

 $\tau(J/\psi\eta) = 1.479 \pm 0.034 \pm 0.011 \text{ ps}$

LHCb-PAPER-2016-017

More analyses underway

 $B_s \rightarrow J/\psi K^+K^-$ above $\phi(1020)$ region, $B_s \rightarrow \eta_c \phi, B_s \rightarrow J/\psi \phi$ with $J/\psi \rightarrow e^+e^-, \dots$

Adding these modes can improve ϕ_s precision by ~20%

Semi-leptonic asymmetries

Semi-leptonic asymmetry a^q_{sl} quantifies CPV in mixing.

 a^{q}_{sl} is precisely predicted to be tiny in SM: $\sim O(10^{-4})$, can be enhanced by NP

$$a_{\rm sl} = \frac{N(\bar{B} \to B \to f) - N(B \to \bar{B} \to \bar{f})}{N(\bar{B} \to B \to f) + N(B \to \bar{B} \to \bar{f})}$$

(1) Measure time-integrated raw asymmetry

$$A_{\rm raw} = \frac{N(D_s^-\mu^+) - N(D_s^+\mu^-)}{N(D_s^-\mu^+) + N(D_s^+\mu^-)}$$

(2) Correct for detection asymmetry and background effect

$$a_{\rm sl}^s = \frac{2}{1 - f_{\rm bkg}} (A_{\rm raw} - A_{\rm det} - f_{\rm bkg} A_{\rm bkg})$$

For B_d, also correct for production asymmetry

LHCb results of aq_{sl}

B_s→D_s⁻ $\mu^+ \overline{\nu}$: a^s_{sl} = (0.39 ±0.26 ± 0.20) % LHCb, PRL 117 (2016) 061803

 $B_d \rightarrow D^{(*)} \mu^+ \overline{\nu} : a^d_{sl} = (-0.02 \pm 0.19 \pm 0.30) \%$

LHCb, PRL 114 (2014) 041601

Constraints on NP in B mixing

$$M^q_{12} \equiv M^{\mathrm{SM},q}_{12} \cdot \Delta_q$$

No sign of NP. Data still allow NP contributions in B mixing up to 30-40% at 3σ level

CPV in loop decays

1fb ⁻¹ CPV results	K+K-	π+π-
Direct CPV	0.14 ± 0.11	-0.30 ± 0.05
Mixing induced CPV	0.30 ± 0.13	-0.66 ± 0.06

Allowing 50% U-spin breaking, using γ from B \rightarrow Dh

 $\phi_{s} = -0.12^{+0.14}$ -0.16 rad

LHCb, PLB 741 (2015) 1

Consistent with tree-level determination $\phi_{s}^{b \rightarrow ccs} = -0.033 \pm 0.033$ rad

Observation of $B_d \rightarrow K^+K^-$

Highly suppressed decay, test of QCD computation

Unitarity triangle

Measurements from "loop"

Measurements from "tree"

Need significant improvement of γ and IV_{ub}I precision

CPV in **B** \rightarrow **Dh** for γ measurement

γ combination at LHCb

Determine γ from CPV measurements

- in many B & D decay modes
- using external inputs of D decay parameters: r_f and δ_f

$IV_{ub}I \text{ from } \Lambda_b \rightarrow p\mu^- \nu$

Partial reconstruction of $\Lambda_b {\rightarrow} p \mu^- \nu$ and $\Lambda_b {\rightarrow} \Lambda_c^+ \mu^- \nu$

Determine IV_{ub}I²/IV_{cb}I²

LHCb IV_{ub}I result

Using PDG exclusive average of IV_{cb}I

$$|V_{ub}| = (3.27 \pm 0.15_{exp} \pm 0.17_{theory} \pm 0.06_{|Vcb|}) \times 10^{-3}$$

LHCb, Nature Physics 11 (2015) 743

Consistent with previous exclusive measurements

Baryon decay $\Lambda_b \rightarrow p\pi^- h^+ h^-$

- CPV has never been observed in baryon sector
- A_{CP} ~ 20% expected in charmless Λ_b decays in SM
 Y. K. Hsiao et al., PRD 91 (2015) 116007
- $\Lambda_b \rightarrow p\pi^- h^+h^-$ has comparable tree and loops contributions

Tree $\propto |V_{ub}| \sim \lambda^3$

 $V_{ud,cd,td}$

 $\overset{d(s)}{\pi^-(K^-)}$

p

Triple product asymmetry

Search for CPV using triple product asymmetry (TPA)

Triple products in the Λ_b rest frame:

 $\frac{C_{\hat{T}}}{C_{\hat{T}}} = \vec{p}_{p} \cdot (\vec{p}_{h^{-}} \times \vec{p}_{h^{+}}) \propto \sin \Phi$ $\frac{C_{\hat{T}}}{C_{\hat{T}}} = \vec{p}_{\overline{p}} \cdot (\vec{p}_{h^{+}} \times \vec{p}_{h^{-}}) \propto \sin \overline{\Phi}$

CP-violating observable:

$$a_{CP}^{\hat{\mathsf{T}}-\mathrm{odd}} = \frac{1}{2}(\mathsf{A}_{\hat{\mathsf{T}}} - \overline{\mathsf{A}}_{\hat{\mathsf{T}}})$$

P-violating observable:

$$a_{P}^{\hat{T}-odd} = \frac{1}{2}(A_{\hat{T}} + \overline{A}_{\hat{T}})$$

$\Lambda_b \rightarrow p\pi^- h^+h^-$: signal yields

34

CPV in baryon decays

Measurements integrated over phase space

No significant CPV

Λ_b^0 decay	$A_{\widehat{T}}$ [%]	$\overline{A}_{\widehat{T}}$ [%]	$a_{C\!P}^{\widehat{T} ext{-odd}}\;(a_{P}^{\widehat{T} ext{-odd}})\;[\%]$
$p\pi^{-}\pi^{+}\pi^{-}$	$-2.56 \pm 2.06 \pm 0.45$	$-4.86 \pm 2.06 \pm 0.44$	$1.15(-3.71)\pm1.45\pm0.32$
$p\pi^-K^-K^+$	$+2.68 \pm 6.76 \pm 0.85$	$+4.55 \pm 6.07 \pm 0.52$	$-0.93(+3.62)\pm4.54\pm0.42$

Local Measurements

- Binning in $I\Phi I$
- 3.3 σ significance of localized CPV in $\Lambda_b \rightarrow p\pi^- \pi^+ \pi^-$
- Compatible with SM

NEW

LHCb-PAPER-2016-030, in prep.

First evidence of CPV in baryon decays!

Rare decays and lepton universality
Motivation

- $b \rightarrow sl^+l^-$ transitions are FCNC processes where
- SM contribution is suppressed
- NP effect could be pronounced

Lepton universality

▶ In the SM, ratio like $\Gamma(B^+ \rightarrow K^+ \mu^+ \mu^-)/\Gamma(B^+ \rightarrow K^+ e^+ e^-)$ differs from unity only because of phase space difference

 $B_{s/d} \rightarrow \mu^+ \mu^-$

A key physics goal of flavour sector

- Dominated by short distance interactions
- Very rare in SM (~10⁻⁹ with CKM, GIM and helicity suppression)
- Particularly sensitive to NP in scalar sector

Needle in haystack

LHCb selection of $B_{s/d} \rightarrow \mu^+\mu^-$

Signal and background separation

- Combine various kinematic and topological variables using boosted decision tree technique (BDT)
- ♦ Simultaneously fit $\mu^+\mu^-$ invariant mass distributions in different BDT bins

LHCb+CMS combination

CMS+LHCb, Nature 522 (2015) 68

 $B_s \rightarrow \mu^+ \mu^$ first observation,6.2 σ significance

 $\begin{array}{l} B_d \rightarrow \mu^+ \mu^- \\ 3.0\sigma \ \text{significance} \end{array}$

SM expectations:

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.66 \pm 0.23) \times 10^{-9} \mathcal{B}(B^0 \to \mu^+ \mu^-) = (1.06 \pm 0.09) \times 10^{-10}$$

ATLAS result of $B_{s/d} \rightarrow \mu^+\mu^-$

ATLAS published run 1 search result: no significant signal

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (0.9^{+1.1}_{-0.8}) \times 10^{-9}$$
$$\mathcal{B}(B^0 \to \mu^+ \mu^-) < 4.2 \times 10^{-10} \text{ (95\% CL)}$$

P-value of 4.8% for compatibility with SM predictions

NP model killing

Run II and upgrade goals

- Br(B_s \rightarrow $\mu^{+}\mu^{-})$ /Br(B_d \rightarrow $\mu^{+}\mu^{-})$ to test MFV
- Effective lifetime and CP violation in $B_s {\rightarrow} \mu^+ \mu^-$

Angular analysis of $B \rightarrow K^{*0} \mu^+ \mu^-$

 $B^0 \to K^{*0}~l^+l^-$ described by three angles $(\theta_K,\,\theta_l,\,\Phi$) and di-muon mass squared, q^2 :

$$\frac{1}{\mathrm{d}(\Gamma+\Gamma)/\mathrm{d}q^2} \frac{\mathrm{d}^3(\Gamma+\bar{\Gamma})}{\mathrm{d}\vec{\Omega}} = \frac{9}{32\pi} \Big[\frac{3}{4} (1-F_\mathrm{L}) \sin^2 \theta_K + F_\mathrm{L} \cos^2 \theta_K + \frac{1}{4} (1-F_\mathrm{L}) \sin^2 \theta_K \cos 2\theta_\ell - F_\mathrm{L} \cos^2 \theta_K \cos 2\theta_\ell + S_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + \frac{4}{3} A_{\mathrm{FB}} \sin^2 \theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi \Big]$$

Observables:
$$A_{FB}$$
, S_i , F_L
Or different notations, e.g. $P'_{i=4,5,6,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_L(1-F_L)}}$ 44

$B \rightarrow K^{*0} \mu^+ \mu^-$ update

LHCb, JHEP 02 (2016) 104 Update: $1fb^{-1} \rightarrow 3fb^{-1}$

 $B \rightarrow K^{*0} \mu^+ \mu^- \text{ update}$

Basically consistent with SM, except $S_5 \dots$

P₅['] anomaly

theoretically clean variable

$$P_5' = \frac{S_5}{\sqrt{F_L(1-F_L))}}$$

1 fb⁻¹ LHCb, PRL 111(2014)191801

3 fb⁻¹ LHCb, JHEP 02 (2016) 104

Tension with SM prediction remains (3.4 σ local discrepancy)

Puzzles in differential rates

LHCb, JHEP 06 (2014) 133, JHEP 09 (2015) 179

Differential rate of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

Good agreement with SM predictions from Bharucha et al., arXiv: 1503.05534 Horgan et al., PRD 98(2014) 094501

Lepton universality in $B^+ \rightarrow K^+ I^+ I^-$

$$R_K = \frac{\Gamma(B^+ \to K^+ \mu^+ \mu^-)}{\Gamma(B^+ \to K^+ e^+ e^-)}$$

SM lepton universality: $R_k=1$ within O(10⁻³)

- hardly affected by hadronic uncertainty

Experimental Challenge: bremsstrahlung effect for the electron mode

R_{K} result

LHCb, PRL 113 (2014) 151601

 $R_K = 0.745^{+0.090}_{-0.074}$ (stat) ± 0.036 (syst)

Consistent with SM within 2.6σ

 $R(K^{\ast})$, $R(\varphi)$ and others are coming

Lepton universality: $B \rightarrow D^{(*)}I\nu$

$$R(D^{(*)}) \equiv \frac{\mathcal{B}(B \to D^{(*)}\tau\nu)}{\mathcal{B}(B \to D^{(*)}(\mu \text{ or } e)\nu)}$$

52

SM

SM

$B^0 \rightarrow D^{*+}\tau^-\nu$ partial reconstruction

Leptonic mode: $\tau \rightarrow \mu \nu_{\tau} \bar{\nu}_{\mu}$

Kinematic variables estimated assuming

$$(p_B)_z = \frac{m_B}{m_{\rm reco}} (p_{\rm reco})_{z_z}$$

m_{miss}: invariant mass of the invisible part E_{μ}^{*} : μ energy in B rest frame q²: squared 4-momentum of $\tau \nu$

LHCb R(D*) result

Photon polarization

- Photons in b→sγ are predominantly left-handed since W boson couples to left-handed quarks
- New particles in the loop can enhance right-handed contribution

Wilson coefficients C_7 and C_7 are related to related to left- and right-handed photons

$$\begin{aligned} \mathcal{H}_{\rm eff} &= -\frac{4\,G_F}{\sqrt{2}}\,V_{\rm tb}\,V_{\rm ts}^*\sum_{i} \big(\underbrace{\mathcal{C}_i\mathcal{O}_i}_{{\rm left-handed}} + \underbrace{\mathcal{C}_i^{'}\mathcal{O}_i^{'}}_{{\rm right-handed}}\big) + h.c. \\ \mathcal{O}_7^{(')} &= \frac{e^2}{16\pi^2}m_b\left[\bar{s}\sigma_{\mu\nu}P_{R(L)}b\right]F^{\mu\nu} \end{aligned}$$

Results of photon polarization

Up-down asymmetry in B⁺ \rightarrow K⁺ $\pi^{-}\pi^{-}\gamma$

 $|C_7|^2 \neq |C_7|^2$ at 5.2 σ LHCb, PRL 112 (2014) 161801

Angular analysis of $B^0 \rightarrow K^{*0} e^+e^-$ at low q^2

$$egin{aligned} &A_{ ext{T}}^{(2)}(q^2 o 0) = rac{2 \operatorname{Re}\left(\mathcal{C}_7 \mathcal{C}_7^{'*}
ight)}{|\mathcal{C}_7|^2 + |\mathcal{C}_7^{'}|^2} \ &A_{ ext{T}}^{ ext{Im}}(q^2 o 0) = rac{2 \operatorname{Im}\left(\mathcal{C}_7 \mathcal{C}_7^{'*}
ight)}{|\mathcal{C}_7|^2 + |\mathcal{C}_7^{'}|^2} \end{aligned}$$

 $A_{\rm T}^{(2)} = -0.23 \pm 0.23 \pm 0.05$ $A_{\rm T}^{\rm Im} = +0.14 \pm 0.22 \pm 0.05$ Compatible with SM ($\simeq 0$) LHCb, PRL 112 (2014) 161801

Time-dependent analysis of $B^0 \rightarrow K^{*0} (K_S \pi^0) \gamma$

 $S(K^{*0}\gamma) \approx -2 IC_7/C_7 I \sin 2\beta$

S(K^{*0} γ)= -0.16 ± 0.22 Consistent with SM (\approx 0) HFAG, average of Babar+Belle

Photon polarization in $B_s \rightarrow \phi \gamma$

First measurement of photon polarization in B_s decays

New observable in untagged time-dependent rate

Muheim, Xie, Zwicky, PLB 664 (2008) 174

$$\Gamma_{B^0_s
ightarrow \phi\gamma}(t) \propto e^{-\Gamma_s t} \left[\cosh\left(\Delta\Gamma_s t/2
ight) - \mathcal{A}^\Delta \sinh\left(\Delta\Gamma_s t/2
ight)
ight]$$

$$\mathcal{A}^{\Delta} = -0.98 \; {}^{+0.46}_{-0.52}({\sf stat.}) {}^{+0.23}_{-0.20}({\sf syst.})$$

LHCb-PAPER-2016-034, in prep.

Compatible with SM within 2σ

$${\cal A}^{\Delta}_{{\sf SM}}=0.047^{+0.029}_{-0.025}$$

Constraints on right-handed NP

Forbidden decays

Some 1 fb⁻¹ results on lepton flavour/number violation

LHCb, PRL 111 (2013) 141801

Mode	Limit	90 % C.L.	95% C.L.
$B^0_s \to e^\pm \mu^\mp$	Expected Observed	1.5×10^{-8} 1.1×10^{-8}	1.8×10^{-8} 1.4×10^{-8}
$B^0 \to e^\pm \mu^\mp$	Expected Observed	$3.8 imes 10^{-9}$ $2.8 imes 10^{-9}$	$\begin{array}{c} 4.8 \times 10^{-9} \\ 3.7 \times 10^{-9} \end{array}$

LHCb, PRL 112 (2014) 131802

 $\mathcal{B}(B^- \to \pi^+ \mu^- \mu^-) < 4.0 \cdot 10^{-9} (95\% \text{CL})$

LHCb run 2 can improve these limits

$$\begin{split} \mathcal{B}(B^+ \to K^+ e^{\pm} \mu^{\mp}) &< 9, 1 \times 10^{-8} \\ \mathcal{B}(B^+ \to K^+ e^{\pm} \tau^{\mp}) &< 3, 0 \times 10^{-5} \\ \mathcal{B}(B^+ \to K^+ \tau^{\pm} \mu^{\mp}) &< 4, 8 \times 10^{-5} \\ \mathcal{B}(B^+ \to K^* (892)^+ e^{\pm} \mu^{\mp}) &< 1, 4 \times 10^{-6} \\ \mathcal{B}(B \to K^* (892)^0 e^{\pm} \mu^{\mp}) &< 5, 8 \times 10^{-7} \\ \mathcal{B}(B \to K e^{\pm} \mu^{\mp}) &< 2, 7 \times 10^{-7} \end{split}$$

Summary and outlook

Picture after LHCb run 1

LHCb has studied CPV and rare B decays with unprecedented sensitivity in a wide scope

- Overall picture is SM-like
- Some anomalies await clarification

Run 2 data-taking at 13 TeV

Expect 2 fb⁻¹ in 2016 and 6 fb⁻¹ data in run 2

Improve measurement precisions by factor of two in run 2

New results may appear in early 2017

Upgrade

LHCb detector upgrade during LS2 (2019-2020)

- 40 MHz readout of all sub-detectors and software trigger
- 10 times higher luminosity

Expect 50 fb⁻¹ in run 3 and run 4

- 6 times precision improvement compared with run 1
- Much wider scope of study than now

Some crucial goals of upgrade

- CPV in $B_s \rightarrow \mu^+ \mu^-$
- Precision measurement of photon polarization in $B_s \rightarrow \phi \gamma$
- Precision measurement of CPV in $B_s \rightarrow \varphi \varphi$

Backup slides

Powerful trigger

B hadrons are long-lived

- well separate PV and SV

B hadrons have large masses

- decay products with high pT
- o Level-0: hardware
 - high pT objects (Calo, Muon)
- High-Level: software
 - ➢ HLT1: add vertex info
 - ➢ HLT2: global reconstruction

Trigger efficiency: ~90% for dimuon events ~30% for hadronic final states

LHCb luminosity leveling

Control of penguin pollution

Penguin contribution small but hard to quantify from theory

> Use SU(3) flavour symmetry: $s \rightarrow d$

Measure $A_{CP}(B_d \rightarrow J/\psi \rho)$ to constrain *a* and θ , and put limit on shift of ϕ_s due to neglecting penguins in $B_d \rightarrow J/\psi \phi$:

lδ_Pl < 0.018 rad@95%CL LHCb, Phys. Lett. B742 (2015) 38

Adding constraint from $B_s \rightarrow J/\psi K^{*0}$

LHCb, JHEP1511 (2015) 082

• Results dominated by $B^0 \rightarrow J/\psi \rho^0$ (SU(3) flavor symmetry broken by 20% - 30%):

[LHCb, PLB 742 (2015) 38-49] [LHCb, JHEP 11 (2015) 082]

 $egin{aligned} &\delta_{\mathrm{P}}^{0} = 0.000 \ ^{+0.009}_{-0.011} \ ^{+0.004}_{-0.009} \ \mathrm{rad} \ &\delta_{\mathrm{P}}^{\parallel} = 0.001 \ ^{+0.010}_{-0.014} \pm 0.008 \ \mathrm{rad} \ &\delta_{\mathrm{P}}^{\perp} = 0.003 \ ^{+0.010}_{-0.014} \pm 0.008 \ \mathrm{rad} \end{aligned}$

Penguin pollution in
$$\phi_s^{c\bar{c}s}$$
 is small and under control

CPV in $B_d \rightarrow D^+D^-$

Measurement of CPV in this b \rightarrow ccd transition can help control penguin effect on the ϕ_s measurement in $B_s \rightarrow D_s^+ D_s^-$

CPT& Lorentz violation

Is there a mass difference between B_q^0 and \overline{B}_q^0 ?

- Fit the time-dependent decay rate to see if z is nonzero

$$\begin{aligned} |B_L\rangle &= p\sqrt{1-z}|B^0\rangle + q\sqrt{1+z}|\bar{B}^0\rangle \\ |B_H\rangle &= p\sqrt{1+z}|B^0\rangle - q\sqrt{1-z}|\bar{B}^0\rangle \end{aligned} \qquad z = \frac{\delta m - i\delta\Gamma/2}{\Delta m - i\Delta\Gamma/2} \end{aligned}$$

$$\delta m \equiv (M_{11} - M_{22})/2 \quad \delta \Gamma \equiv (\Gamma_{11} - \Gamma_{22})/2$$

Does the mass difference vary due to Earth's rotation?

- Check for periodic dependence of z on sidereal time

CPT& Lorentz violation

LHCb, PRL 116 (2016) 241601

No periodic variation of mass difference. Average mass difference consistent with zero.

Stringent constraint on CPT violation.

$$\mathcal{R}e(z^{B_s^0}) = -0.022 \pm 0.033(\text{stat}) \pm 0.003(\text{syst}),$$

 $\mathcal{I}m(z^{B_s^0}) = 0.004 \pm 0.011(\text{stat}) \pm 0.002(\text{syst}).$

Inputs to y combination

Four new papers

Constraints on the unitarity triangle angle γ from Dalitz plot analysis of $B^0 \rightarrow DK^+\pi^-$ decays Measurement of CP observables in $B^{\pm} \rightarrow DK^{\pm}$ and $B^{\pm} \rightarrow D\pi^{\pm}$ with two- and four-body D decays Model-independent measurement of the CKM angle γ using $B^0 \rightarrow DK^{*0}$, $D \rightarrow K_{\rm S}^0\pi^+\pi^-, K_{\rm S}^0K^+K^-$ decays Measurement of the CKM angle γ using $B^0 \rightarrow DK^{*0}$ with $D \rightarrow K_{\rm S}^0\pi^+\pi^-$ decays

LHCb-PAPER-2015-059 arXiv:1602.03455

LHCb-PAPER-2016-003

LHCb-PAPER-2016-006

LHCb-PAPER-2016-007

 $B^{0} \rightarrow [K^{+}K^{-}]K\pi$ $B^{0} \rightarrow [\pi^{+}\pi^{-}]K\pi$

 $B^{\pm} \rightarrow [h^{\pm}h^{\pm}]h^{\pm}$ $B^{\pm} \rightarrow [K^{+}\pi^{-}\pi^{+}\pi^{-}]h^{\pm}$ $B^{\pm} \rightarrow [\pi^{+}\pi^{-}\pi^{+}\pi^{-}]h^{\pm}$

 $B^{\theta} \rightarrow [K_{S}^{\theta}h^{+}h^{-}]K^{*\theta}$

 $B^{\theta} \rightarrow [K_{S}^{\theta}\pi^{+}\pi^{-}]K^{*\theta}$

which add to five published papers,

A study of *CP* violation in $B^{\pm} \rightarrow DK^{\pm}$ and $B^{\pm} \rightarrow D\pi^{\pm}$ decays with $D \rightarrow K_{S}^{0}K^{\pm}\pi^{\mp}$ final states Phys. Lett. B733 (2014) 36 arXiv:1402.2982 Measurement of *CP* asymmetry in $B_{s}^{0} \rightarrow D_{s}^{\mp}K^{\pm}$ decays JHEP 11 (2014) 060 arXiv:1407.6127 Measurement of *CP* violation parameters in $B^{0} \rightarrow DK^{*0}$ decays Phys. Rev. D90 (2014) 112002 arXiv:1407.8136 Measurement of the CKM angle γ using $B^{\pm} \rightarrow DK^{\pm}$ with $D \rightarrow K_{S}^{0}\pi^{+}\pi^{-}$, $K_{S}^{0}K^{+}K^{-}$ decays JHEP 10 (2014) 097 arXiv:1408.2748 A study of *CP* violation in $B^{\mp} \rightarrow Dh^{\mp}$ ($h=K,\pi$) with the modes $D \rightarrow K^{\mp}\pi^{\pm}\pi^{0}$, $D \rightarrow \pi^{\pm}\pi^{-}\pi^{0}$ and $D \rightarrow K^{+}K^{-}\pi^{0}$ Phys. Rev. D91 (2015) 112014 arXiv:1504.05442 $B^{\pm} \rightarrow [h^{\pm}h^{\pm}\pi^{0}]h^{\pm}$
$B \rightarrow K^{*0} \mu^+ \mu^-$

(b) A_{FB} .

73

 $B \rightarrow K^{*0} \mu^+ \mu^-$

Angular analysis of $B^+ \rightarrow K^+ \mu^+ \mu^-$

$$\frac{1}{\Gamma} \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta_l} = \frac{3}{4} (1 - F_{\mathrm{H}})(1 - \cos^2\theta_l) + \frac{1}{2}F_{\mathrm{H}} + A_{\mathrm{FB}}\cos\theta_l$$

1fb⁻¹ result of $B^+ \rightarrow K^+\mu^+\mu^-$ LHCb, JHEP 1405 (2014) 082 Consistent with SM SM predictions: $R_K \cong 1 \& F_H \sim 0$

Angular analysis of $B^+ \rightarrow K^+e^+e^-$ not possible yet

Properties of the Higgs

- Couplings to heavy particles consistent with SM: mass generation of heavy particles roughly understood
- Not much information about light fermions
 - Little sensitivity from ATLAS/CMS data
 - Study quark mixing to test Yukawa interactions