

Latest Results on Higgs production and decay @CMS

Mingshui Chen (IHEP, Beijing) On behalf of the CMS Collaboration

Outline

- Introduction
- Higgs profile @ LHC Run 1
- New results @ 13 TeV CMS Run 2
 - Boson channels: $H \rightarrow ZZ_4I$, $H \rightarrow \gamma\gamma$ and $H \rightarrow WW \rightarrow 2I_{2V}$
 - Higgs production associated with top quarks
 - VBF H(bb)
- More results
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/ PhysicsResultsHIG

More detail on RUN I Higgs properties covered by Marcello Fanti Rare decays by Liang Li and BSM Higgs searches by Li Yuan DiHiggs by Martino Dall'Osso

Higgs Production

The first extended running period of the LHC at Vs=7 and 8 TeV brought the anticipated discovery of the Higgs boson by the CMS and ATLAS collaborations

Higgs Decays at 125 GeV

Higgs Profile @ LHC Run 1

Higgs Profile @ LHC Run 1

Higgs Profile @ LHC Run 1

Higgs boson in Run 2

- LHC restarted in 2015 with a collision energy of 13 TeV and 25 ns bunch spacing
 - Increased sensitivity to tails of differential distributions and BSM
 - Increased sensitivity to large partonic center-of-mass (e.g. ttH production)
- Run 2 dataset ~22 fb⁻¹in 2016
 - Already produced more Higgs bosons than in Run 1
- Most analyses follow closely methods and strategies developed during Run 1

1 1 1 1 AUG 1 Sep 1 Oct 1 NOV

Date (UTC)

1 Dec

, May

2 Jun

- Very small branching fraction (~0.2%)
- Clean final state with two isolated high p_T photons and good resolution
- Narrow peak over falling background
 - Main backgrounds γγ and γ-jet
- Production modes probed
 - ggF, VBF, ttH
- Analysis strategy:
 - Events categorized into classes (S/B, mass resolution, additional particles) to improve the analysis sensitivity
 - Extraction of signal through fit of di-photon invariant mass spectrum in each category

Fiducial cross section

- Different event categorization:
 3 mass resolution categories
- Event yields corrected for detector inefficiency and resolution
- Minimal dependence on theoretical modeling

$$\hat{\sigma}_{fid} = 69^{+16}_{-22} (\text{stat.})^{+8}_{-6} (\text{syst.}) \text{fb}$$

SM exp. (a)125.09 GeV: $\sigma_{fid}^{th.} = 73.8 \pm 3.8 {\rm fb}$

 Good agreement between data and theory

7/29/16

Consistency tests: signal strengths and couplings

ggH,ttH

q(k_V,k_f)

8

-6

-4

-2

2

H→ZZ→4I

- Golden channel at LHC
 - Two pairs of same flavor, opposite sign, isolated leptons
 - Large S/B, excellent resolution
 - Narrow peak over a flat background
- All main production modes probed: ggF, VBF, VH, ttH
 - Now have 6 cats (diff. from Run 1)
- Extraction of signal through fit of m₄, together with various kinematics discriminants which enhance the signal purity of different production modes

The Higgs boson rediscovered: 6.20@125.09 GeV

- Fiducial volume defined to closely match reconstruction level
- Maximum likelihood fit to the inclusive m₄₁ distribution
- $\sigma_{\text{fid.}} = 2.29^{+0.74}_{-0.64} (\text{stat.})^{+0.30}_{-0.23} (\text{sys.})^{+0.01}_{-0.05} (\text{model dep.}) \text{ fb}$ SM expectation: $\sigma_{\text{fid.}}^{\text{SM}} = 2.53 \pm 0.13 \text{ fb}$
- Differential cross section for p_T(H) and N(jets)

Mingshui Chen (IHEP, Beijing)

H→ZZ→4I

 $H \rightarrow ZZ \rightarrow 4I$

Consistency tests: signal strengths and couplings

$H \rightarrow WW \rightarrow 2I2v$

- WW is one of the Higgs decays with larger BR
- Final state contains
 Neutrinos → impossible reconstruct an invariant mass spectrum
- With a reasonable level of som irreducible backgrounds
- Main background composition varies w.r.t. number of jets
 - o jets: WW, W+jets
 - **1 jet**: WW, Top
- 2D observables: $m_{\parallel} \& m_{T}^{H}$

For 125 GeV Higgs Observed (expected) significance: 0.7 (2.0) σ Observed μ = 0.3 +/- 0.5

- Probing the top-Higgs Yukawa coupling at LHC
 - via gluon fusion cross section, assuming no BSM particles running in the loop
 - directly at tree level, via associated productions

- σ for ttH has the largest boost going from 8 to 13 TeV among the 5 main Higgs production modes ($\sigma_{\rm ttH}$ ~510 fb@13 TeV)
- Challenging due to the presence of additional jets and leptons from top decay
- Searches for ttH in CMS
 - ttH(\rightarrow bb), ttH(multilepton); ttH($\rightarrow\gamma\gamma$) included in H $\gamma\gamma$ analysis

ttH(→bb)

- High cross section x BR, but complex multi-jet final state with large background
 - Main bkg: tt+heavy flavor production
- Events categorized according to amount of leptons, jets, b-jets
- Reduce tt+jets using kinematic variables and Matrix Element Method

ttH in multi-lepton final states

- Events with at least 2 loose or 1 medium b-tagged jets categorized into
 - two same-sign leptons + 4 jets
 - at least three leptons (with Z veto) + 2 jets
- Main backgrounds
 - **irreducible**: ttV (from MC), di-boson (validated in data)
 - **reducible**: non-prompt leptons in tt events and charge mis-ID, datadriven

Kinematic discrimination

- Building separate BDT discriminators to improve discrimination against tt and ttV events
 - Jet multiplicity, lepton/jet angular separation, MET, lepton pT
 - Also matrix element weights for ttH and ttV hypotheses used in 3l

ttH signal extraction

• The signal is extracted via a 2-dimensional fit to the BDT discriminators

• Results with 2015 + 2016 data

Category	Obs. limit	Exp. limit $\pm 1\sigma$	Best fit $\mu \pm 1\sigma$
Same-sign dileptons	4.6	$1.7^{+0.9}_{-0.5}$	$2.7^{+1.1}_{-1.0}$
Trileptons	3.7	$2.3^{+1.2}_{-0.7}$	$1.3^{+1.2}_{-1.0}$
Combined categories	3.9	$1.4^{+0.7}{}_{-0.4}$	$2.3^{+0.9}_{-0.8}$
Combined with 2015 data	3.4	$1.3^{+0.6}{}_{-0.4}$	$2.0^{+0.8}$ $_{-0.7}$

Observed (expected) significance: 3.2 (1.7) σ

tH(→bb)

- Tiny SM production cross section: (~80 fb@ 13 TeV)
 - Diagrams are interfering in SM
 - While it's constructive for inverted top coupling $k_{top}=-1$

Mingshui Chen (IHEP, Beijing)

VBF H(bb)

- VBF H→bb more difficult to exploit than VH signature for H→bb but larger production cross section
 - Forward jets are used to trigger and discriminate against multi-jet background
 - Signal extracted via a fit to the m_{bb} spectrum

CMS	Upper limit x SM (expected)	Signal strength µ
Run 1	5.5 (2.5)	2.8 ^{+1.6} _{-1.4}
Run 2+	1 3.4 (2.3)	1.3 ^{+1.2} -1.1

Summary

- Exploration of the new energy regime of 13 TeV has just started
- The Higgs boson has been rediscovered and several measurements performed
- No significant deviation from the Standard model from this first look
- 10x more data to come by end of 2018
- Looking forwards to much more precise measurements of the Higgs sector, stay tuned !

Thanks !

Part of CMS Collaboration with >4400 collaborators from >200 institutions