# BSM Higgs searches in ATLAS

Takanori Kono (Ochanomizu University) for the ATLAS Collaboration

International Symposium on Higgs Boson and Beyond Standard Model Physics

Weihai, China August 15 - 19, 2016

# **Beyond Standard Model Higgs**

- New heavy scalar particle
  - $\gamma\gamma$ ,  $Z\gamma$ , ZZ, WW, ZV channels in various subsequent decay modes
- Two Higgs doublet model (2HDM)
  - Five Higgs bosons  $(h, H, A, H^{\pm})$
  - Charged Higgs
  - $H/A \rightarrow \tau \tau$
  - $H \rightarrow hh$
  - Minimal Supersymmetric Standard Model (MSSM)
    - Similar to 2HDM plus superpartners of SM particles
- Dark matter candidate
  - Associated production of dark matter candidate and Higgs boson
- Most of the results shown are based on 2016 data

# $H \rightarrow \gamma \gamma$

Two isolated photons

ATLAS-CONF-2016-059

- $E_T^{\gamma} > 40,30$  GeV for leading and 2<sup>nd</sup> leading photons
- An excess of events at  $m_{\gamma\gamma} \sim 730$  GeV was observed at the end of 2015
- However, no such excess was observed with more data



 $H \rightarrow \gamma \gamma$ 



#### 2015 analysis

- $m_{\gamma\gamma} = 750$  GeV,  $\Gamma/m = 6$  %,  $3.9\sigma$ After analysis improvement (calibration, photon conversion)
- $m_{\gamma\gamma} = 730 \text{ GeV}, \Gamma/m = 8 \%, 3.4\sigma$

Combination of 2015 and 2016 results

• Largest deviation with  $2.3\sigma$  excess at 710 GeV with  $\Gamma/m = 10$  %



4

ATLAS-CONF-2016-059

# $\gamma\gamma + E_{\rm T}^{\rm miss}$ final state

#### Event selection

- 2 photons with  $p_T > 25 \text{ GeV}$
- $E_T^{\gamma}/m_{\gamma\gamma} > 0.35, 0.25$  for leading/subleading photons
- $105 < m_{\gamma\gamma} < 160 \text{ GeV}$
- 4 categories based on  $E_{\rm T}^{\rm miss}$  significance and  $p_T^{\gamma\gamma}$



#### Dark matter models

- Z' mediator coupling to dark matter fermion and SM Higgs
- Heavy scalar particle decaying into Higgs and a pair of dark matter candidates



#### Upper limits on $\sigma \cdot BR$

- $m_{Z'} = 10$  GeV,  $m_{\chi} = 1$  GeV: 2.87 fb
- $m_{Z'} = 2000 \text{ GeV}, m_{\chi} = 1 \text{ GeV}: 0.87 \text{ fb}$
- $m_H = 260 \text{ GeV}, m_\chi = 50 \text{ GeV}$ : 18.2 fb

#### ATLAS-CONF-2016-044

# $H \to Z\gamma$

- $H \to Z\gamma \to l^+ l^- \gamma$
- Many extensions of the SM Higgs sector introduces new massive bosons which may decay to SM gauge bosons
- The decay occurs in the Standard Model via top or W loop
  - BR(SM)=1.54×10<sup>-3</sup>
- Measurement using leptons and photon is experimentally very clean
  - Analysis with hadronic Z decay with 3.2 fb-1 has also been performed (arXiv:1607.06363)
- No significant excess is observed in the mass range 250 – 2.4 TeV
- Upper limits on σ · BR range from 215 fb to 5 fb in the mass range between 250 GeV and 2.4 TeV



 Various final states are possible in decay modes with two massive gauge bosons



### $H \rightarrow ZZ \rightarrow 4l$

- High mass resonance search in  $m_{4l} > 140 \text{ GeV}$
- Event categories
  - VBF (vector boson fusion):
    - More than 2 jets with  $m_{jj} > 400$  GeV,  $|\Delta \eta_{jj}| > 3.3$
  - **ggF** (gluon-gluon fusion):
    - Events which fail the VBF criteria



- Narrow width approximation
- Also used a larger width  $\Gamma/m = 1, 5$ and 10%
- No significant excess is observed

ATLAS-CONF-2016-079



95% Limit on  $\sigma_{gg_F} imes \mathsf{BF}(\mathsf{H} o \mathsf{ZZ})$  [fb]

10

m<sub>med</sub> [GeV]



# $H \rightarrow ZV \rightarrow llqq$

- A heavy object decaying into two vector bosons which further produces two jets
- Two analysis strategies for resolved and merged jets





11

 $H \rightarrow ZV \rightarrow llqq$ 

#### ATLAS-CONF-2016-082



Largest deviation is observed around 500 GeV in the resolved analysis 2.75 $\sigma$  (local) and 1.4 $\sigma$  (global)

12



Upper limits on observed cross sections

- ggF:  $\sigma \cdot BR = 1.28 \text{ pb} 6.2 \text{ fb}$  in the mass range 300 3000 GeV
- VBF:  $\sigma \cdot BR = 0.6 \text{ pb} 5.2 \text{ fb}$  in the mass range 300 3000 GeV

[qd]

ZZ)

 $\uparrow$ 

 $\sigma(gg \to H) \; x \; (BR$ 

# $H \to ZZ \to \nu \bar{\nu} q \bar{q}$

- Require that qq system to be consistent with either W or Z
- $E_{\rm T}^{\rm miss}$ >250 GeV
- Upper limit on  $\sigma(gg \rightarrow H) \cdot BR(H \rightarrow ZZ)$  is given





# $H \to WW \to l \nu q \bar{q}$

Event selection

- $E_{\rm T}^{\rm miss} > 100 \; {\rm GeV}, \, p_T(l\nu) > 200 \; {\rm GeV}$
- Large-R jet (J)
  - Selection for 2-prong sub-structure
    - high-purity and low-purity samples depending on the sub-structure
  - $p_T(J)/m_{l\nu J} > 0.5, p_T(l\nu)/m_{l\nu J} > 0.5$

#### Backgrounds

- Main backgrounds are W+jets and  $t\bar{t}$
- Separate signal and background using  $N_b, m_J$ 
  - $N_b \ge 1 \rightarrow t\bar{t}$  and in W mass window
  - $N_b = 0$  and  $50 < m_J < 68.2$  or  $m_J > 108.4$  GeV  $\rightarrow$  W control region



**Exclusion limits** 

 masses below 2500 – 2810 (2400 - 2540) GeV for neutral (charged) scalar

# $H \to WW \to l\nu l\nu$

Event selection

- Different flavor, opposite sign leptons ( $p_{\rm T}^l > 25, 15 \; {\rm GeV}$ ),
- $|\Delta \eta_{ll}| < 1.8, m_{ll} > 10 \text{ GeV}$
- No b-jet

Backgrounds

- $t\bar{t}$ : control region (CR) with b-jes
- WW: CR with reversed  $\Delta \eta_{ll}$  cut

#### Event categories

٠

- VBF1J (vector boson fusion):
  - $N_{jet}$ =1,  $m_{jj}$  > 400 GeV,  $|\eta_j|$  > 2.4

16

ATLAS-CONF-2016-074

No significant excess

in the mass range 300

 $\sigma \cdot BR < 4.3 \text{ pb at}$ 

 $m_H = 300 \text{ GeV}$  and

 $\sigma \cdot BR < 0.051$  pb at

- 3000 GeV

 $m_H = 3 \text{ TeV}$ 

VBF1J (vector boson fusion):

• 
$$N_{jet} \ge 2$$
,  $m_{jj} > 500 \text{ GeV}$ ,  $|\Delta y_{jj}| > 4$ 

- ggF (gluon-gluon fusion):
  - Events which fail the VBF criteria

$$m_T = \sqrt{\left(E_T^{ll} + E_T^{miss}\right)^2 - \left|\vec{p}_T^{ll} + \vec{p}_T^{miss}\right|^2}$$

## $\mathsf{VBF}\ R \to WW \to l\nu l\nu$

Search for a heavy neutral resonance

- An extension of the Higgs sector with a tensor resonance in effective field theory (Phys. Rev. D93, 036004)
- In such models, additional contributions arises in VBF



 $(M_{\rm T}^{WW})^2 = (P_{\ell_1} + P_{\ell_2} + P^{\rm miss})(P_{\ell_1} + P_{\ell_2} + P^{\rm miss})$ 

Observed cross section limits are betweer 460 – 220 fb for resonance mass of 200 – 500 GeV



# Two Higgs Doublet Model (2HDM)

- Standard Model has only one SU(2)<sub>L</sub> Higgs doublet
  - 4 degrees of freedom → 3 for longitudinal components of gauge bosons + 1 Higgs particle
- Two Higgs SU(2)<sub>L</sub> doublets
  - Straightforward extension of SM, but in some models this is a necessary requirement (e.g. MSSM)
  - 8 degrees of freedom → 3 for longitudinal components of gauge bosons + 5 Higgs particles
    - h, H (neutral, CP-even), A (neutral, CP-odd),  $H^{\pm}$
    - Two vacuum expectation values  $v_1$  and  $v_2$
    - $v_1^2 + v_2^2 = (246 \text{ GeV})^2$ ,  $\tan \beta = v_2/v_1$
    - $\alpha$ : mixing angle between the CP-even states (h and H)
  - Coupling between Higgs and up-type (down-type) particles is proportional to  $v_1$  ( $v_2$ )





- Analysis aimed at large  $\tan \beta$
- Require at least one  $\tau$  to be decayed hadronically
  - $au_{
    m lep} au_{
    m had}$  channel
    - b-veto category, b-tag category (single-lepton trigger)
    - High  $E_T^{\text{miss}}$  category ( $E_T^{\text{miss}}$ >150 GeV or  $|\vec{p}_T^{\mu} + \vec{E}_T^{\text{miss}}|$ >150 GeV)
  - $au_{
    m had} au_{
    m had}$  channel
    - b-veto category, b-tag category

mt 
$$m_{\rm T}^{\rm tot} = \sqrt{m_{\rm T}^2(E_{\rm T}^{\rm miss}, \tau_1) + m_{\rm T}^2(E_{\rm T}^{\rm miss}, \tau_2) + m_{\rm T}^2(\tau_1, \tau_2)},$$

Final discriminant

 $m_{\mathrm{T}}(a,b) = \sqrt{2p_{\mathrm{T}}(a)p_{\mathrm{T}}(b)[1-\cos\Delta\phi(a,b)]}$ 

# $H/A \rightarrow \tau \tau$ signal region





- $m_T$  distribution for 2 categories (lep/had b-veto and b-tag)
- Main backgrounds are  $Z \rightarrow \tau \tau$  and  $t\bar{t}$
- Data is described well by SM prediction (also for other categories)

# $H/A \rightarrow \tau \tau$ results



• Exceeds the previous results for  $m_A$ =350 GeV

Events / 10 GeV

22

H/A $\rightarrow tt$ ATLAS-CONF-2016-073 00000000 00000000 īb∕īt A/H b∕t 0000000 00000000  $H/Z \rightarrow t\bar{t}$  is enhanced at low tan  $\beta$ Interference between SM continuum  $gg \rightarrow t\bar{t}$ Event selection  $\sigma = S + I + B$ 1 lepton  $+ \ge 4$  jets ( $\ge 2$  b-tag) (signal, interference, bg)  $\tan \beta < 0.85 \ (< 0.45)$  are excluded for  $m_A = 500 \text{ GeV}$ MadGraph5\_aMC  $(m_H = 500 \text{ GeV})$ had been used to 25<sup>×10</sup> 8 TeV results generate the S+I rents / 40 GeV Data 2012 ATLAS Preliminary - A→tī(S+I)×7 m=750 GeV, tanβ=0.7 √s = 8 TeV, ∫Ldt = 20.3 fb<sup>-1</sup> contribution √s = 8 TeV, ∫Ldt = 20.3 fb<sup>-1</sup> ATLAS Preliminary Single top Multijet W+jets 20 gg→A→tt, m, = 500 GeV Z+jets 10<sup>2</sup> Diboson  $sin(\beta - \alpha) = 1$ , Type II 2HDM Uncertainty Pre-fit background S ATLAS Simulation Preliminary 10 - S+I √s = 8 TeV, ∫Ldt = 20.3 fb μ+jets 15 before det, sim, and event se b-tag category 1 m<sub>4</sub> = 500 GeV, tanβ = 0.40 Observed Exp. 95% CL upper limit 10 Exp. ± 1 or uncertainty  $\pm xp. \pm 2\sigma$  uncertainty  $10^{-2}$ 700 600 800 2 3 200 800 1000 1200 1400 1600 m [GeV] 400 600 tanβ m., [GeV]

# **Charged Higgs**



- Main production mechanism is the associated production with a top quark
- The coupling depends on the value of  $\tan \beta$
- Searches are performed in the mass range of 200 2000 GeV
  - $H^+ \rightarrow \tau^+ \nu_{\tau}$  channel  $\rightarrow \tau$  +jets (from associated production)
  - $H^+ \rightarrow t \overline{b}$  channel (dominant at  $m_{H^+} > m_t$ )

# $H^+ \rightarrow \tau^+ + \bar{\nu}_{\tau}$ (+jets) channel



- $H^+(\rightarrow \tau^+ \nu_{\tau}) + \text{jets}$
- 42<tan β<60 is excluded for charged Higgs mass of 200 GeV

24

• At  $\tan \beta = 60$ , the charged Higgs mass from 200 to 540 GeV is excluded



# $H^+ \rightarrow t\bar{b}$ channel

Search in semileptonic  $t\bar{t}$  channel

- 1 lepton,  $\geq$  4 jets ( $\geq$  2 b-tag)
- Signal/control regions based on N<sub>jet</sub>, N<sub>b</sub>
  - CR: 4j2b, 4j≥3b, 5j2b, ≥6j2b
  - SR: 5j3b, 5j≥4b, ≥6j3b, ≥6j≥4b
- Maximum Likelihood to all regions
- BDT in the signal region





ATLAS-CONF-2016-089

# $H^+ \rightarrow t\bar{b}$ results

ATLAS-CONF-2016-089



- Limit on the cross section × branching ratio
  - $\sigma \cdot BR = 1.09 \text{ pb for } m_{H^+} = 300 \text{ GeV and}$
  - $\sigma \cdot BR = 0.18 \text{ pb for } m_{H^+} = 1000 \text{ GeV}$
- $\tan \beta$  in the range 0.5 1.7 are excluded for  $300 < m_{H^+} < 855$  GeV
- $\tan \beta > 44$  at  $m_{H^+}=300$  GeV and  $\tan \beta > 60$  at  $m_{H^+}=366$  GeV are excluded



- Pair of b-jets to form Higgs candidate
- Invariant mass of two Higgs candidates
- Background: multijet (98%) and  $t\bar{t}$  (2%)
- **Boosted analysis** 
  - anti- $k_{T}$  jet (R=1.0) p<sub>T</sub>>250 GeV, m<sub>J</sub>>50 GeV
  - 2, 3 or 4 b-tagged track jets
  - Invariant mass of the two large-R jets
  - Background: multijet (83-87%) and  $t\bar{t}$



# $hh \rightarrow b\bar{b}b\bar{b}$

- Dominant background is multijet and  $t\bar{t}$
- Limit on spin-2 resonance
  - σ =1000 2 fb in the mass range of 300 – 3000 GeV
- Limit on non-resonant production
  - 330 fb (95% C.L.)





# $hh \rightarrow \gamma \gamma WW \rightarrow \gamma \gamma l \nu j j$

- Clean signal from  $h \rightarrow \gamma \gamma$
- Large branching ratio of  $h \rightarrow WW$ Event selection
- Two photons ( $p_T^{\gamma} > 35, 25 \text{ GeV}$ )
- $105 < m_{\gamma\gamma} < 160 \text{ GeV}$
- Require 1 charged lepton





#### <u>Limits</u>

- Non-resonant production
  - observed: 25.0 pb (95% C.L.)
  - expected: 12.9 pb
- Narrow resonance
  - In the range between 47.7 pb and 24.7 pb for a resonance mass of 260 – 500 GeV

# Conclusion

- Searches for BSM Higgs has been performed in various channels have been performed
  - High mass resonances
  - Heavy particles decaying into SM Higgs
  - Associated production of Higgs and DM candidate
- No significant excess is observed
  - Excess at 750 GeV in diphoton channel became less significant with 2016 data
- Expectation for results from LHC Run-2
  - So far in 2016, ATLAS has collected ~20 fb<sup>-1</sup> of data at 13 TeV
  - By the end of Run-2 (2015 2018), 100 fb<sup>-1</sup> is expected

# Backup slides