

Dark Matter Direct Detection Results from PandaX-II Experiment

Ning Zhou (THU) On behalf of PandaX Collaboration

ISHBSM 2016, Weihai

Dark Matter Search

- Dark matter candidate: WIMP
- Direct Detection
 - Detection of WIMP scattering with target atom
- Indirect Detection
 - WIMP annihilation or decay products
- Collider Search
 - WIMP produced from collision

Collider Search

10⁻³⁴

10⁻³⁵

10⁻³⁶

10⁻³⁷

10⁻³⁸

10⁻³⁹) 10⁻⁴⁰ 10-41

10-42 10⁻⁴³ 10⁻⁴⁴

10⁻⁴⁵

10⁻⁴⁶

BSM

σ_{SI} [cm²]

Vector.

LUX

monojet

10²

m_{DM} [GeV]

Higgs-portal

- Collider may produce WIMPs
- Sensitive to low mass WIMPs

 $^{-3}_{c}$ 10⁻³ (X-broton) [cm²] $^{-36}_{c}$ 10⁻³⁶

10⁻³⁰

10⁻³³

10⁻³⁹

10⁻⁴²

ATLAS

monojet

vs = 13 TeV, 3.2 fb⁻¹

Strongly depending on the production models

90% CL limits

XENON100

PICO-2L

PICO-60

ial Vector Mediator

Dirac Fermion DM

g_ = 0.25, g_ = 1.0

LUX

g_{SM}=0.25 g_{DM}=1.0

10²

 10^{3}

10⁴

m_x [GeV]

Direct Detection

- Incoming WIMP near the solar system
- Measurement of nucleus recoil signal
 - Scintillation, Ionization or Phonons

Current Status

- Sensitivity to WIMP continues to be pushed forward
 - LUX (250kg LXe) finishes data-taking (332 days)
 - PandaX-II (500kg LXe) continues datataking (latest result with 98.7 days)
 - Xenon1T (2ton LXe) started early in 2016, now is in commissioning run
 - LZ (7ton LXe) is under construction, to start in 2020

- In IDM2016, LUX and PandaX-II reported their latest results
 - SI limit on the WIMP-nucleon scattering xsec reaches 2x10⁻⁴⁶ cm²

PandaX Collaboration

• ~50 people

Started in 2009

- Shanghai Jiao Tong University (2009-)
- Peking University (2009-)
- Shandong University (2009-)
- Shanghai Institute of Applied Physics, CAS (2009-)
- University of Science & Technology of China (2015-)
- China Institute of Atomic Energy (2015-)
- Sun Yat-Sen University (2015-)
- Yalong Hydropower Company (2009-)
- University of Maryland (2009-)
- Alternative Energies & Atomic Energy Commission(2015-)
- University of Zaragoza(2015-)
- Suranaree University of Technology(2015-)

China Jinping Underground Laboratory

 10^{6}

105.

 10^{1}

600m

美国

- Deepest in the world (1μ /week/m²)
- Horizontal access! •

极深地下实验室

中国

PandaX

• PandaX = Particle and Astrophysical Xenon Experiments

Phase I: 120 kg DM 2009-2014

Phase II: 500 kg DM 2014-2017 PandaX-xT: multi-ton DM future PandaX-III: 200 kg to 1 ton ¹³⁶Xe 0vDBD

future

Double-Phase Xenon Detector

- S1: Scintillation in LXe
- S2: Ionization in LXe
 - Scintillation in GXe
- 3-D position reconstruction
 - X, Y from the PMT light collection array
 - Z from the ionized electron drift time
- Energy reconstruction from S1 and S2
- S2/S1 separate signal and background

Typical Signal Waveform

First delivery of PandaX equipment to Jinping lab, Aug. 16, 2012

PandaX Detector

• PandaX at CJPL

PandaX-I Result

- 120 kg LXe
- Completed in Oct. 2014, with 54.0 x 80.1 kg-day exposure
- Data strongly disfavor all previously reported claims
- Competitive upper limits for low mass WIMP in xenon experiments

Phys. Rev. D 92, 052004(2015)

PandaX-II

- New Inner Vessel with clean SS
- New and taller TPC with brand-new electrodes
- More 3" PMTs and improved base design
- New separate skin veto region

Configuration of E-fields

Assembling the detector

Ning Zhou

Assembling the Detector

Run History

- We had a series of engineering runs in 2015, fixing various problems as we were testing all the components of the setup
- Commissioning run (Run 8): Nov. 22 Dec. 14 (19.1 live-day x 306 kg FV) but with high Kr background (Phys. Rev. D. 39, 122009 (2016))
- After a Kr distillation campaign, the detector was refilled. Physics data taking started in Mar. 2016 (Run 9)

Results from PandaX-II Run 8

Phys. Rev. D. 39, 122009 (2016)

- Simple counting analysis based on an expected background of 3.2(0.7) evts and 2 observed evts
- Sizable (x2) difference of using original NEST or tuned NEST to predict DM distribution due to DM acceptance, but within 1σ band
- Low mass: competitive with SuperCDMS; high mass: similar exclusion limit as XENON100 225-day

Major Upgrades on Run 9

٠

Items	Status in Run 9	
Krypton level	Reduced by x10	
Exposure	Increased x4 (79.6 vs 19.1 day)	
ER calibration	Now have tritium calibration	
NR calibration	Statistics x6	
Analysis	Improved position reconstruction	
Background	Accidental background suppressed more than x2 using BDT	

Calibration Program

- Internal/external ER peaks:
 - Detector uniformity corrections
 - Light/charge collection parameters

- Low rate AmBe neutron source:
 - Simulate DM NR signal

CH₃T injection: tritium beta decays
 – Simulate ER background

Improved Position Reconstruction

- Maximum Likelihood - Function of position only $-\ln \tilde{L}(\vec{r}) = -\sum_{i} \frac{n_i}{qS2T} \ln \frac{\eta_i(\vec{r})}{P(\vec{r})}$
- Photon Acceptance Function(PAF) of Each PMT
- The iteration to determine the PAFs $\eta(r) = A \cdot \exp(-\frac{a \cdot \rho}{1 + \rho^{1-\alpha}} \frac{\sigma}{1 + \rho^{-\alpha}}), \quad \rho = \frac{r}{r_0}$
- Training sample:
 - Kr^{85} in run 8 and CH_3T in run 9 (evenly distributed in the detector)
 - ²¹⁰Po (located on the wall)

XY distribution of 164keV and Wall Events

Ning Zhou

Extracting Detector Parameters

W = 13.7 eV

- Gaussian fits to all ER peaks in data
- Uncertainty on each data point estimated using energy nonlinearity
- Linear fit in S1/E vs S2/E to extract PDE and EEE

Uniformity Correction for S1 and S2

- PE/keV @ 164 keV vs. horizontal position
- Vertical non-uniformity corrected by electron lifetime

NR calibration

- 162.4 hours of AmBe data taken, with ~3200 low energy single scatter NR events collected
- NR median curve and NR detection efficiency determined

ER calibration with CH_3T

- 18.0 hours of tritium data taken, with ~2800 low energy ER events collected
- 14 events leaked below NR median, $(0.5 \pm 0.1)\%$
- Consistent with Gaussian expectation, 0.55%

Background

- Like before, ER and accidental background identified in the data
- ER background
 - ¹²⁷Xe (due to surface exposure of xenon during distillation)
 - ⁸⁵Kr (suppressed by a factor 10)
 - Others
- Accidental background (determined by data)

Final Candidates

- Horizontal cut determined by distribution of events with S1 between [45,200] PE and suppressed S2
- Vertical cut: Upper boundary consistent with the previous analysis; Lower boundary determined by X-events from ¹²⁷Xe MC
- FV in Run 9 with 328.9 kg
- S1 cut:[3,45]PE & S2 cut[100raw, 10000] PE: consistent with previous analysis

Final Candidates

Gray: all Red: below NR median Green: below NR median and in FV

- 389 total candidates found in the FV
- 1 candidate below NR median
- Outside FV, edge events more likely to lose electrons, leading to S2 suppression

Final Candidates

Combined results

Dark-matter results from 332 new live days of LUX data

SI WIMP-nucleon exclusion

 Brazil bands show the 1- and 2-sigma range of expected sensitivities, based on random BG-only experiments.

• Factor of 4 improvement over the previous LUX result in the high WIMP masses

 Minimum exclusion of 2.2 x 10⁻⁴⁶ cm² at 50 GeV

Summary and outlook

- 79.6 live-day of dark matter data were taken with much reduced background compared to the commissioning run (15 -> 2 mDRU)
- Extensive calibration studies with neutron and tritium
- In combination with commissioning run (19.1 day), ~33,000 kg-day exposure in total.
 No DM particles are found
- The WIMP-nucleon elastic scattering cross checking are constrained to <2.5x10⁻⁴⁶ cm²

BackUp

Improved position reconstruction

■ Maximum Likelihood $-\ln \tilde{L}(\vec{r}) = -\sum_{i} \frac{n_{i}}{qS2T} \ln \frac{\eta_{i}(\vec{r})}{P(\vec{r})}$ ■ Photon Acceptance Function(PAF) of Each PMT ■ The iteration to determine the PAFs

$$\eta(r) = A \cdot \exp(-\frac{a \cdot \rho}{1 + \rho^{1 - \alpha}} - \frac{b}{1 + \rho^{-\alpha}}), \quad \rho = \frac{r}{r_0}$$

Converge

V. N. Solovov *et al, IEEE* doi: 10.1109/TNS.2012.2221742

- Big 3" PMT
- Big separations between PMTs
- Big gap between outermost PMTs and the physical boundary of TPC wall
 Have to abandon
 isotropic assumption of PAF of outside PMTs

Reflection Component of the PAF

For ²¹⁰Po events close to the top to be reconstructed onto the wall, reflection components were added into PAFs for peripheral PMTs

XY distribution of 164keV and Wall Events

Single electron gain

- Identify smallest S2 in the data
- Varying selection method and fits to study systematic uncertainty $\Rightarrow 24.4 \pm 0.7 \text{ PE/e}$

Electron lifetime evolution

¹²⁷Xe

Ning Zhou

K

Low energy background in Run 9

- Events selected with energy <10 keV
- ~2 mDRU on average (15.3 mDRU in Run 8)
- Decrease over time due to ¹²⁷Xe decay

Xenon experiments comparison

Experiments	FV (kg)	Total exposure (kg-day)	Background level (mDRU)
XENON100 100 day	48	4843	22
XENON100 225 day	34	7650	5
LUX 2015	147	14000	3
PandaX-I	54	4325	23.6
PandaX-II (run8)	306	5845	15.3
PandaX-II (run9)	~300	~24000	~2
PandaX-II run8+9	~300	33200	2-15