

SUSY SEARCHES IN ATLAS

Xuai Zhuang (庄胥爱)

xuai.zhuang@cern.ch

IHEP, Beijing, China

15-19 Aug. 2016, Weihai

Standard Model

Standard particles

Standard Model (SM)

Very successful description of phenomena at TeV scale, but some shortcomings:

- □ Hierarchy problem
- □ Can not unify gauge couplings
- No dark matter (DM)

Standard Model and Supersymmetry

Standard Model (SM)

Very successful description of phenomena at TeV scale, but some shortcomings:

- Hierarchy problem
- Can not unify gauge couplings
- No dark matter (DM)

Supersymmetry (SUSY)

Unique extension of Poincare spacetime symmetry

- □ Moderate the hierarchy problem
- Grand unification of gauge couplings
- Provide excellent DM candidate
 -] ...

New Physics beyond the SM

If SUSY is at TeV scale, it will be produced copiously at LHC
 SUSY search is one of the most hot topic at LHC and beyond

SUSY Introduction

A symmetry which unified fermions (matter) and bosons (forces) -> A fundamental theory

Conserved R parity (RPC): (originally introduced for stability of proton) $R = (-1)^{3(B-L)+2S}$ R=+1 (SM) R=-1 (SUSY)

- SUSY particles produced/annihilated in pairs
- Lightest SUSY particle (LSP) stable (DM candidate)
- Typical signature: jets/leptons/photons + MET

Violated R parity (RPV): no Dark Matter candidate

SUSY Search Strategy

SUSY search strategy: search for <u>deviation from SM</u>

- SUSY sensitive variables: Try to establish excess of events in some sensitive kinematic distribution (E_T^{miss}, Meff, mT ...)
- SM background: SUSY searches rely on accurate modeling of the Standard Model backgrounds

SM Background Modeling

SUSY searches rely on accurate modeling of the Standard Model backgrounds

Standard Model

Top, multijets V, VV, VVV, Higgs & combinations of these

Combined fit of all regions and backgrounds and incl. systematic exp. and theor. uncertainties as nuisance parameters

Reducible backgrounds

Determined from data Backgrounds and methods depend on analyses

Irreducible backgrounds

Dominant sources: normalise MC in data control regions Subdominant sources: MC

Validation

Validation regions used to cross check SM predictions with data

Signal regions

blinded

blinded

SUSY Search @ LHC

- Most results are based on 13-15 fb⁻¹ @ 13 TeV from 2015+2016
- Few of them from 8 TeV (EWK)

Strong production:

- targeting gluinos and 1st and 2nd generation squarks
- □ by far largest cross-sections

3rd generation:

- □ targeting stop and sbottoms
- Should be lowest mass squarks for naturalness reasons

Electroweak production:

- targeting Electroweakinos, sleptons
- Lowest mass sparticles, clean signature

RPV/LL:

- targeting R-parity violating models and long lived sparticles
- More exotic models

SUSY Search @ LHC

9

More exotic models

Strong Production: 0L+jets+MET

- Search for gluinos and 1st and 2nd generation squarks
- Final states with jets, MET and no isolated lepton (e/μ)
- Signal to BG discrimination based on: Meff, MET, RJigsaw
- 30 signal regions (SRs) defined targeting different search scenarios and phase space → No significant excess observed

10

Strong Production: 0L+jets+MET

- Search for gluinos and 1st and 2nd generation squarks
- Final states with jets, MET and no isolated lepton (e/μ)
- Signal to BG discrimination based on: Meff, MET, RJigsaw
- 30 signal regions (SRs) defined targeting different search scenarios and phase space → No significant excess observed
- Excludes gluino (squark) masses up to 1.86 (1.35) TeV for massless LSP. For gluino decay via N2 model, gluino masses below 1.9 TeV are excluded for N2 masses of ~ 600 GeV

Strong Production: 1L+jets+MET

- Search for gluinos and 1st and 2nd generation squarks
- Final states with jets, missing transverse momentum and one isolated lepton (e/µ)
- Signal to BG discrimination based on: Meff, MET, mT
- 10 SRs defined targeting different search scenarios
- Gluino (squark) masses up to 1.7 TeV (1.0 TeV) are excluded for low neutralino masses (≤ 400 GeV or ≤ 300 GeV)

Strong Production: SS/3L+jets+MET

Search for squarks/gluinos via long decay chain in SS/3L

- Sensitive for a wide range of models (4 RPC+4 RPV)
- Very clean channels with only tiny SM bg (mainly top+V, diboson, triboson) → A good probe for new physics
- 4 RPC+3 PRV SRs defined, targeting specific scenarios → no excess
- Gluino mass <1.3-1.7 TeV and LSP mass < 850-1100 GeV are excluded for gluino pair production. Right-handed down squark masses are probed up to $m\tilde{d}_R \approx 700$ GeV in RPV scenarios

Strong Production: bjets +MET

- Search for gluinos via stop or sbottom decay
- Final states with ≥3b-jets, MET, no or one lepton (e/µ)
- Signal to BG discrimination based on: Meff, MET, mT
- 7 SRs defined targeting different search scenarios
- Excludes gluino masses up to 1.89 TeV for massless LSP

SUSY Search @ LHC

3rd Generation: stop OL

- Search for stop with 0L+(b)jets+MET (hadronic decay)
- Signal to BG discrimination based on: MET, mT(b), HT
- ~19 SRs defined, targeting specific scenarios and phase space
- Exclusion for m(~t1) < ~820GeV for massless LSP</p>
- For the models of the associated production of DM(χ) with top pairs, with a global coupling of 3.5, mediator masses up to 300 GeV, and χ masses below 40 GeV are excluded

3rd Generation: stop 1L

- Search for stop with 1L+(b)jets+MET
- Signal to BG discrimination based on: MET, mT(b), HT
- ~7 SRs defined, targeting specific scenarios and phase space (~3.3σ excess in DM_low SR)
- Exclusion for m(~t1) < ~830GeV for massless LSP</p>
- The maximal coupling of g = 3.5 is excluded @95% CL for a (pseudo-) scalar mediator mass up to (350) 320 GeV assuming a 1 GeV DM mass.

3rd Generation: stop 2L

- Search for stop with 2L+(b)jets+MET
- Signal to BG discrimination based on: MET, mT2
- ~7 SRs defined, targeting specific scenarios and phase space
- Exclusion for m(~t1) < ~480GeV for massless LSP</p>
- For the models of the associated production of DM with top pairs, mediator mass < 330 GeV and DM particle mass < 20 GeV excluded</p>

3rd Generation: stop via stau

p

p

- Search for stop with 2T +(b)jets +MET (GMSB, nGM)
- Signal to BG discrimination based on: MET, mT2
- 1 SR defined targeting high stop mass region
- Masses of the top squark up to 870 GeV and stau up to 730 GeV are excluded.

3rd Generation: stop with Z

Search for stop with Z +(b)jets +MET

■ Signal to BG discrimination based on: MET, p_T^{II}

- 3 SRs defined targeting from low to high mass splitting
- Parameter space regions up to m_{t̃2} < 730 GeV and LSP < 325 GeV are excluded</p>

SUSY Search @ LHC

Electroweak process benefit less from the energy increase, while as luminosity increase they actually become more and more competitive and are actually the most interesting channels for the LHC upgrade phase \rightarrow only 4L updated to 13 TeV, 2-3L and 2taus aiming for SEARCH CONF

101 119101911232 12920113

Electroweak production:

- targeting Electroweakinos, sleptons
- Lowest mass sparticles, clean signature

RPV/LL:

- targeting R-parity violating models and long lived sparticles
- More exotic models

EWK Production: 4L+MET

- Search for charginos for chargino production with indirect RPV decays
- RPV SUSY scenarios can therefore result in signatures with high lepton multiplicities and substantial MET → 4L (e/µ) + MET FS
- Signal to BG discrimination based on: Meff
- 2 SRs defined targeting different chargino mass region
 chargino masses up to 1.14 TeV are excluded for large LSP masses

EWK Production: 1-4L(e,µ,⊤) +MET (8 TeV)

- Search for sleptons with 2L (e/ μ) + MET FS $\rightarrow \sim I > 330$ GeV
- Search for charginos and neutralinos with 2-3L (e/μ/τ) + MET FS
 - → Excludes electroweakino masses up to 350-700 GeV
- Search for charginos and neutralinos via higgs decay (Wh→1I +bb, γγ, II, ττ) → Excludes electroweakino masses up to 250 GeV

SUSY Search @ LHC

Some are already covered at previous slides

Strong production:

- targeting gluinos and 1st and 2nd generation squarks
- by far largest cross-sections
- 3rd generation:
- □ targeting stop and sbottoms
- Should be lowest mass squarks for naturalness reasons
- **Electroweak production**:
- targeting Electroweakinos, sleptons
- Lowest mass sparticles, clean signature

RPV/LL:

- targeting R-parity violating models and long lived sparticles
- More exotic models

RPV: multi-jets

- Search for gluinos with RPV decays to quarks
- Signal to BG discrimination based on: sum mass of jets
- 4 SRs defined targeting different search scenarios
- In the gluino cascade decay model, gluinos with masses up to 1000-1550 GeV are excluded, depending on the neutralino mass
- In the gluino direct decay model, gluinos with masses up to 1080 GeV are excluded.

25

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: August 2016

011	neo: hageor zo ro			e analas				$y_3 = 7, 0, 13$ lev
	Model	e, μ, τ, γ	Jets	E ^{miss} _T	J£ d/[ft	-'i Mass limit	$\sqrt{s} = 7, 8 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$	Reference
Inclusive Searches	$ \begin{array}{l} \text{MSUGRA/CMSSM} \\ \begin{array}{l} \widehat{\varphi}_{1}, \widehat{q} \rightarrow \varphi_{1}^{G} \\ \widehat{q}_{2}, \widehat{q} \rightarrow \varphi_{1}^{G} \\ (\text{compressed}) \\ \hline \\ \widehat{z}_{2}, \widehat{z} \rightarrow \varphi \varphi_{1}^{G} \\ \widehat{z}_{3}, \widehat{z} \rightarrow \varphi \varphi_{1}^{G} \\ \widehat{z}_{3}, \widehat{z} \rightarrow \varphi \varphi_{1}^{G} \\ \widehat{z}_{3}, \widehat{z} \rightarrow \varphi \varphi_{1}^{G} \\ \hline \\ \hline \\ \widehat{z}_{3}, \widehat{z} \rightarrow \varphi \varphi_{1}^{G} \\ \widehat{z}_{3}, \widehat{z} \rightarrow \varphi \varphi_{2}^{G} \\ \widehat{z}_{3}, \widehat{z} \rightarrow \varphi \varphi_{2}^{G} \\ \widehat{z}_{3}, \widehat{z} \rightarrow \varphi \varphi_{1}^{G} \\ \widehat{z}_$	$\begin{array}{c} 0.3 \ e, \ \mu/1-2 \ \tau \\ 0 \\ mono-jet \\ 0 \\ 0 \\ 3 \ e, \ \mu \\ 2 \ e, \ \mu (SS) \\ 1-2 \ \tau + 0 - 1 \ \ell \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \ \mu (Z) \\ 0 \end{array}$	2-10 jets/3 i 2-6 jets 2-6 jets 2-6 jets 2-6 jets 0-3 jets 0-2 jets 1-6 2 jets 2 jets rmono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 13.3 13.3 13.3 13.2 13.2 13.2 3.2 20.3 13.3 20.3 20.3	v.ē	1.45 TeV rr(ij)=m(j) 35 TeV rr(ij)=m(k_1^2)<200 GeV, m(1 ¹⁴ gen, ij)=m(2 ⁻⁴¹ gen, ij) 1.80 TeV rr(i_1^2)=0 GeV 1.80 TeV rr(i_1^2)=0 GeV 1.80 TeV rr(i_1^2)=0 GeV 1.80 TeV rr(i_1^2) 1.80 TeV rr(NLSP)<	1507.05525 ATLAE-CONF-2016-078 1804.07773 ATLAE-CONF-2016-078 ATLAE-CONF-2016-078 ATLAE-CONF-2016-037 ATLAE-CONF-2016-037 1807.05979 1806.09150 1507.05403 ATLAE-CONF-2016-068 1502.05200 1502.01518
3 rd gen. <u>ē</u> med.	22. 2→452 22. 2→452 23. 2→452 23. 2→452	0 0-1 e, µ 0-1 e, µ	3 b 3 b 3 b	Yes Yes Yes	14.8 14.8 20.1	े के कि हि	1.89 TeV π(ℓ ² ₁)=0GeV 1.89 TeV π(ℓ ² ₁)=0GeV 37 TeV π(ℓ ² ₁)<300 GeV	ATLAS-CONF-2016-062 ATLAS-CONF-2016-062 1407.0600
3rd gen. squarks direct production	$ \begin{split} & b_1 b_1, b_1 {\rightarrow} b_1 \tilde{\ell}_1^n \\ & b_1 b_1, b_1 {\rightarrow} t \tilde{\ell}_1^n \\ & \bar{h}_1 \tilde{e}_1, \bar{h}_1 {\rightarrow} t \tilde{\ell}_1^n \\ & \bar{h}_1 \tilde{e}_1, \bar{h}_1 {\rightarrow} b \tilde{\ell}_1^n \\ & \bar{h}_1 \tilde{e}_1, \bar{h}_1 {\rightarrow} b \tilde{\ell}_1^n \\ & \bar{h}_1 \tilde{e}_1, \bar{h}_1 {\rightarrow} b \tilde{\ell}_1^n \\ & \bar{h}_1 \tilde{e}_1 (\text{ratural GMSB}) \\ & \bar{h}_2 \tilde{e}_2, \bar{h}_2 {\rightarrow} \tilde{e}_1 + Z \\ & \bar{h}_2 \tilde{e}_2, \bar{h}_2 {\rightarrow} \tilde{e}_1 + h \end{split} $	$\begin{array}{c} 0 \\ 2 e, \mu (SS) \\ 0.2 e, \mu \\ 0.2 e, \mu \\ 0 \\ 2 e, \mu (Z) \\ 3 e, \mu (Z) \\ 1 e, \mu \end{array}$	2 b 1 b 1-2 b 0-2 jets/1-2 mono-jet 1 b 1 b 6 jets + 2 b	Yes Yes Yes Yes Yes Yes Yes Yes	3.2 13.2 1.7/13.3 1.7/13.3 3.2 20.3 13.3 20.3	δ₁ 840 GeV δ₁ 325-685 GeV 172-170 GeV 200-720 GeV 132-685 GeV 205-850 GeV 141 90-323 GeV 150-600 GeV 200-700 GeV 12 290-700 GeV 12 320-620 GeV	$\begin{split} m(\tilde{\ell}_{1}^{2}) <&100~GeV \\ m(\tilde{\ell}_{1}^{2}) <&150~GeV, m(\tilde{\ell}_{1}^{2}) = m(\tilde{\ell}_{1}^{0}) +&100~GeV \\ m(\tilde{\ell}_{1}^{2}) =&2m(\tilde{\ell}_{1}^{0}), m(\tilde{\ell}_{1}^{0}) =&55~GeV \\ m(\tilde{\ell}_{1}^{2}) =&1~GeV \\ m(\tilde{\ell}_{1}^{2}) =&1~GeV \\ m(\tilde{\ell}_{1}^{2}) =&15~GeV \\ m(\tilde{\ell}_{1}^{2}) =&150~GeV \\ m(\tilde{\ell}_{1}^{2}) <&300~GeV \\ m(\tilde{\ell}_{1}^{2}) =&0~GeV \end{split}$	1806.08772 ATLAS-CONF-2016-037 1209.2102, ATLAS-CONF-2016-077 1508.08618, ATLAS-CONF-2018-077 1904.07773 1403.5222 ATLAS-CONF-2016-038 1506.08616
EW direct	$ \begin{split} \tilde{\ell}_{1,R} \tilde{\ell}_{1,R}, \tilde{\ell} \rightarrow \tilde{\ell}_{1}^{R} \tilde{\ell}_{1} & \tilde{\ell}_{1} \rightarrow \tilde{\ell}_{1} \ell \ell \ell \ell \ell \\ \tilde{k}_{1}^{*} \tilde{k}_{1}^{*}, \tilde{k}_{1}^{*} \rightarrow \tilde{\ell}_{1} \ell \ell \ell \ell \end{pmatrix} \\ \tilde{k}_{1}^{*} \tilde{k}_{1}^{*} \rightarrow \tilde{\ell}_{1} \ell \ell$	2 κ.μ 2 κ.μ 2 τ 3 κ.μ 2 · 3 κ.μ (γγ κ.μ.γ 4 κ.μ 1 κ.μ + γ 2 γ	0 0 0-2 jets 0-2 j 0-2 j 0 - 0	Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	7 90-335 GeV \$	$\begin{split} m(\tilde{k}_{1}^{n}) &= 0 \; \text{GeV} \\ m(\tilde{k}_{1}^{n}) &= 0 \; \text{GeV} \\ m(\tilde{k}_{1}^{n}) &= 0 \; \text{GeV}, \; m(\tilde{k}, \tilde{v}) &= 0 \; \text{S}(m(\tilde{k}_{1}^{n}) + m(\tilde{k}_{1}^{n})) \\ m(\tilde{k}_{1}^{n}) &= 0 \; \text{GeV}, \; m(\tilde{k}, \tilde{v}) &= 0 \; \text{S}(m(\tilde{k}_{1}^{n}) + m(\tilde{k}_{1}^{n})) \\ m(\tilde{k}_{1}^{n}) &= m(\tilde{k}_{2}^{n}), \; m(\tilde{k}_{1}^{n}) &= 0 \; \text{S}(m(\tilde{k}_{1}^{n}) + m(\tilde{k}_{1}^{n})) \\ m(\tilde{k}_{1}^{n}) &= m(\tilde{k}_{2}^{n}), \; m(\tilde{k}_{1}^{n}) &= 0 \; \text{S}(m(\tilde{k}_{1}^{n}) + m(\tilde{k}_{1}^{n})) \\ m(\tilde{k}_{2}^{n}) &= m(\tilde{k}_{1}^{n}) &= m(\tilde{k}_{1}^{n}) &= 0 \; \text{S}(m(\tilde{k}_{2}^{n}) + m(\tilde{k}_{1}^{n})) \\ m(\tilde{k}_{2}^{n}) &= m(\tilde{k}_{1}^{n}) &= m(\tilde{k}_{1}^{n}) &= 0 \; \text{S}(m(\tilde{k}_{2}^{n}) + m(\tilde{k}_{1}^{n})) \\ &= cr < 1 \; \text{mm} \end{split}$	1403 5294 1403 5294 1407 0350 1402 7029 1403 5294, 1402 7029 1501.07110 1405 5086 1507 05493
Long-lived particles	Direct $\hat{k}_1^+ \hat{k}_1^-$ prod., long-lived \hat{k}_1^+ Direct $\hat{k}_1^+ \hat{k}_1^-$ prod., long-lived \hat{k}_1^+ Stable, stopped \hat{g} R-hadron Stable \hat{g} R-hadron Metastable \hat{g} R-hadron GMSB, stable $\tau, \hat{k}_1^0 \rightarrow (\hat{c}, \hat{\mu}) + \tau(\cdot, \hat{c})$ GMSB, $\hat{k}_1^0 \rightarrow \gamma G$, long-lived \hat{k}_1^0 $\hat{g}_{S}, \hat{k}_1^0 \rightarrow \gamma G$, long-lived \hat{k}_1^0 \hat{g}_{GM} $\hat{g}_{\tilde{g}}, \hat{k}_1^0 \rightarrow ZG$	Disapp. trk dE/dx trk 0 trk dE/dx trk dE/dx trk r,μ) $1\cdot 2\mu$ 2γ displ. $ex/e\mu/\mu$ displ. vtx + jet	1 jet - 1-5 jets - - - - ts -	Yes Yes - - Yes - -	20.3 18.4 27.9 3.2 19.1 20.3 20.3 20.3	\$\vec{s}_1^*\$ 270 GeV \$\vec{s}_1^*\$ 495 GeV \$\vec{s}_1^*\$ 850 GeV \$\vec{s}_1^*\$ 850 GeV \$\vec{s}_1^*\$ 537 GeV \$\vec{s}_1^*\$ 937 GeV \$\vec{s}_1^*\$ 440 GeV \$\vec{s}_1^*\$ 1.0 TeV \$\vec{s}_1^*\$ 1.0 TeV	$\begin{array}{c} rr(\xi_1^n) - rn(\xi_1^n) - 180 \ MeV, r(\xi_1^n) - 0.2 \ ns \\ rr(\xi_1^n) - rn(\xi_1^n) - 180 \ MeV, r(\xi_1^n) < 15 \ ns \\ rr(\xi_1^n) - 180 \ MeV, r(\xi_1^n) < 15 \ ns \\ rr(\xi_1^n) = 100 \ GeV, \ 10 \ \mu s < r(g) < 1000 \ s \\ 1.57 \ TeV \\ \hline 1.57 \ TeV \\ rr(\xi_1^n) = 100 \ GeV, \ r> 10 \ ns \\ 10 \ ctang < 50 \\ 1 < r(\xi_1^n) < 3 \ rs, \ 5988 \ model \\ 7 < cr(\xi_1^n) < 740 \ rrm, \ m(g) = 1.3 \ TeV \\ 6 < cr(\xi_1^n) < 480 \ rrm, \ m(g) = 1.1 \ TeV \\ \end{array}$	1310.3675 1506.05332 1310.6684 1806.05120 1804.04520 1411.6705 1409.5542 1504.05182
RPV	$ \begin{array}{l} LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau \\ \mathbf{Binesar} \; RPV \; CMSSM \\ \tilde{x}_1^* \tilde{x}_1^*, \tilde{x}_1^+ \rightarrow W \tilde{x}_1^0, \tilde{x}_1^0 \rightarrow eev, e\mu); \mu \\ \tilde{x}_1^* \tilde{x}_1, \tilde{x}_1^+ \rightarrow W \tilde{x}_1, \tilde{x}_1^- \rightarrow \tau v_k, e\tau v_\tau \\ \tilde{x}_2^*, \tilde{x}_2^- \gamma q q \\ \tilde{x}_2^*, \tilde{x}_1^- \gamma q q \\ \tilde{x}_2^*, \tilde{x}_1^- \gamma q q \\ \tilde{x}_1^*, \tilde{x}_1^- \rightarrow h_3 \\ \tilde{x}_1^* \tilde{x}_1, \tilde{x}_1 \rightarrow h_4 \end{array} $	$ej i, e^{\tau} \sqrt{\mu \tau}$ $2 e, \mu$ (SS) $\mu \nu 4 e, \mu$ $3 e, \mu + \tau$ 0 4 $2 e, \mu$ (SS) 0 $2 e, \mu$	- 0-3 b - 5 lange- R je 0-3 b 2 jets + 2 b 2 b	- Yes Yes ts - ts - Yes -	3.2 20.3 13.3 20.3 14.8 14.8 13.2 15.4 20.3	\$\vec{v}\$.\$\vec{v}\$ \$\vec{v}\$ \$\vec{v}\$ \$\vec{v}	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1807.08000 1404.2500 ATLAS-CONF-2016-075 1405.5086 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2016-037 ATLAS-CONF-2016-037 ATLAS-CONF-2016-034 ATLAS-CONF-2015-015
Other	Scalar chann, $\bar{c} \rightarrow c \tilde{\ell}_1^0$	D	2 c	Yes	20.3	2 510 GeV	m(ℓ ³ ₁)<200 GaV	1501.01325
*Oni sta	y a selection of the availab tes or phenomena is show	ile mass limi n.	its on new	,	1	0 ⁻¹	1 Mass scale [TeV]	

states or phenomena is shown.

ATLAS Preliminary

√s = 7.8.13 TeV

Summary

ATLAS developed a vast program to search for SUSY

- No significant excess seen so far
- More PUB results <u>@here</u>
- In canonical scenarios, sensitivity is achieved to ~1.9 TeV gluinos, ~900 GeV stops
 - More (EWK) results will be ready for SEARCH CONF
- ~30 (100) fb-1 data at this year (end of run2), which is very challenging years for SUSY in front of us!

Thanks for your attention!

3rd Generation: stop 1L

Signal region	DM_low	
Observed	35	
Total background	17.26 ± 2.18	
tī	4.18 ± 1.32	
W+jets	3.09 ± 1.50	
Single top	1.91 ± 0.90	
$t\bar{t} + V$	6.44 ± 1.37	
Diboson	1.49 ± 0.58	
zjets	0.16 ± 0.14	
tī NF	0.90 ± 0.17	
W+jets NF	0.94 ± 0.13	
Single top NF	1.36 ± 0.36	
$t\bar{t} + W/Z$ NF	1.47 ± 0.22	
$p_0(\sigma)$	0.0004493 (3.32)	
N ^{limit} _{non-SM} exp. (95% CL)	$11.48^{+5.01}_{-3.43}$	
N ^{limit} _{non-SM} obs. (95% CL)	28.28	

Variable	DM_low
\geq 4 jets with $p_{\rm T} > [\text{GeV}]$	(60 60 40 25)
$E_{\rm T}^{\rm miss}$ [GeV]	> 300
$H_{\mathrm{T,sig}}^{\mathrm{miss}}$	> 14
$m_{\rm T}$ [GeV]	> 120
am _{T2} [GeV]	> 140
$\min(\Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jet}_{i}))$	> 1.4
$\Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}},\ell)$	> 0.8
$\Delta R(b_1, b_2)$	_
Number of <i>b</i> -tags	≥ 1

The observed upper limit on the couplings in the plane of m_{Med} versus m_{χ} , Numbers on the plot show the value of the excluded coupling for the corresponding points on the signal grid

Strong Production: photon +jets +MET

- Search for gluinos with photon +jets +MET FS (GGM)
- Signal to BG discrimination based on: Meff, MET
- 2 SRs defined targeting different search scenarios
- Excludes gluino masses up to 1.8 TeV for for a large range of neutralino masses, increasing to 2 TeV in the case of a high mass neutralino

Strong Production: Z(II)+MET

Search for gluinos with a Z + jets + MET signature

- There is an excess (3σ) at ATLAS Run1 (not at CMS): obs. 29, exp. 10.8+-2.2
- Check it with Run2 using run1-like SR: Z (II), 2jets, MET>225 GeV, HT>600 GeV
- a mild excess seen in Run2: obs. 21, exp. 10.4+-2.4 (2.2σ in intermediate MET)
- Excludes gluino masses up to 1.1 TeV

Long-lived highly ionizing particles

Gluino (charged) R-hadrons:

Phys. Rev. D 93, 112015 (2016)

- stable (lifetime>50ns, escape detectors)
- metastable (lifetime ~ns, detection in Pixels with dE/dx)
- **Two SRs for stable/metastable long lived particles**
- → Stable gluino R-hadrons excluded below 1570 GeV
- → Gluino R-hadrons with lifetime > 0.4 ns exclusions given for 100 GeV LSP, lower mass limits 740-1590 GeV

the complementary search using the **Recursive Jigsaw Reconstruction (RJR) techniques** in the construction of a discriminating variable set ('RJR-based search'). By using a dedicated set of selection criteria, the RJR-search improve the sensitivity to supersymmetric models with small mass splittings between the sparticles (models with compressed spectra).

Recursive jigsaw reconstruction

- based on assumption of decay tree
- fix set of rules to resolve combinatorics and unknowns in invisible system
- can form set of variables in the rest frame of each level in the decay tree

For the 13 TeV ATLAS searches, we utilize each of these classes:

- Missing energy-type:
 - Missing transverse momentum: $E_{\rm T}^{\rm miss}$ and $\vec{p_{\rm T}}^{\rm miss}$
 - Missing transverse momentum significance: $E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}}$
 - **RJigsaw** *H*-scale for 1 visible, 1 invisible state: $H_{1,1}^{PP}$

jets

• Energy scale-type:

• Effective mass:
$$M_{\rm eff} = \sum p_{\rm T} + \sum +E_{\rm T}^{\rm miss}$$
 (also considering only first 4)

leptons

- Scalar sum of visible momenta: $H_{\rm T}$,
- Transverse mass: $m_{\rm T} = \sqrt{2p_{\rm T}^{\ell}E_{\rm T}^{\rm miss}(1-\cos(\Delta\phi(\vec{p_{\rm T}}^{\rm miss},\ell)))}$
- RJigsaw H-scale: H^{PP}_{2,1}, H^{PP}_{4,1}
- **RJigsaw ISR** $p_{\rm T}$ scale: $|p_{TS}^{\rm ISR}|$
- Energy structure-type:
 - Jet multiplicity: N_{jet}, N_{b-jet}
 - Total jet mass: $M_{\rm J}^{\Sigma} = \sum m^{\rm jet}$
 - Angular distributions: $\Delta \phi_{\min}^{4j} = \min(|\phi_{\text{any-jet}} \vec{p_T}^{\text{miss}}|) > 0.4$
 - Aplanarity: $A = (3/2)\lambda_3$
 - QCD E_{T}^{miss} alignment: Δ_{OCD}

(Similar to E_{T}^{mi}

(b-quarks can also replace the lepton)

(Similar to $M_{\rm eff}$)

(sum pT of ISR jets

(also considering only first 4 large-radius jets)

(for all 0ℓ selections)

(signed asymmetry between E_{T}^{miss} and jet azimuthal directions)

Long term prospects

 ATLAS studied long term prospects for the (HL-)LHC with 300, 3000 fb⁻¹@14 TeV
 Discovery potential up to 2.5 TeV gluinos, 1.3 TeV squarks/sbottom and 800 GeV Electroweakinos

