

Search for heavy resonances decaying to WV in semileptonic channel at CMS

Huang Huang (Peking University)

Aug-17-2016

Outline

- Motivation
- Analysis Strategy
- Samples and Preselections
- Control plots
- V-tagger validation
- Background estimation
- Systematic uncertainties
- Final limit

Motivation

- 2015 data: 2.3/fb, √s=13TeV
- EXO-15-002: 800 4000 GeV
- B2G-16-004: 600 1000 GeV

- 2016 data: 12.9/fb, Vs=13TeV
- B2G-16-020: 600 4500 GeV

EXOTICWWSpin-2 Bulk GravitonResonanceWZSpin-1 HVT (charged)

http://cds.cern.ch/record/2205880

Analysis Strategy

- Heavy Resonance decaying to WW in the semileptonic final state
- Boosted hadronic Ws: merged jets, jet substructure
- Signal Model
 - Bulk Graviton to WW to lep+MET+Jet
 - Wprime to WZ to lep+MET+Jet
- Signal Mass coverage: 600 4500 GeV
 - Low mass analysis [600-1000] with M_{WW} 600-1500 GeV
 - High mass analysis (1000- 4500] with $M_{\rm WW}$ 0.8-5 TeV

Analysis Strategy

"Pruning" http://arxiv.org/abs/0912.0033 (S. Ellis, C. Vermilion, J. Walsh)

 Recombine jet constituents with C/A or kt while vetoing wide angle (R_{cut}) and softer (z_{cut}) constituents. Does not recreate subjets but prunes at each point in jet reconstruction

$N-subjettiness \quad (arXiv:1011.2268):$

how likely is a jet to have "N" subjets

$$\tau_N = \frac{1}{d_0} \sum_k p_{\mathrm{T},k} \times \min(\Delta R_{1,k}, \Delta R_{2,k}, ..., \Delta R_{N,k})$$

$$d_0 = \sum_k p_{\mathrm{T},k} \times R_0$$

Wjet tagger: $\tau_2/\tau_1 = \tau_{21}$

Analysis Strategy

"Bump" search: looking for an excess over the Mvw distributions

Jet pruning

V-boson mass window

BulkGraviton: 65-95GeV

W': 75-105GeV

Higgs signal region (105-135 GeV) kept blind

Jet substructure

• N-subjettiness

Only HP: τ_{21} < 0.45 for low Mass & τ_{21} < 0.6 for high Mass

How to estimate the background contributions

Minor background from simulation, corrected with scale factors from data Wjets: extracted from data

Samples and Preselections

- Data: 12.9/fb (2016)
- Signal
 - Bulk Graviton
 - Wprime
- Backgrounds
 - WJetsToLNu
 - TTbar
 - Single Top
 - WW/WZ/ZZ

Muon channel

- Tight muon: $p_T > 50 \text{ GeV}$, $|\eta| < 2.1$,
- Loose muon (for veto):
 p_T > 20 GeV , |η|<2.4
- Missing $E_T > 40$ GeV (type I)
- Transverse mass > 40GeV

Electron channel

- Tight electron: $p_T > 55 \text{ GeV}$
- Loose electron: Veto ID
- Missing $E_T > 80$ GeV (type I)

Both channels

Noise cleaning filters AK8 jets, $p_T > 200$ GeV, Loose ID AK4 jets (for b-veto), Loose ID Leptonic W pT > 200 GeV

$$\begin{split} &\Delta R(I, W_{had}) > \pi/2 \\ &\Delta R(W_{had}, W_{lep}) > 2 \\ &\Delta R(W_{had}, missing ~E_T) > 2 \end{split}$$

Data/MC Comparison

Events/(5 GeV) 0000 0005

2500

2000

1500

1000

500

0.5

4000

3500

3000

2000

1500

1000 500

0.5

40

60

80

Data/MC 1

2500

40

60

CMS Preliminary

80

100

♦ Data W→ ev

ww/wz

Single Top

120

Sys.

120

100

W+jets

Data/MC

Events/(5 GeV)

CMS Preliminary

Sys. Uncertainties: W-jets norm., TTbar SF, lep eff, b-tag SF

Pruned jet mass

W+jets

🕅 Sys

♦ Data W→ μν

ww/wz

Single Top

tau21

muon

Signal and Bkg Estimation

Signal Modeling

The area of each shape is proportional to the total signal efficiency of the corresponding mass point

- Signal mass from 600 GeV to 4.5 TeV
- Bulk Graviton (k=0.5) for WW analysis
- Wprime HVT model A for WZ analysis
- Signal shape is modeled with double Crystal-Ball function

Signal and Bkg Estimation

W-Tagging

- Top-Enriched Control Sample:
 - Reverse the b veto selection
 - The back-to-back angular selection is removed

GeV)

ம 200

Events / (

Top SF & W-tagging SF

High purity

13

TTbar & Single Top

tau21 0.45: 0.81±0.2 0.6: 0.83±0.1

The **Top scale factors** are just derived by DATA/MC in the signal region.

Cut count method: $Sf_{top} = N_{data}/N_{MC}$ (minor background contribution negligible) tau21 0.45: 0.976 ± 0.048 0.6: 1.002 ± 0.018

WW/WZ/ZZ

Consider the TTbar made of 'real' W and 'combinatorial'

Background(s-top/ WW/ W+jets) are taken from MC

Simultaneous fit data and MC in PASS & FAIL to get SF

Mass peak shift

Peak shape	Mass[GeV]	σ [GeV]
Data	84.9 <u>±</u> 0.2	7.9 <u>+</u> 0.2
MC	83.8 <u>+</u> 0.2	7.5 <u>+</u> 0.2

CMS Collaboration, "Identification techniques for highly boostedWbosons that decay into hadrons", JHEP 12 (2014) 017, doi:10.1007/JHEP12(2014)017, arXiv:1410.4227.

Signal and Bkg Estimation

W+Jets Norm: Fit Jet Mass in Sideband

- Fit on data in the sidebands to extract the W+jets normalization
- TTbar, VV, Single Top: Norm. and shape in Pruned jet mass from MC, and corrected by Top-enriched control region

W+Jets Shape: alpha-method

$$\alpha^{MC} = \frac{F_{WW}(SR)^{MC}}{F_{WW}(SB)^{MC}}$$

$$\alpha^{Data} = \frac{F_{WW}(SR)^{Data}}{F_{WW}(SB)^{Data}}$$

• Assuming
$$\alpha^{Data} = \alpha^{MC}$$

M_{ww} in Signal Region

BulkGraviton

17

M_{WW} in Signal Region

W'

18

Systematic Uncertainties

- Brief summary
 - Common terms for signal and backgrounds
 - Integrated lumi, Theory XS, lepton Trigger and ID, V-tagging
 - Signal
 - lepton energy scale/res, jet energy/mass scale/res, btagging, Scale and PDF uncertainties
 - Backgrounds
 - W+jets norm.: stat. of data in sideband, shape function, TTbar
 - W+jets shape: α and F_{ww}(SB) uncertainties inflating by $\sqrt{2}$
 - TTbar and Single Top norm.: SF from Top-enriched control region

Systematic Uncertainties

• the general and jet-specific uncertainties, respectively, for this analysis

signal

Source	Effect	$\mu\nu$ +jet uncertainty	ev+jet uncertainty
Lepton trigger	Yield	5%	5%
Lepton identification	Yield	5%	5%
b tag	Yield	0.6%	
Jet energy scale	Yield	[1-2]%	
Jet energy scale	Shape (mean)	1.3%	
Jet energy scale	Shape (width)	[2%–3%]	
Jet mass scale	Yield	[1-4]%	
Jet mass resolution	Yield	[0.1-2]%	
Jet energy resolution	Yield	${<}0.1\%$	
Jet energy resolution	Shape (mean)	0.1%	
Jet energy resolution	Shape (width)	4%	
Integrated luminosity	Yield	6.2%	
W' PDF	Yield	[5-30]%	
W' Scale	Yield	[1-15]%	
Bulk graviton PDF	Yield	[10-100]%	
Bulk graviton Scale	Yield	[10-25]%	
V tagging τ_{21}	Yield	5	%

Background

Source	$\mu\nu$ +jet uncertainty	$e\nu$ +jet uncertainty
Lepton trigger	5%	5%
Lepton identification	5%	5%
Integrated luminosity	6.2%	
Diboson cross section	20%	
tt and single top normalization	2%	
W+jets normalization, low (high) mass	5%(4%)	5%(3.5%)
Single top b tag	5%	
tī b tag	6%	
Diboson b tag	0.6%	
V tagging τ_{21}	5%	

Bulk Graviton

W→Iv

- Higgs Combination Tool and Asymptotic CLs
- No significant excess from 600 GeV to 4.5 TeV

W→µv

Comparisons

B2G-16-020 RUN II 2016

EXO-15-002 RUN II 2015

EXO-13-009 RUN I

- Better sensitivity than EXO-15-002 & EXO-13-009
- Larger statistics, low W-tagging uncertainty error,

Wprime HVT model A

W→Iv

W→µv

- No significant excess from 600 GeV to 4.5 TeV
- W' is excluded by 2 TeV

Comparisons

• Compare with ATLAS

Summary

- [600-4500 GeV] analysis of the $X \rightarrow WV \rightarrow IvJ$
 - No significant excess from 600 GeV to 4.5 TeV
- Minimal changes from the 2015 analyses:
 - Trigger, offline lepton p_T cuts, tau21 cut
 - No Mass category, different Mass Window for W/Z
- No significant excess. In the model of HVT A, we set a lower limit on the W' mass of 2.0TeV.
- PAS-PUB & ICHEP2016
- More data will definitely tell us more

Backup

Results Publication

• PAS-PUB

- CMS Collaboration, "Search for new resonances decaying to WW/WZ→ℓvqq", CMS Physics Analysis Summary CMS-PAS-B2G-16-020, 2016.
- ICHEP2016
- http://indico.cern.ch/event/432527/contributions/2207066/

Analysis Selection

- Leptonic W
 - one charged Lepton
 - Loose lepton veto
 - Large Missing transverse energy: 80(40) GeV for Ele(Mu) channel
 - Leptonic W pT >200 GeV
- Hadronic W/Z
 - Leading AK8 jet pT >200GeV
 - B-tag veto to reduce TTbar and Single Top backgrounds
 - Tau21 0.45(0.60) for low(high) mass analysis
 - Jet mass windows [65-95] for W, [75-105] for Z
- Angular selections for a back-to-back diboson event
 - $\Delta R(\ell, W_{had}) > \pi/2$
 - $\Delta \phi(W_{had}, E_T^{miss}) > 2$
 - $\Delta \phi(W_{had}, W_{lep}) > 2$
- Noise Filters from the MET POG

750 GeV Mania

• Diphoton resonance search at CERN 2015 Jamboree

 3.6σ local, 2.0σ global

 2.6σ local, $<1.2\sigma$ global

Comparisons

- Better sensitivity than EXO-15-002
- Better sensitivity than B2G-16-004 for the 1 TeV mass point (not add BR)
- Larger statistics, low W-tagging uncertainty error,