Simulation Study & Higgs 'Physics at CEPC

On behalf of the CEPC Higgs Study efforts

Manqi Ruan

Higgs @ LHC

PP collider: High productivity but low finding efficiency ~already 10⁶ Higgs in Run 1 data...

Higgs signal: found via the decay final states.

 $\sigma(AA \rightarrow H \rightarrow BB) \sim g^2(HAA)g^2(HBB)/\Gamma_{total}$

CMS Experiment at the LHC, CERN Data recorded: 2012-May-27 23:35:47.271030 GMT Run/Event: 195099 / 137440354

> Specific Final State... Overlap with lots of PU events

Higgs @ CEPC

Observables: Higgs mass, CP, σ(ZH), event rates (σ(ZH, vvH)*Br(H->X)) Derive: Higgs width, branching ratios & absolute value of coupling constants

Simulated Higgs Event @ CEPC

~25% of Higgs events

DRUID, RunNum = 0, EventNum = 5401 ~50% of Higgs events

Higgs at e+e- & proton colliders

	Productivity	Finding efficiency	Remarks
LHC	Run 1: 10 ⁶ Run 2/HL: 10 ⁷⁻⁸	~o(10 ⁻³)	Lots of Pile Up; Large theoretical/systematic uncertainties. Access to signal strength in major decay channels; Access to g(HHH)/g(Htt).
CEPC	10 ⁶	~o(1)	Absolute measurements in very clean environment; o(0.1%) accuracy on key observable (g(HZZ)); Excellent precision to total width, invisible/exotic decay ratios; Indirect constrain to g(HHH)/g(Htt);
SPPC - FCC-hh	10 ⁹⁻¹⁰	> o(10 ⁻²)??	Good access to Higgs rare decay/generation, g(HHH)/g(Htt),

High complementarity between electron-positron & pp colliders

Simulation: Objectives

- Explore & Demonstrate the Physics Potential
 - Cooperate with Theory/pheon studies
- Deliver the optimized detector design
 - Cooperate with machine/Detector hardware design
- Develop the mandatory software tools

CEPC Conceptual detector, developed from ILD

A detector reconstruct all the physics object (lepton, photon, tau, Jet, MET, ...) with high efficiency/precision

 High Precision VTX located close to IP: b, c, tau tagging High Precision Tracking system: δ(1/Pt) ~ 2*10⁻⁵(GeV⁻¹)
 PFA oriented Calorimeter System (~o(10⁸) channels): Tagging, ID, Jet energy resolution, ect 18/08/2016

Software Toolkits & information Chain

Reconstructions

CEPC Higgs program: a sub-set

- Higgs rates: ~ 200 analyses according to composition of physics objects (e, mu, tau, b, c, g, MET):
 - Recoil mass and Xsec measurement via eeH, mumuH and qqH: 3 independent analyses
 - Jets: 4-5 independent analyses
 - σ(eeH, mumuH, vvH, qqH & tautauH)*Br(H->bb, cc, gg)
 - vvH event need to be decoupled into Z->vv and W fusion contributions
 - Simple Objects: 14 15 analyses
 - σ(eeH, mumuH, vvH, qqH & tautauH)*Br(H->tautau), Br(H->mumu), Br(H->di photon)
 - Br(H->ZZ/WW/Zgamma): exclude all events with tau...
 - σ(eeH, mumuH, vvH, qqH, tautauH)*Br(H->ZGamma), Z->ee, mumu, tautau, vv, bb, cc, uds, 35 analyses...
 - $\sigma(eeH, mumuH, vvH, qqH, tautauH)*Br(H->WW*), WW*->IIvv, Ivqq, 4q: 50 analyses$
 - σ(eeH, mumuH, vvH, qqH, tautauH)*Br(H->ZZ*), ZZ*->4I, Ilvv, Ilqq, vvqq, 4q: **70** analyses
- Higgs exotics: 25 analyses
 - Higgs->invisible: via eeH, mumuH, qqH: 3 ananlyses
 - ZH->llvvbb: 2 analyses
 - Br(Higgs->ee, emu, etau, mutau), 20 analyses
- Higgs Differential Xsec: as for quantum number measurements 18/08/2016

Model-independent measurement of $\sigma(ZH)$

Zhenxing Chen & Yacine Haddad

• M. McCullough, 1312.3322

18/08/2016

Workflow for Br(H->bb, cc, gg) measurements

2. Selection

Cut Definition	Sig.	qq	qqnn	qqln	xxh
FSClasser output	148955	25M	183687	3698817	63194
$N_{\rm PFO(E>0.4GeV)} > 20$	148808	23M	163088	3439927	58882
$110 < E_{\rm total} < 150$	132561	10M	125878	705357	34215
$P_{T} > 19$	126006	34198	116314	627602	32300
Isolation lepton veto	123586	33775	115867	327206	23773
$100 < M_{\rm inv} < 135$	117845	9506	10420	162511	21277
$70 < M_{\rm rec} < 125$	111886	7521	10045	110426	20458
$0.15 < y_{12} < 1$	111353	7405	9702	101797	19983
$y_{23} < 0.06$	105078	6644	8456	69313	14495
$y_{34} < 0.008$	100117	6504	7878	58532	6899
$-0.98 < \cos(\theta_{\text{included}}^{(2\text{jets})}) < -0.4$	97277	5178	5365	33293	6273
BDT > -0.01	76666	344	118	69	1594
Significance			265.20		
Efficiency	51.5%				

3. BDT & final results

Yu Bai, Boyang, Hao Liang, Shuyang Hu, Zhenxing Chen, etc

Template fit

	R	bb	R	<u>cc</u>	R	gg	Comments
	CEPC, 5ab-1	ILC, 250fb ⁻¹	CEPC	ILC	CEPC	ILC	
mumuH	0.89%	3.3%	9.5%	22.6%	7.0%	33.0%	Full Simulated Sig + Bkg (Bkg using pre-selection
eeH	1.3%	3.8%	11.8%	26.8%	10.6%	31.3%	technology)
ggH	0.25%	1.5%	12.2%	10.2%	18.8%	13.1%	
<u>vvH</u>	0.4%	2.0%	2.7%	11.0%	1.3%	14.0%	Full Sim Sig + Fast Sim Bkg for event selection;
							No SM Bkg for Template fit
combined	0.2%	1.0%	2.5%	6.9%	1.3%	8.5%	

	Status	Accuracy
mumuH	Full Simulated Signal and SM background	3%
eeH	-	
vvH	Full Simulated Signal and Higgs background	1%
	Await for SM background generation	
qqH	Await for tau finder in jet environment	
Combined		< 1%

18/08/2016

Higgs rare decay

Feng Wang, Jianhuan Xiang, etc

Binlong Wang, Zhenwei Cui (90)(

Br($H \rightarrow \gamma \gamma$): photon identification efficiency & ECAL intrinsic resolution

Br(H \rightarrow µµ):

Muon identification & Track Momentum resolution

Higgs to ZZ/WW

Portal to Higgs width & perfect test bed for detector/reconstruction performance...

Br(H→WW)

Expected Number of events with different objects

	Z→II	tautau	VV	qq	
H→WW*→4q	6.91k	3.45k	19.74k	69.1k	
μνqq	2.27k	1.14k	6.47k	22.7k	
evqq	2.27k	1.14k	6.47k	22.7k	IB
eevv	186	93	527	1.9k	
μμνν	186	93	527	1.9k	
еµvv	372	186	1154	3.7k	
X + tau	3.2k	1.6k	9.14k	32.0k	

Ext
Awa
Aw
Ful
Pre
Une

Extrapolated from ILC results

Await for tau finder

Await for the SM Background simulation

Full Simulation

Preliminary result acquired

Unexplored

Br(H→WW)

ZH, H->WW*	Yield	Object	Isolation	Signal	Main	Accuracy	Combined
		reconstructed		Efficiency	Background		
Z(μμ)H(evev)	88	76(86.36%)	61(80.26%)	36(40.91%)	4(ZH)	17.57%	
$Z(\mu\mu)H(\mu\nu\mu\nu)$	89	80(89.89%)	77(96.25%)	52(58.43%)	6(ZH&ZZ)	14.65%	
$Z(\mu\mu)H(ev\mu v)$	174	157(90.23%)	147(93.63%)	105(60.34%)	0	9.76%	2.68%
Z(μμ)H(evqq)	1105	1042(94.30%)	864(82.92%)	663(60.00%)	45(ZH)	4.02%	
$Z(\mu\mu)H(\mu vqq)$	1110	1056(95.14%)	988(93.56%)	717(64.59%)	159(ZH&ZZ)	4.13%	
Z(μμ)H(qqqq)			Prelin	ninary			3.0%
Z(ee)H(evev)	91	62(68.13%)	60(96.77%)	22(24.16%)	16(SZ)	28.02%	
Z(ee)H(μvμv)	82	63(76.83%)	63(100%)	44(53.66%)	24(SZ)	18.74%	
Z(ee)H(evµv)	178	132(74.16%)	124(93.94%)	82(46.07%)	25(ZH&SZ)	12.61%	2.87%
Z(ee)H(evqq)	1182	1041(88.07%)	916(87.99%)	621(51.78%)	188(SZ&ZH)	4.62%	
Z(ee)H(µvqq)	1221	1194(97.79%)	1048(87.77%)	684(56.02%)	49(ZH&SZ)	3.96%	
Z(ee)H(qqqq)			Preliminary	estimation			3.2%

- Full Simulation on 12 independent channels
 - Very high object reconstruction efficiency
 - Combined result: 1.45%
- Extrapolation from other ILC channels: 1.59%
- Combined: 1.07%

	Z→II	tautau	vv	gg
H→WW*→4q		3.45k	2.3%	69.1k
μνqq		1.14k	6.47k	2.2%
evqq	1 4 5 0/	1.14k	6.47k	2.270
eevv	1.43%	93	527	1.9k
μμνν		93	527	1.9k
eµvv		186	1154	3.7k
X + tau	3.2k	1.6k	9.14k	32.0k

$Br(H \rightarrow ZZ)$

Expected Number of events with different objects

	Z→II	tautau	VV	qq
H→ZZ*→4q	888	444	3.10k	9.24k
2v + 2q	508	254	1.77k	5.29k
2l + 2q	170	85	596	1.8k
4v	73	36	254	756
2l + 2v	49	24	170	508
41	8	4	28	86
X + tau	120	60	418	1246

More than 2 jets, Await for sophisticated Jet Clustering Await for tau finder limited accuracy ~ > 50% Explored by H->invisible analysis -> Accuracy ~ 40%

Promising channels

Unexplored

YQ. Wei

$Br(H \rightarrow ZZ)$

ZZZ*	Yield	Object	Signal	Main	Accuracy	Comments
		reconstructed	Efficiency(%)	Background	(%)	
μμννqq	128	118	63.3	h->ww&zz_sl	12.9	Tau finder would be
μμqqvv	128	125	-	h->bb&zz_sl	>25	highly appreciated
eevvqq	132	91	53.8	h->ww&sze_sl	15.8	D 1
eeqqvv	132	88	-	h->bb&zz_sl	>25	Reconstructed
vvµµqq	158	144	61.4	h->t,w&zz_sl	11.0	efficiency of electron
vvqqµµ	158	149	51.9	h->w,b&zz_sl	12.9	need to be improved
vveeqq	151	118	43.1	h->w&sze_sl	21.3	
vvqqee	151	134	-	h->bb&sze_sl	>25	
qqµµvv	135	115	-	h->tt&zz_sl	>25	Compare to ll recoil,
qqvvµµ	135	122	-	h->t,w&zz_sl	>25	qq recoil mass has much worse
qqeevv	127	107	-	h->tt&sze_sl	>25	distinguishing power
qqvvee	127	123	-	h->t,w&sze_sl	>25	to SM background
µµµµqq/qqµµ	43	39	69.8	h->tt&zz_sl	19.9	Tau finder & Electron
µµeeqq/qqee	43	39	60.5	h->tt&zz_sl	21.2	Reconstruction
eeeeqq/eeqqee	43	33	-	h->tt&sze_sl	>25	
eeµµqq/eeqqµµ	43	41	58.2	h->tt&sze_sl	19.9	

Full Simulation analysis performed on 16 independent channels.

8 Channels acquire accuracy better than 25%.

Combined accuracy: **5.4%**

If electron id efficiency ~ muon id: 4.8%

TLEP extrapolation: 4.3%

$\sigma(vvH)^*Br(H\rightarrow bb)$, Higgs width

- Relative Accuracy of $\sigma(ZH)^*Br(H\rightarrow bb)$: 2.8%
- Γ_{total}: determined to:
 - 4.4% from $\sigma(ZH)$ (~g²(HZZ)) and $\sigma(ZH)^*Br(H \rightarrow ZZ)$ (~g⁴(HZZ)/ Γ_{total})
 - 3.3% from $\sigma(ZH)^*Br(H\rightarrow bb)$, $\sigma(vvH)^*Br(H\rightarrow bb)$, $\sigma(ZH)^*Br(H\rightarrow WW)$, $\sigma(ZH)$
 - Combined accuracy: 2.6%

BSM

- http://arxiv.org/abs/1312.4992
- http://arxiv.org/abs/1512.06877
- http://indico.ihep.ac.cn/event/5592/contribution/5/material/slides/0.pdf

Higgs invisible decays

Assuming sigma(ZH)*Br(H->inv) = 200 fb

Invisible up limit at CEPC: 0.14% at 95% C.L

Up limit of Br(H \rightarrow ee) & Br(H \rightarrow eµ)

Assuming sigma(ZH)* $Br(H \rightarrow ee/e\mu) = 200 \text{ fb}$

Lei Wang

95% up limit: Br(H->ee) = 1.7e-4; Br(H->emu) = 1.2e-4;

- Typical processes in 2HDM & NMSSM
- Joint efforts by HK Cluster and IHEP
 - Study proposed by T. Liu
 - Main analyzer, Jiawei Wang, Kevin & Zhenxing Chen
- 95% CL up limit ~o(10⁻⁴).

18/08/2016

H->Exotic, hadronic

Para: M(LSP) = 0; M(h0) = 15 GeV; M(NLSP) = 20 GeV

- 95% CL. Uplimt set to be 5E-4; will be significantly improved by including di-electron/tau channel...
- ISR effect not included in the Signal sample. sigma(ZH) refered to SM Xsec of 200 fb. Effect on uplimit setting could be ignored

H→Exotic, Hadronic

Benchmark Points

Scan over the parameter space for sensitivity:

1. Fix $m_{\tilde{\chi}_1^0} = 0$ GeV and make exclusion contours on the m_{h^0} and $m_{\tilde{\chi}_2^0}$ plane with the range:

 $\begin{array}{l} 10 \; \mathrm{GeV} < m_{h^0} < 60 \; \mathrm{GeV} \; (15,25,35,45,55 \; \mathrm{GeV}) \\ 10 \; \mathrm{GeV} < m_{z^0} < 125 \; \mathrm{GeV} \; (20,40,60,80,100,120 \; \mathrm{GeV}) \end{array}$

2. Fix $m_{h^0} = 30 \text{ GeV}$ and make exclusion contours on the $m_{\tilde{\chi}_1^0}$ and $m_{\tilde{\chi}_2^0}$ plane, with the range:

0 GeV < $m_{\tilde{\chi}_1^0}$ < 60 GeV (5,15,25,35,45,55 GeV) 10 GeV < $m_{\tilde{\chi}_2^0}^{0}$ < 125 GeV (20,40,60,80,100,120 GeV)

Suggested by prof. Liu

18/08/2016

$PreCDR \rightarrow now$

	PreCDR (Jan 2014)	Now (July 2015)
σ(ZH)	0.51%	0.50%
σ(ZH)*Br(H→bb)	0.28%	0.21%
σ(ZH)*Br(H→cc)	2.1%	2.5%
σ(ZH)*Br(H→gg)	1.6%	1.3%
σ(ZH)*Br(H→WW)	1.5%	1.1%
σ(ZH)*Br(H→ZZ)	4.3%	4.3%
σ(ZH)*Br(H→ττ)	1.2%	1.0%
σ(ZH)*Br(H→γγ)	9.0%	9.0%
σ(ZH)*Br(H→μμ)	17%	17%
σ(vvH)*Br(H→bb)	2.8%	2.8%
Higgs Mass/MeV	5.9	5.0
σ(ZH)*Br(H→inv)	95%. CL = 1.4e-3	1.4e-3
Br(H→ee/emu)	_	1.7e-4/1.2e-4
Br(H→bbχχ, 4b)	<10 ⁻³	Br(H→bbχχ) < 3e-4

CEPC vs ILC: very different collision environment

• The performance:

- wi/wo active cooling?
- At different tracker radius & B-Field?
- Realistic MDI design that satisfy the Radiation & Luminosity Constrain
- Feasibility of different technologies?

- ..

- How to measure the beam energy to an accuracy of 1e-5?

LICH: lepton id at arbitrary granularity...

TPC Radius & ECAL resolution

 $\delta\sigma_{ZH}^{}/\sigma_{ZH}^{}$ δ(Br×σ)/Br×σ % 05 25 σ_{ZH} precision m_{H} precision 0.95 25 6.5 20 0.9 5.5 15 10 4.5 0.85 0.1 0.12 1600 1800 1400 $R_{\rm TPC}$ [mm]

 $\delta(Br \times \sigma)/Br \times \sigma vs \delta E/E$

 $\mu^*\mu^:\mathbf{H}, \mathbf{H} \rightarrow \gamma\gamma$

 $\tau^*\tau^*H$, $H \rightarrow \gamma\gamma$

 $\rightarrow \nabla \nabla \mathbf{H}, \mathbf{H} \rightarrow \gamma \gamma$

 $\rightarrow q \overline{q} H, H \rightarrow \gamma \gamma$

pination result; Ldt= 5 ab⁻¹

0.18

Photon E resolution

0.2

0.16

0.14

$$\frac{\delta \sigma_{ZH}}{\sigma_{ZH}} = 0.485 \times (1 + e^{-0.094 \cdot R_{\rm TPC}})$$

ECAL dynamic range: H→di photon measurement

ECAL dynamic range: H→di photon measurement

Saturation vs InvMass

Saturation vs Resolution

At 10 mm Cell Size: Require the Dynamic range of at least 1k MIP...

34

Summary

- CEPC Physics Program
 - σ (ZH), invisible/exotic branching ratios, Total Width, absolute couplings
 - Numerous individual analysis, different requirements on the detector/reconstruction
- Significant Progress since PreCDR, especially to Higgs width/exotic decays
- High Reconstruction Performance for Physics Objects
- Long to do list
 - Polish existing analysis
 - Dedicated reconstruction algorithms: tau finder & jet clustering
 - Extend the physics analysis to Differential Distributions
 - Iterate with Detector Design/Optimization
- New ideas & proposals are welcome

Meeting & References

- Regular CEPC Software-Analysis meeting: every four months
 - Aug 29-31, http://indico.ihep.ac.cn/event/6253/
- Higgs exotic decays & Differential distributions...
 - http://arxiv.org/abs/1312.4992
 - http://arxiv.org/abs/1512.06877
 - http://indico.ihep.ac.cn/event/5592/contribution/5/material/slides/0.pdf
- ICHEP reports:
 - http://indico.cern.ch/event/432527/contributions/1071856/attachments/1321305/1981584/I CHEP2016zhijunv2.pdf
 - http://indico.cern.ch/event/432527/contributions/1072435/attachments/1321203/1981368/I CHEP_CEPC_chenzx.pdf
 - http://indico.cern.ch/event/432527/contributions/1071514/attachments/1321190/1981507/IC HEP_HiggsPhysics_at_CEPC_18.pdf

Backup

CEPC-SPPC

- Electron-positron collision phase
 - Higgs factory: collision at ~240 250 GeV center-of-mass energy, Instant luminosity ~ 2*10³⁴ cm⁻²s⁻¹,
 1M clean Higgs event at 2 IP over 10 years
 - Z pole operation for precise EW measurement
- Proton-Proton collision phase
 - center-of-mass energy constrained by tunnel circumference and high-field dipole
 - Peak luminosity ~ $1*10^{35}$ cm⁻²s⁻¹ (*ArXiv: 1504.06108, discussion on needed Luminosity*)
- Tunnel circumference: 54 km in the baseline design. Longer tunnel to be evaluated. 18/08/2016

Z→2 muon, H→2 b

Z→2 jet, H→2 tau

ZH→4 jets

Z→2 muon H→WW*→eevv

18/08/2016

CEPC Higgs measurements: Team

- Higgs rates: ~ 200 analyses according to composition of physics objects (e, mu, tau, b, c, g, MET):
 - Recoil mass and Xsec measurement via eeH, mumuH and qqH:
 - IHEP & PKU, ZX. Chen
 - Jets: 4-5 independent analyses
 - SETU, SJTU & IHEP, 401. Y.Bai, ZX Chen, etc
 - Simple Objects: 14 15 analyses
 - PKU(ZW Cui), Chicago University (YT Li, JH Xiang), etc
 - Br(H->ZZ/WW/Zgamma): exclude all events with tau...
 - H->ZZ: IHEP, YQ. Wei
 - H->WW: IHEP & SJTU: LB. Liao, etc
 - Br(H->di tau): IHEP & LLR, D. Yu
- Higgs exotics: 25 analyses
 - Higgs->invisible: IHEP & PKU: X. Mo & ZX. Chen
 - ZH->llvvbb: Hongkong (JW. Wang)
 - Br(Higgs->ee, emu, etau, mutau), PKU (L. Wang & ZW. Cui)
- Higgs Differential Xsec: as for quantum number measurements

>10 active analyzers

Vertex & Silicon Tracking at ILD

- VTX: Inner most layer Radius: ~15 mm, Spatial resolution: ~ 5 μm
- Massive usage of silicon pixel/strips in the tracking system & VTX: ensures good accuracy in Impact parameter & momentum measurement

PFA Oriented Calorimeter

Development of micro electronics: ultra-high granularity! #channels, 10⁴-10⁵ (CMS) → 10⁸ channels (I/LC calorimeters) Imaging calorimeter in 8-D (or even 5-D) in/a high DAQ rate... Role of calorimeter Measure the incident energy

Identify and measure each incident particles with sufficient energy

10cm

DRUID, RunNum = 0, EventNum = 23

20 GeV Klong reconstructed @ ILD Calo

Higgs width measurement

- $g^{2}(HXX) \sim \Gamma_{H \rightarrow XX} = \Gamma_{total} * Br(H \rightarrow XX)$
- Branching ratios: determined simply by
 - σ (ZH) and σ (ZH)*Br(H→XX)
- Γ_{total}: determined from:
 - From $\sigma(ZH)$ (~g²(HZZ)) and $\sigma(ZH)^*Br(H \rightarrow ZZ)$ (~g⁴(HZZ)/ Γ_{total})
 - From $\sigma(ZH)^*Br(H \rightarrow bb)$, $\sigma(vvH)^*Br(H \rightarrow bb)$, $\sigma(ZH)^*Br(H \rightarrow WW)$, $\sigma(ZH)$
 - Would be good to have some data at E > 250 GeV
- Therefore: at CEPC Higgs program (240-250 GeV operation), Γ_{total} become the bottle neck of the coupling fit once Br(H→XX) is measured more precisely: Br(H→tautau, WW, bb,cc, gg)

Result

$\Gamma_h \propto g_Z^2 \frac{\sigma_Z^{\rm inc} \sigma_{Wb}}{\sigma_{ZW} \sigma_{Zb}}$ WW method	$\Gamma_h = \frac{(g_A^2)^2}{(g_A^2 g_A^2/\Gamma_h)} \propto g_A^2 \frac{\sigma_A^{\rm inc}}{\sigma_{AA}};$	ZZ method
---	---	-----------

Combined Accuracy: 2.6% on Absolute Higgs width

EW@CEPC

• EW precision measurements with significantly reduced uncertainties:

 $R_b, A_{FB}^b, \sin \theta_W^{eff}, m_Z, m_W, N_{\nu} \cdots$

	Present data	CEPC fit
$lpha_s(M_Z^2)$	0.1185 ± 0.0006 [23]	$\pm 1.0 imes 10^{-4}$ [24]
$\Delta lpha_{ m had}^{(5)}(M_Z^2)$	$(276.5\pm0.8) imes10^{-4}$ [25]	$\pm 4.7 \times 10^{-5}$ [26]
m_Z [GeV]	91.1875 ± 0.0021 [27]	± 0.0005
m_t [GeV] (pole)	$173.34 \pm 0.76_{\mathrm{exp}}$ [28] $\pm 0.5_{\mathrm{th}}$ [26]	$\pm 0.2_{exp} \pm 0.5_{th}$ [29, 30]
m_h [GeV]	125.14 ± 0.24 [26]	< ±0.1 [26]
m_W [GeV]	$80.385 \pm 0.015_{\mathrm{exp}}$ [23] $\pm 0.004_{\mathrm{th}}$ [31]	$(\pm 3_{ m exp} \pm 1_{ m th}) imes 10^{-3}$ [31]
$\sin^2 heta_{ ext{eff}}^\ell$	$(23153\pm16) imes10^{-5}$ [27]	$(\pm 2.3_{ m exp} \pm 1.5_{ m th}) imes 10^{-5}$ [32]
Γ_Z [GeV]	2.4952 ± 0.0023 [27]	$(\pm {f 5}_{ m exp}\pm 0.8_{ m th}) imes 10^{-4}$ [33]
$R_b \equiv \Gamma_b / \Gamma_{\rm had}$	0.21629 ± 0.00066 [27]	$\pm 1.7 imes 10^{-4}$
$R_\ell\equiv\Gamma_{ m had}/\Gamma_\ell$	20.767 ± 0.025 [27]	± 0.007

47

Reconstruction

Table 3.4Expected performance of CEPC detector at object level (within geometry acceptance). For the flavortagging, the b/c tagging efficiency should preserve a purity of 80% at Z pole sample with hadronic final states

I racking: Kalman =			
Fitter based Clupatra	Charged particle tagging efficiency ($E > 10 \text{ GeV}$)	99.5%	>99%
Tracking: Kaiman Fitter based Clupatra (ILC tool)Charged particle tagging efficiency $(E > 10 \text{ GeV})$ 99.5%ArborMuon identification efficiency $(E > 10 \text{ GeV})$ 98.5%Photon tagging efficiency $(E > 10 \text{ GeV})$ 99.5%Neutral Hadron tagging efficiency $(E > 1 \text{ GeV})$ 95%Jet Energy resolution3 - 4%Flavor tagging: LCFIPlus (ILC tool)b-tagging efficiency90%Charged particle tagging efficiency90%Get State90%Charged particle tagging efficiency60%	99%		
	Electron identification efficiency ($E > 10 \text{ GeV}$)	99.5%	99%
Muon identification efficiency $(E > 10 \text{ GeV})$ 98.5ArborElectron identification efficiency $(E > 10 \text{ GeV})$ 99.5Photon tagging efficiency $(E > 1 \text{ GeV})$ 95%Neutral Hadron tagging efficiency $(E > 5 \text{ GeV})$ 90%Jet Energy resolution3 - 4Flavor tagging:b-tagging efficiency90%	95%	99% for E>5GeV γ	
Arbor -	Neutral Hadron tagging efficiency ($E > 5 \text{ GeV}$)	90%	NAN
	Jet Energy resolution	3 - 4%	4%
Flavor tagging:	b-tagging efficiency	90%	87%
	Clupatra Clupatra ol)Charged particle tagging efficiency $(E > 10 \text{ GeV})$ 99.5%>99%Muon identification efficiency $(E > 10 \text{ GeV})$ 98.5%99%Electron identification efficiency $(E > 10 \text{ GeV})$ 99.5%99%Photon tagging efficiency $(E > 1 \text{ GeV})$ 95%99% for E>5GeV γ Neutral Hadron tagging efficiency $(E > 5 \text{ GeV})$ 90%NANJet Energy resolution3 - 4%4%ging:b-tagging efficiency90%87%usc-tagging efficiency60%40%		

- Fully validated reconstruction chain
- PFA oriented: object finding efficiency & Jet Energy Resolution

SM Lagrangian

$$\begin{aligned} \mathcal{L} &= -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{8} tr(\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu}) - \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) \\ &+ (\bar{\nu}_L, \bar{e}_L) \,\tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} + \bar{e}_R \sigma^{\mu} i D_{\mu} e_R + \bar{\nu}_R \sigma^{\mu} i D_{\mu} \nu_R + (\mathrm{h.c.}) \\ \hline -\frac{\sqrt{2}}{v} \left[(\bar{\nu}_L, \bar{e}_L) \,\phi M^e e_R + \bar{e}_R \bar{M}^e \bar{\phi} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} \right] \\ &- \frac{\sqrt{2}}{v} \left[(-\bar{e}_L, \bar{\nu}_L) \,\phi^* M^{\nu} \nu_R + \bar{\nu}_R \bar{M}^{\nu} \phi^T \begin{pmatrix} -e_L \\ \nu_L \end{pmatrix} \right] \\ &+ (\bar{u}_L, \bar{d}_L) \,\tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} u_L \\ d_L \end{pmatrix} + \bar{u}_R \sigma^{\mu} i D_{\mu} u_R + \bar{d}_R \sigma^{\mu} i D_{\mu} d_R + (\mathrm{h.c.}) \\ &- \frac{\sqrt{2}}{v} \left[(\bar{u}_L, \bar{d}_L) \,\phi M^d d_R + \bar{d}_R \bar{M}^d \bar{\phi} \begin{pmatrix} u_L \\ d_L \end{pmatrix} \right] \\ &- \frac{\sqrt{2}}{v} \left[(-\bar{d}_L, \bar{u}_L) \,\phi^* M^u u_R + \bar{u}_R \bar{M}^u \phi^T \begin{pmatrix} -d_L \\ u_L \end{pmatrix} \right] \\ &+ (\bar{D}_\mu \phi) D^\mu \phi - m_h^2 [\bar{\phi} \phi - v^2/2]^2 / 2v^2. \end{aligned}$$

(U(1), SU(2) and SU(3) gauge terms)(lepton dynamical term) (electron, muon, tauon mass term) (neutrino mass term) (quark dynamical term) (down, strange, bottom mass term) (up, charmed, top mass term) (Higgs dynamical and mass term) (1)

Higgs CP Phase in $h \rightarrow \tau^+ \tau^-$ Decay

1308.1094

Precision Measurement @ CEPC

CEPC preCDR

Colliders	LHC	HL-LHC	CEPC1	CEPC5	CEPC10
$Accuracy(1\sigma)$	25°	8.0°	5.5°	2.5°	1.7°

Enhancement from M_Z & M_W @ CEPC

Observables	Relative Error						
Observables	Current	CEPC					
Mz	$2.3 imes 10^{-5}$	$5.5 imes 10^{-6} \sim 1.1 imes 10^{-5}$					
M_W	$1.9 imes10^{-4}$	$3.7 imes \mathbf{10^{-5}} \sim 6.2 imes 10^{-5}$					

Table: The M_Z and M_W @ CEPC [Z.Liang, "Z & W Physics @ CEPC"].

Scheme-Independent Analysis

$\frac{\Lambda}{\sqrt{c_i}}$ [TeV]	\mathcal{O}_H	$\mathcal{O}_{\mathcal{T}}$	\mathcal{O}_{WW}	\mathcal{O}_{BB}	\mathcal{O}_{WB}	\mathcal{O}_{HW}	\mathcal{O}_{HB}	$\mathcal{O}_{LL}^{(3)}$	$\mathcal{O}_L^{(3)}$	\mathcal{O}_L	\mathcal{O}_R	$\mathcal{O}_{L,q}^{(3)}$	$\mathcal{O}_{L,q}$	$\mathcal{O}_{R,u}$	$\mathcal{O}_{R,d}$	\mathcal{O}_{g}
HO+EWPO	2.74	10.6	6.38	5.78	6.53	2.15	0.603	8.57	12.1	10.2	8.78	1.85	0.565	0.391	0.337	39.8
$+M_z$	2.74	10.7	6.38	5.78	6.54	2.15	0.603	8.61	12.1	10.2	8.78	1.85	0.565	0.391	0.337	39.8
$+M_W$	2.74	21.0	6.38	5.78	10.4	2.15	0.603	15.5	16.4	10.2	8.78	1.85	0.565	0.391	0.337	39.8
$+M_{Z,W}$	2.74	23.7	6.38	5.78	11.6	2.15	0.603	17.4	18.1	10.2	8.78	1.85	0.565	0.391	0.337	39.8

Table: Impacts of the projected M_Z and M_W measurements at CEPC on the reach of new physics scale $\Lambda/\sqrt{|c_j|}$ (in TeV) at 95% C.L. The Higgs observables (including $\sigma(\nu \bar{\nu} h)$ at 350 GeV) and the existing electroweak precision observables are always included in each row. The differences among the four rows arise from whether taking into account the measurements of M_Z and M_W or not. The second (third) row contains the measurement of $M_Z (M_W)$ alone, while the first (last) row contains none (both) of them. We mark the entries of the most significant improvements from M_Z/M_W measurements in red color.

1603.03385

Enhancement from Z-Pole Observables @ CEPC

$N_{ u}$	A _{FB} (b)	R ^b	R^{μ}	$R^{ au}$	$\sin^2 \theta_w$
$1.8 imes 10^{-3}$	$1.5 imes 10^{-3}$	$8 imes 10^{-4}$	$5 imes 10^{-4}$	$5 imes 10^{-4}$	$1 imes 10^{-4}$

Table: The Z-pole measurements at CEPC [Z.Liang, "Z & W Physics @ CEPC"].

Z-Pole Observables are **IMPORTANT** for New Physics Scale Probe

\mathcal{O}_H	$\mathcal{O}_{\mathcal{T}}$	\mathcal{O}_{WW}	\mathcal{O}_{BB}	\mathcal{O}_{WB}	\mathcal{O}_{HW}	\mathcal{O}_{HB}	$\mathcal{O}_{LL}^{(3)}$	$\mathcal{O}_L^{(3)}$	\mathcal{O}_L	\mathcal{O}_R	$\mathcal{O}_{L,q}^{(3)}$	$\mathcal{O}_{L,q}$	$\mathcal{O}_{R,u}$	$\mathcal{O}_{R,d}$	\mathcal{O}_{g}
2.74	23.7	6.38	5.78	11.6	2.15	0.603	17.4	18.1	10.2	8.78	1.85	0.565	0.391	0.337	39.8
2.74	23.7	6.38	5.78	11.6	2.15	0.603	17.5	18.3	10.5	8.78	1.85	0.565	0.391	0.337	39.8
2.74	24.0	8.32	5.80	12.2	2.15	0.603	20.7	23.0	12.5	13.0	2.08	1.62	0.391	3.97	39.8
2.74	24.0	8.33	5.80	12.2	2.15	0.603	20.7	23.0	12.5	13.0	7.90	7.89	3.55	4.05	39.8
2.74	24.0	8.54	5.80	12.2	2.15	0.603	20.7	23.4	14.4	14.0	8.63	8.62	4.88	4.71	39.8
2.74	24.0	8.75	5.80	12.3	2.15	0.603	20.7	23.7	15.8	14.9	9.21	9.21	5.59	5.17	39.8
2.74	26.3	12.6	5.93	15.3	2.15	0.603	30.2	35.2	19.8	21.6	9.21	9.21	5.59	5.17	39.8

Table: Impacts of the projected Z-pole measurements at the CEPC on the reach of new physics scale $\Lambda/\sqrt{|c_j|}$ (in TeV) at 95% C.L. For comparison, the first row of this table repeats the last row of Table ??, as our starting point of this table. For the (n + 1)-th row, the first *n* observables are taken into account. In addition, the estimated M_Z and M_W measurements at the CEPC, the Higgs observables (HO), and the existing electroweak precision observables (EWPO) are always included for each row. The entries with major enhancements of the new physics scale limit are marked in red color.

A factor of 2 enhancement from Z-Pole Observables

Angular Observable in Higgsstrahlung

1512.06877

Section CP violating dim-6 operators

 $\begin{array}{ll} \mathcal{O}_{\Phi\Box} = (\Phi^{\dagger}\Phi)\Box(\Phi^{\dagger}\Phi) & \mathcal{O}_{\Phi W} = (\Phi^{\dagger}\Phi)W^{I}_{\mu\nu}W^{I\mu\nu} \\ \mathcal{O}_{\Phi D} = (\Phi^{\dagger}D^{\mu}\Phi)^{*}(\Phi^{\dagger}D_{\mu}\Phi) & \mathcal{O}_{\Phi B} = (\Phi^{\dagger}\Phi)B_{\mu\nu}B^{\mu\nu} \\ \mathcal{O}^{(1)}_{\Phi\ell} = (\Phi^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{\ell}\gamma^{\mu}\ell) & \mathcal{O}_{\Phi WB} = (\Phi^{\dagger}\tau^{I}\Phi)W^{I}_{\mu\nu}B^{\mu\nu} \\ \mathcal{O}^{(3)}_{\Phi\ell} = (\Phi^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{\ell}\gamma^{\mu}\tau^{I}\ell) & \mathcal{O}_{\Phi\widetilde{W}} = (\Phi^{\dagger}\Phi)\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu} \\ \mathcal{O}_{\Phi e} = (\Phi^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{e}\gamma^{\mu}e) & \mathcal{O}_{\Phi\widetilde{B}} = (\Phi^{\dagger}\Phi)\widetilde{B}_{\mu\nu}B^{\mu\nu} \\ \mathcal{O}_{4L} = (\bar{\ell}\gamma_{\mu}\ell)(\bar{\ell}\gamma^{\mu}\ell) & \mathcal{O}_{\Phi\widetilde{W}B} = (\Phi^{\dagger}\tau^{I}\Phi)\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu} \end{array}$

Observables

$$\sigma(s) \qquad \mathcal{A}_{\theta_1} \equiv \frac{1}{\sigma} \int_{-1}^{1} d\cos\theta_1 \operatorname{sgn}(\cos(2\theta_1)) \frac{d\sigma}{d\cos\theta_1}$$
$$\mathcal{A}_{\phi}^{(1)} \equiv \frac{1}{\sigma} \int_{0}^{2\pi} d\phi \operatorname{sgn}(\sin\phi) \frac{d\sigma}{d\phi} \qquad \mathcal{A}_{\phi}^{(2)} \equiv \frac{1}{\sigma} \int_{0}^{2\pi} d\phi \operatorname{sgn}(\sin(2\phi)) \frac{d\sigma}{d\phi}$$
$$\mathcal{A}_{\phi}^{(3)} \equiv \frac{1}{\sigma} \int_{0}^{2\pi} d\phi \operatorname{sgn}(\cos\phi) \qquad \mathcal{A}_{\phi}^{(4)} \equiv \frac{1}{\sigma} \int_{0}^{2\pi} d\phi \operatorname{sgn}(\cos(2\phi)) \frac{d\sigma}{d\phi}$$
$$\mathcal{A}_{c\theta_1,c\theta_2} \equiv \frac{1}{\sigma} \int_{-1}^{1} d\cos\theta_1 \operatorname{sgn}(\cos\theta_1) \int_{-1}^{1} d\cos\theta_2 \operatorname{sgn}(\cos\theta_2) \frac{d^2\sigma}{d\cos\theta_1 d\cos\theta_2}$$

Angular Observable in Higgsstrahlung

1512.06877

Higgs...

LICH: different HCAL layer

Calo Discussion

LICH: different HCAL cell size

Calo Discussion

LICH: different ECAL Cell size

Calo Discussion

LICH: different ECAL Layers

Table 3 $\mu \mu H$ events muon pid efficiency

Geom 1	Geom 2	Geom 3	
30	30	20	
10	20	20	
48	48	20	
10	20	20	
97.99 ± 0.44	96.48 ± 0.58	95.17 ± 0.73	
):			
1/4	1/16	1/24	
1	1/4	1/10	
	$ Geom 1 30 10 48 10 97.99 \pm 0.44): 1/4 1 $	Geom 1 Geom 2 30 30 10 20 48 48 10 20 97.99 \pm 0.44 96.48 \pm 0.58): 1/4 1/4 1/16 1 1/4	Geom 1Geom 2Geom 330302010202048482010202097.99 ± 0.44 96.48 ± 0.58 95.17 ± 0.73):1/41/161/2411/41/10

22/07/2016

Calo Discussion