NNLO QCD corrections to Higgs boson production at LHC

International Symposium on Higgs Boson and Beyond Standard Model Physics

Xuan Chen

Centre for High Energy Physics Peking University

Weihai, August 17, 2016

Xuan Chen (CHEP, Peking University)

Higgs Boson Discovery \rightarrow Precision Physics

- Theory is not crucial for direct discovery
- However is needed to interpret discovery as due to the production and decay of a Standard Model Scalar-like particle
- Indirect determination of spin and CP properties
- Currently the most accurately studied process involving QCD (N³LO + NNLL)

Higgs Boson Discovery \rightarrow Precision Physics

- Higgs discovery requires sophisticated theory predictions
 - higher-order perturbative calculations
 - resummation program
 - reliable non-perturbative tools (PDFs, PS, Jet ...)
- BSM effects are well hidden \rightarrow more precise study of Higgs couplings

Boosted Higgs : Challenge & Opportunity

• $pp \rightarrow H \rightarrow \gamma \gamma$ jet-bin analyses

• $pp \rightarrow H \rightarrow ZZ^*$ jet-bin analyses

- Different Signal/Background ratio for each bin
- Large theory error in high jet multiplicity
- Different experimental challenge in parameter space

Xuan Chen (CHEP, Peking University)

Boosted Higgs : Challenge & Opportunity

• Higgs + jets: Differential cross section in LHC

- Differential corss sections contain detailed properties of Higgs (event shape, forward/backward symmetry, \cdots)
- · Large prediction error dominate by missing higher orders
- Request for more precise differential predictions especially for BSM study (more details in Lilin Yang's talk)

Cutting Edge Predictions for Higgs Boson Production

• Higgs production (ggH EFT): (more details in Lilin Yang's talk)

- Fully inclusive N³LO pp→ H Anastasiou, Duhr et al (15)
- Theoretical uncertainty $\sim 5\%$
- Jet veto differential cross section from $N^3LO + NNLL + LL(R)$ Banfi, Caola, et al (15)

• Boosted Higgs final states: jet-bin analysis, differential cross section

- ggF channel (jet boosted, colour charged current)
 - H + 2 jets NLO (EFT): H. van Deurzen, N. Greiner et al 13
 - H + 3 jets NLO (EFT): G. Cullen, H. van Deurzen et al 13
 - H + jet NNLO(EFT): R. Boughezal et al 13; XC et al 14; F. Caola et al 15
 - H + H NNLO (EFT) D. de Florian, J. Mazzitelli 14
 - H + jet LO (Full mt): S. Dawson 90's
 - H + H NLO (Full mt): S. Borowka, N. Greiner, G. Heinrich et al 16

Cutting Edge Predictions for Higgs boson

• Boosted Higgs final states: jet-bin analysis, differential cross section

- VBF channel (jet boosted, colour neutral current)
 - H+2 jets NNLO (Fully inclusive): P. Bolzoni, F. Maltoni 10
 - HH+2 jets NNLO (Fully inclusive): Liu-Sheng Ling et al 14
 - H+2 jets NNLO (Fully differential): M. Cacciari, F. A. Dreyer et al 15
- VH channel (V boosted, colour charged current)
 - ZH NNLO: G. Ferrera, M. Grazzini, F. Tramontano 14
 - WH NNLO: G. Ferrera, M. Grazzini, F. Tramontano 13
 - WHH NNLO: J. Wang, et al (in progress)
- $t\bar{t}$ fusion channel (jet boosted, colour charged current)
 - $H+t\bar{t}$ approximate NNLO: A. Broggio, A. Ferroglia et al 15
- Improving above tools:
 - Finite m_t, m_b correction
 Harlander et al, (12); Grazzini, Sargsyan (13); XC, J. Cruz-Martinez et al, (16)
 - Parton shower (PS) matching @ NNLO Hamilton, Nason et al (13)
 - Modern PDF form LHC Run II Ball, Bertone et al (14)

Higgs+jet building blocks

 Higgs production via gluon fusion through a quark loop. In the heavy Top mass limit, we have the effective interaction

• The effective dimension five term in Lagrangian Wilczek, Shifman et al (70's)

$$\mathcal{L}_{H}^{int} = \frac{C}{2} H \operatorname{Tr} G_{\mu\nu} G^{\mu\nu} \qquad C = \frac{\alpha_s}{6\pi V} (1 + \mathcal{O}(\alpha_s))$$

- Less than 1% theoretical uncertainty in pure Higgs production Harlander, Mantler et al (10)
- EFT approximation breaks down in high P_T region in Higgs + jets final states Harlander, Neumann et al (12)
- Effective dimension six operators for new physics effects Dawson et al (14); Ghosha et al (14)

$$O_g = \Phi^{\dagger} \Phi G^a_{\mu\nu} G^{\mu\nu a} \qquad O_{3g} = f^{abc} G^{a\mu}_{\nu} G^{b\nu}_{\rho} G^{c\rho}_{\mu}$$

Xuan Chen (CHEP, Peking University)

NNLO QCD corrections to Higgs boson production at LHC

. . .

Higgs+jet building blocks

- tree level 2→3+H amplitudes Del Duca, Frizzo, Maltoni; (use BCFW) Chen;
 Implicit divergency in P.S. (IR)
- 1-loop 2→2+H amplitudes Berger, Del Duca, Dixon; Badger, Glover, Mastrolia, Williams; Badger, Ellis
 - Implicit divergency in P.S. (IR) as well as explcit poles up to ϵ^{-2} (UV)
- 2-loop 2→1+H amplitudes Gehrmann, Jaquier, Glover, Koukoutsakis
 - Explicit poles up to ϵ^{-4} (UV)
- Analytic results with spinor-helicity formalism (Stable IR limit for RR and RV)

Parton Level Cross Section Structure at NNLO

$$\begin{split} d\hat{\sigma}_{NNLO} &= \int [\langle \mathcal{M}^0 | \mathcal{M}^0 \rangle]_{H+5} d\Phi_{H+3} \\ &+ \int [\langle \mathcal{M}^0 | \mathcal{M}^1 \rangle + \langle \mathcal{M}^1 | \mathcal{M}^0 \rangle]_{H+4} d\Phi_{H+2} \\ &+ \int [\langle \mathcal{M}^1 | \mathcal{M}^1 \rangle + \langle \mathcal{M}^2 | \mathcal{M}^0 \rangle + \langle \mathcal{M}^0 | \mathcal{M}^2 \rangle]_{H+3} d\Phi_{H+1} \\ &= \int_{d\Phi_{H+3}} d\hat{\sigma}_{NNLO}^{RR} + \int_{d\Phi_{H+2}} d\hat{\sigma}_{NNLO}^{RV} + \int_{d\Phi_{H+1}} d\hat{\sigma}_{NNLO}^{VV} \end{split}$$

- $d\hat{\sigma}$ renormalised factorized parton level cross section
- Analytical integration of P.S. transforms IR divergence into explicit poles
- Challenge to extract implicit IR divergence from RR and RV without P.S. integration
 - Calculate RR and RV in separate parton level Monte Carlos
 - Collect finite contributions from RR and RV for differential cross-section analysis

NNLO Subtraction

$$d\hat{\sigma}_{NNLO} = \int_{d\Phi_{H+3}} (d\hat{\sigma}_{NNLO}^{RR} - d\hat{\sigma}_{NNLO}^{S}) + \int_{d\Phi_{H+2}} (d\hat{\sigma}_{NNLO}^{RV} - d\hat{\sigma}_{NNLO}^{T}) + \int_{d\Phi_{H+1}} (d\hat{\sigma}_{NNLO}^{VV} - d\hat{\sigma}_{NNLO}^{U})$$

• Consistency requirement:

- Subtraction terms mimic the divergent behaviour of matrix elements
- Each bracket is finite
- Calculations in *d* dimension for explicit pole cancellation
- The construction of red terms and the treatment of P.S. depends on different subtraction schemes
- pp→H+J processes: color particles in both initial and final states

$$0 = \int_{d\Phi_{H+3}} d\hat{\sigma}_{NNLO}^S + \int_{d\Phi_{H+2}} d\hat{\sigma}_{NNLO}^T + \int_{d\Phi_{H+1}} d\hat{\sigma}_{NNLO}^U$$

Xuan Chen (CHEP, Peking University)

NNLO subtraction scheme

NNLO subtraction schemes are usually inspired by NLO techniques

- FKS → Sector Improved Decomposition (STRIPPER) (M.Czakon 10; Boughezal et al 11)
- q_T subtraction + FKS \rightarrow N-jettiness (J.R.Gaunt et al 15; Boughezal, et al 15)
- Antenna function $(X_3^0)
 ightarrow extsf{Antenna}$ function (X_3^1, X_4^0) (T.Gehrmann et al 05)
- q_T subtraction (S.Catani, M.Grazzini 07), Colourful subtraction (Del Duca, Trocsanyi et al 05), Born projection (Cacciari, Dreyer et al 15) •••

• Each NNLO subtraction scheme has its advantanges and disadvantages

NNLO subtraction scheme

NNLO subtraction schemes are usually inspired by NLO techniques

- FKS \rightarrow Sector Improved Decomposition (STRIPPER) (M.Czakon 10; Boughezal et al 11)
- q_T subtraction + FKS \rightarrow N-jettiness (J.R.Gaunt et al 15; Boughezal, et al 15)
- Antenna function $(X_3^0) \rightarrow$ Antenna function (X_3^1, X_4^0) (T.Gehrmann et al 05)
- q_T subtraction (S.Catani, M.Grazzini 07), Colourful subtraction (Del Duca, Trocsanyi et al 05), Born projection (Cacciari, Dreyer et al 15) •••

• Each NNLO subtraction scheme has its advantanges and disadvantages

	Analytic	Local	FS colour	IS colour	Automated
Antenna	v	~	 ✓ 	 ✓ 	×
STRIPPER	×	× .	 	 ✓ 	×
N-jettiness	 ✓ 	×	 	 ✓ 	×
Colourful	 ✓ 	× .	 	×	×
q_T	 Image: A set of the set of the	×	×	 Image: A set of the set of the	
Born Projection	 Image: A set of the set of the	 	 Image: A set of the set of the	 Image: A set of the set of the	×

Antenna Subtraction at NNLO

• Antenna function form physical matrix elements (from 2005)

A.Gehrmann-De Ridder, T.Gehrmann, N.Glover, 05

Complete set of Antenna tool box (NNLO)

phase config. \otimes type \otimes parton types [FF, IF, II] \otimes $[X_3^0, X_4^0, X_3^1] \otimes [A \sim H]$

- All antenna functions are analytically integrable (from 2012)
 - Final-Final \mathcal{X}_3^0 , \mathcal{X}_4^0 and \mathcal{X}_3^1 Gehrmann-De Ridder, Gehrmann, Glover (05)
 - Initial-Final \mathcal{X}_3^0 , \mathcal{X}_4^0 and \mathcal{X}_3^1 Daleo, Gehrmann, Gehrmann-De Ridder, Luisoni, Maitre (06,09,12)
 - Initial-Initial \mathcal{X}_3^0 , \mathcal{X}_4^0 and \mathcal{X}_3^1 Boughezal, Daleo, Gehrmann-De Ridder, Gehrmann, Maitre, Monni, Ritzmann

(10, 11, 12)

NNLOJET: NNLO tool with Antenna subtraction

XC, J. Cruz-Martinez, J. Currie, A. Gehrmann-De Ridder, T. Gehrmann, N. Glover, A. Huss, M. Jaquier, T. Morgan, J. Niehues, J. Pires

$$\begin{array}{ll} \checkmark & pp \to H \to \gamma\gamma \text{ plus 0, 1, 2 jets} \\ \checkmark & pp \to e^+e^- \text{ plus 0, 1 jets} \\ \checkmark & pp \to \text{dijets} \\ \checkmark & ep \to 2(+1) \text{ jets} \\ \checkmark & \dots \end{array}$$

Xuan Chen (CHEP, Peking University)

NNLOJET: application in $pp \rightarrow H + jet$

• $pp \rightarrow H + jet$

- Higgs production via gluon fusion in EFT
- Precise study for p_T^H distribution (Boosted Higgs with NNLO accuracy)
- Excellent agreement in inclusive H($\gamma\gamma$)+Jet final states (RUN II data)
- One of the first NNLO processes done with three different subtraction schemes
 - pp \rightarrow H + J Antenna subtraction. xc, Gehrmann, Glover and Jaquier 1408.5325, 1604.04085 [hep-ph]
 - pp \rightarrow H + J Sector Improved Decomposition subtraction (without quark-quark channel). Boughezal, Caola, Melnikov, Petriello, Schulze 1302.6216, 1504.07922, 1508.02684 [hep-ph]
 - pp \rightarrow H + J N-jettiness subtraction. Boughezal, Focke, Giele, Liu, Petriello 1505.03893 [hep-ph]

NNLOJET: application in $pp \rightarrow H + jet$

• $pp \rightarrow H + jet$

- Higgs production via gluon fusion in EFT
- Precise study for p_T^H distribution (Boosted Higgs with NNLO accuracy)
- Excellent agreement in inclusive H($\gamma\gamma$)+Jet final states (RUN II data)
- One of the first NNLO processes done with three different subtraction schemes
 - pp \rightarrow H + J Antenna subtraction. xc, Gehrmann, Glover and Jaquier 1408.5325, 1604.04085 [hep-ph]
 - pp \rightarrow H + J Sector Improved Decomposition subtraction (without quark-quark channel). Boughezal, Caola, Melnikov, Petriello, Schulze 1302.6216, 1504.07922, 1508.02684 [hep-ph]
 - pp \rightarrow H + J N-jettiness subtraction. Boughezal, Focke, Giele, Liu, Petriello 1505.03893 [hep-ph]

Important crosscheck

- Comparison with ATLAS cuts (RUN I $H
 ightarrow \gamma\gamma$ channel) (1407.4222v2):
 - NNLOJET: $\sigma_{NNLO}^{\text{fid}} = 9.4^{+0.65}_{-0.89}$ fb ($\mu_R = \mu_F = m_H, 0.5 \times m_H, 2 \times m_H$)

$$\sigma_{LO}^{\rm fid} = 5.42^{+2.32}_{-1.49} ~{\rm fb}, ~\sigma_{NLO}^{\rm fid} = 7.98^{+1.76}_{-1.46} ~{\rm fb}, ~\sigma_{NNLO(ge)}^{\rm fid} = 9.44^{+0.59}_{-0.85} ~{\rm fb}$$

• Sector Improved Decomposition (STRIPPER):

$$\sigma_{LO}^{\rm fid} = 5.42^{+2.32}_{-1.49} ~{\rm fb}, ~\sigma_{NLO}^{\rm fid} = 7.98^{+1.76}_{-1.46} ~{\rm fb}, ~\sigma_{NNLO(gd)}^{\rm fid} = 9.45^{+0.58}_{-0.82} ~{\rm fb}$$

• Comparison using LHCHXSWG recommend cuts (to appear in YR4 report): $\sigma_{NNLO(\mathscr{A})}^{\mathrm{fid},\mathrm{NNLOJET}} = \sigma_{NNLO(\mathscr{A})}^{\mathrm{fid},\mathrm{STRIPPER}} = 17.6 \text{ pb } (\mu_R = \mu_F = 1/2m_H)$

Xuan Chen (CHEP, Peking University)

Comparison with ATLAS and CMS in RUN I $(H \rightarrow \gamma \gamma)$

- Simulation setup for fiducial cross section and differential cross section:
 - Include full m_t, m_b, m_c dependence at LO
 - Apply photon isolation algorithm: ATLAS (CMS) algorithm has $85\% \sim 95\%$ (63%) signal efficiency
 - Use $\mu_R = \mu_F = 1/2\sqrt{m_H^2 + p_{TH}^2}$ as central scale

 $\begin{array}{l} p_{ij}^{ij}t > 30 \; GeV, \; |\eta_{jell}| < 4.4 \\ p_{ij}^{+1} > 0.35 \cdot m_{H}, \; p_{ij}^{+2} > 0.25 \cdot m_{H} \\ |\eta_{V}| < 2.37 \\ anti-k_{T} \quad (R=0.4) \\ PDF4LHC15 \; (NLO \; and \; NNLO) \\ \mu_{R}=\mu_{F}=(1/4,1/2,1) \cdot (m_{H}^{2}+p_{TH}^{2})^{1/2} \end{array}$

 $\begin{array}{l} p_{I}^{j p t} > 25 \; \text{GeV}, \; |\eta_{j e t}| < 2.5 \\ p_{I}^{\gamma_{1}} > 1/3 \cdot m_{H}, \; p_{I}^{\gamma_{2}} > 1/4 \cdot m_{H} \\ |\eta_{\gamma}| < 2.5 \\ \text{anti-k}_{T} \quad (R=0.5) \\ \text{PDF4LHC15} \; (\text{NLO and NNLO}) \\ \mu_{R}=\mu_{F}=(1/4, 1/2, 1) \cdot (m_{H}^{2}+p_{H}^{2})^{1/2} \end{array}$

ATLAS fiducial cut (1407.4222v2)

CMS fiducial cut (1508.07819)

- Results for fiducial cross sections: (XC, Cruz-Martinez, Gehrmann, Glover and Jaquier, 1607.08817)
 - ATLAS: $\sigma^{\rm fid}_{H+\geq 1j}({\rm 8~TeV}) = 21.5 \pm 5.3({\rm stat.}) \pm ^{2.4}_{2.2}({\rm syst.}) \pm 0.6({\rm lumi})$ fb

 $\sigma_{LO}^{\rm fid(m_q)} = 5.84^{+2.61}_{-1.69} ~{\rm fb}, ~\sigma_{NLO}^{\rm fid(m_q@LO)} = 9.07^{+1.79}_{-1.66} ~{\rm fb}, ~\sigma_{NNLO}^{\rm fid(m_q@LO)} = 9.74^{+0.63}_{-0.79} ~{\rm fb}$

• CMS:
$$\sigma_{H+\geq 1j\rightarrow\gamma\gamma+\geq 1j}^{\rm fid}({\rm 8~TeV})=10.7\pm7.7({\rm tot.~unc.})~{\rm fb}$$

 $\sigma_{LO}^{\rm fid(m_q)} = 5.84^{+2.54}_{-1.66} ~{\rm fb}, ~\sigma_{NLO}^{\rm fid(m_q@LO)} = 9.54^{+2.08}_{-1.81} ~{\rm fb}, ~\sigma_{NNLO}^{\rm fid(m_q@LO)} = 10.52^{+0.41}_{-0.95} ~{\rm fb}$

Xuan Chen (CHEP, Peking University)

Comparison with ATLAS and CMS in RUN I $(H \rightarrow \gamma \gamma)$ • Differential cross section of $p_T^{j_1}$ in ATLAS (XC, Cruz-Martinez, Gehrmann, Glover and Jaquier, 1607.08817)

Absolute distribution for ATLAS RUN I

Normalised distribution for ATLAS RUN I

- Tension in the total cross section help us better understand the distributions
- In general, normalising by σ^{H}_{tot} is to minimize the luminosity error
- NLO and NNLO predictions are re-weighted by $d\sigma_{LO}^{Full}/d\sigma_{LO}^{EFT}$

Xuan Chen (CHEP, Peking University) NNLO QCD co

Comparison with ATLAS and CMS in RUN I $(H \rightarrow \gamma \gamma)$ • Differential cross section of p_T^{j1} in CMS (right) and H_T in ATLAS (left)

Normalised distribution for ATLAS RUN I

Normalised distribution for CMS RUN I

18 / 22

- Normalised NNLO distributions correctly predict the shape
- NNLO contributions could potentially change the distribution shape of NLO

• Essential NNLO corrections for about $\sim 15\%$ and reduced theory uncertainties Xuan Chen (CHEP, Peking University) NNLO QCD corrections to Higgs boson production at LHC Weihai, August 17, 2016

Comparison with ATLAS and CMS in RUN I ($H \rightarrow \gamma \gamma$)

• Study Higgs p_T distributions with parton boosted Higgs at NNLO

- Loose/remove the requirment of jet to study more inclusive P.S. for Higgs
- Still require a p_T^H cut to keep the integral finite
- No jet algorithm applied
- Large log terms related to the $p_T^H \ {\rm cut} \ {\rm will} \ {\rm appear}$
- Require resummation especially in the small p_T region ($p_T < 40$ GeV) P. F. Monni, E. Re, P. Torrielli 16

Normalised distribution for ATLAS RUN I

Comparison with ATLAS in RUN II $(H \rightarrow \gamma \gamma)$

- Simulation setup for fiducial cross section and differential cross section:
 - Fiducial setup and data taken from ICHEP (ATLAS-CONF-2016-067)
 - Similar setup as in RUN I but with $\sqrt{s}=13~{\rm TeV}$
 - Exclude the endcap wheel region for photon identification $(1.37 < |\eta| < 1.52)$
 - Slightly different photon isolation algorithm (< 1% effect, not applied)
 - $\bullet\,$ Improved sampling efficiency $\rightarrow\,50\%$ faster for a complete NNLO computation

Comparison with ATLAS in RUN II $(H \rightarrow \gamma \gamma)$

- Simulation setup for fiducial cross section and differential cross section:
 - Fiducial setup and data taken from ICHEP (ATLAS-CONF-2016-067)
 - Similar setup as in RUN I but with $\sqrt{s} = 13 \text{ TeV}$
 - Exclude the endcap wheel region for photon identification $(1.37 < |\eta| < 1.52)$
 - Slightly different photon isolation algorithm (< 1% effect, not applied)
 - $\bullet\,$ Improved sampling efficiency $\rightarrow\,50\%$ faster for a complete NNLO computation

• Preliminary: results for fiducial cross sections: (XC, Cruz-Martinez, Gehrmann, Glover and Jaquier to JHEP)

- ATLAS: $\sigma^{\rm fid}_{H+\geq 1j}(13~{
 m TeV}) = 26.75 \pm^{10.6}_{10.7} ({
 m tot.~unc.})~{
 m fb}$
- NNLOJET:

$$\begin{split} \sigma_{LO}^{\mathrm{fid}(m_q)} &= 14.43^{+5.64}_{-3.83} \text{ fb} \\ \sigma_{NLO}^{\mathrm{fid}(m_q@LO)} &= 21.77^{+3.96}_{-3.62} \text{ fb} \\ \sigma_{NNLO}^{\mathrm{fid}(m_q@LO)} &= 23.21^{+0.62}_{-1.67} \text{ fb} \end{split}$$

- Tension in the fiducial cross section comparison from RUN I resolves in RUN II
- Finite quark mass effects at NLO are likely to give positive corrections to fiducial cross sections (currently not yet available)

Comparison with ATLAS in RUN II $(H \rightarrow \gamma \gamma)$

• Preliminary: differential cross section of p_T^{j1} (right) and p_T^H (left) in ATLAS

(XC, Cruz-Martinez, Gehrmann, Glover and Jaquier to JHEP)

Absolute distribution for ATLAS RUN II

Absolute distribution for ATLAS RUN II

- ATLAS data with limited statistics already show good agreement
- Establish a solid setup for precise comparison (shape, normalisation etc.)

Xuan Chen (CHEP, Peking University)

Summary & Outlook

• Summary

- Strong motivation for precise QCD studies
 - LHC RUN II data is getting more and more precise
 - SM prediction entering NNLO era
- · Boosted properties of Higgs is an interesting field not yet well understood
 - Boosted Higgs is very common on LHC and reveal more details of the SM
 - Precise QCD calculations are essential for such study at LHC
 - Simulations for LHC RUN II data at NNLO accuracy show promising agreement
- Future work
 - To compare with ATLAS and CMS data in $H \rightarrow ZZ(WW)$ decay channel
 - Finite quark mass effects @ NLO are challenging but important
 - Implementation/collaboration on NNLO VBF channel (2-jet bin)

Summary & Outlook

• Summary

- Strong motivation for precise QCD studies
 - LHC RUN II data is getting more and more precise
 - SM prediction entering NNLO era
- Boosted properties of Higgs is an interesting field not yet well understood
 - Boosted Higgs is very common on LHC and reveal more details of the SM
 - Precise QCD calculations are essential for such study at LHC
 - Simulations for LHC RUN II data at NNLO accuracy show promising agreement
- Future work
 - To compare with ATLAS and CMS data in $H \rightarrow ZZ(WW)$ decay channel
 - Finite quark mass effects @ NLO are challenging but important
 - Implementation/collaboration on NNLO VBF channel (2-jet bin)

THANK YOU!