CMS subdetector ECAL & HCAL

Mainly from PTDR Vol.1 & JINST S08004

J. Tao

2008.11.28

CMS Detector

CMS Electromagnetic Calorimeter

CMS ECAL

Designed to achieve a high precision in photon and electron energy measurements at LHC.

A hermetic homogeneous calorimeter with 61,200 lead tungstate (PbWO4) crystals in the barrel part, covering the central rapidity region | n | ≤1.479, closed by 7,324 crystals in two end-caps (3662 each) which extend the coverage up to | n |=3. Total: 75848 crystals.

Photodetector: Avalanche photodiodes (APDs) in the barrel, vacuum phototriodes (VPTs) in the endcaps.

Will be mounted inside a 4 Tesla superconducting solenoid.

ECAL Geometry

ECAL Barrel

ECAL Barrel

0.5mm between submodules

Module: 50 submodules (center)/500 crystals; 40 submodules/400 crystals

Super-module: 4 modules
1700 crystals

18 supermodules, each covering20°,form a half barrel.Weight of EB crystals: 67.4t

ECAL Endcap

$1.479 < \eta < 3.0$

Supercrystal:

5×5 crystals

2 Dees (1/2 endcap): each 3662 crystals;

Tot:138 SCs+18 partial SC

Distance of EE envelope to to 0: 315.4cm
Crystals point at 1300mm behind the interaction point.
Off-pointing angles: 2°~8°
Weight:24.0t

Front face: $28.62 \times 28.62 \text{ mm}^2$ Rear face: $30 \times 30 \text{ mm}^2$ Length: $220 \text{ mm} \sim 24.7 \text{ X}_0$

VPTs: vacuum phototriodes

Photodetector

Barrel:
Each APD has an active area of 5×5 mm²
2 APDs are glued to the back of each crystal

Endcaps:
Each VPT is 25 mm in diameter
1 VPT is glued to the back of each crystal

Preshower detector (ES) $1.653 < |\eta| < 2.6$

Principal aim is to identify neutral pions in the endcaps.

Also helps the identification of electrons against minimum ionizing particles, and improves the position determination of electrons and photons with it superior granularity.

A sampling calorimeter with 2 layers.

Lead radiators initiate electromagnetic showers from incoming photons/electrons.

Whilst silicon strip sensors placed after each radiator measure the energy deposited and the transverse shower profiles.

The absorber must be sufficiently thick in order to initiate photon showers but a too thick absorber would degrade the excellent energy resolution of the crystal calorimeter. The optimum is found for a total absorber thickness of 2.8X₀ at normal incidence.

•Total thickness of ES is 20cm.

Preshower detector (ES)

ES : silicon modules

CMS Hadron Calorimeter

CMS HCAL

Important for the measurement of hadron jets and MET (neutrinos of exotic particles).

Also help in the identification of e, γ and μ inconjection with ECAL and Mu-subdetector.

Physics Requirements

Though CMS emphasizes e, μ,γ detection and measurement, detection of jets and missing E_T is essential for:

 $\cdot H \rightarrow ZZ \rightarrow \ell \ell \nu \nu$ • $H \rightarrow WW \rightarrow \ell \nu j j$ for heavy Higgs discovery $\cdot H \rightarrow ZZ \rightarrow \ell\ell jj \qquad J$ • WW \rightarrow H with forward jet tags $\cdot t \rightarrow Wb \rightarrow 3i$ top mass measurement • $t \rightarrow H^{\pm} \rightarrow \tau v$ charged Higgs search squarks, gluinos search through Ermiss signatures MSSM Higgs • H.A → τ+τ- compositeness search through $pp \rightarrow jets$ • W′. Z′ → ii

HCAL

- ➢ Barrel (HB) 0<| ח |<1.3</p>
- ➤ Endcap (HE) 1.3<| ח |<3.0</p>
- Forward (HF) 3.0<| ח |<5.2</p>
- Outer barrel (HO)

HCAL-HB

 2 half barrel, each composed of 18 identical 20° wedges in φ.
 Wedges: flat brass absorber plates aligned parallel to the beam axis; each is segmented into 4 sectors in φ.

Physical properties of the HB brass absorber:

chemical composition	70% Cu, 30% Zn
density	8.53 g/cm^3
radiation length	1.49 cm
interaction length	16.42 cm

8

9

11

12

 \oplus

13

10

HCAL-HB

HCAL-HB

>HB: 2304 towers - 2 (half) ×18 wedges ×4 sector in ϕ ×16 sector in η .

>A given ϕ : a single mechanical scintillator tray unit

 \succ Each layer has 108 trays: 2 (half) \times 18 wedges \times 3 trays

HCAL-HB optics

Layer to Tower Decoding Fiber

HCAL-HE

▶ 1.3<| n |<3.0: ~ 34% of the particles produced in the final state
▶ Brass absorber plates: an 18-fold Φ-geometry (20°)
▶ 19 active plastic scintillator layers: index -1,0,1-18
▶ The thickness of the plates is 78mm while the scintillator thickness is 3.7 mm (layers1-17), 9 mm (layer 0)

≻20916 tiles

1368 trays: 2 (half) × 19 layers × 36
27 ,28 plus guard ring "29": 3 divisions in depth which are read-out separately.
Other towers (except 16 and 17 which overlap with EE) have two longitudinal readouts

Tower	η range		Detector	Size		Depth	
index	Low	High		$\eta \phi$		segments	
16	1.305	1.392	HB, HE	0.087	5°	HB=2, HE=1	
17	1.392	1.479	HE	0.087	5°	HE=1	
18	1.479	1.566	HE	0.087	5°	HE=2	
19	1.566	1.653	HE	0.087	5°	HE=2	
20	1 653	1 740	HE	0.087	5°	HE=2	
21	1.740	1.830	HE	0.090	10°	HE=2	
22	1.830	1.930	HE	0.100	10°	HE=2	
23	1.930	2.043	HE	0.113	10°	HE=2	
24	2.043	2.172	HE	0.129	10°	HE=2	
25	2.172	2.322	HE	0.150	10°	HE=2	
26	2.322	2.500	HE	0.178	10°	HE=2	
27	2.500	2.650	HE	0.150	10°	HE=3	
*28	2.650	3.000	HE	0.350	10°	HE=3	

HCAL-HO

Central region: the combined stopping power of EB plus HB does not provide sufficient containment for hadron showers.

The mean fraction of energy in HO increases from 0.38% for 10 GeV pions to 4.3% for 300 GeV pions ($\eta = 0$). "tail catcher"

Rings & Sectors

- Consists of layers of scintillator located outside of the magnet coil.
- ➢ 5 rings (2.536 m wide along the z-axis) each having 12 sectors.
- 5 rings: -2,-1,0,+1,+2; Central z positions: -5.324m, -2.686m, 0, +2.686m, +5.342m
- Central ring (ring 0): two layers of 10 mm thick scintillators on either side of the 'tail catcher' iron (18 cm thick) at radial distances of 3.82m and 4.07 m, respectively. Others 4.07m.

A view of the yoke

Trays & Tiles

> Each identical ϕ sector: 6 slices (trays).

Ring	Layer	Width along ϕ in mm					
		Tray 1	Tray 2	Tray 3	Tray 4	Tray 5	Tray 6
0	0	274	343	332	327	327	268
0	1	300	364	352	347	347	292
$\pm 1, \pm 2$	1	317	366	354	349	349	406

- Divisions along n (smallest scintillator unit, called a tile)
 - ✓ Ring 0 (2 layers): 8 η -divisions (tiles) -4,-3,-2,-
 - 1,+1,+2,+3,+4
 - ✓ Ring 1: 6 divisions 5~10 (Ring -1: -5~-10)
 - ✓ Ring 2: 5 divisions 11~15 (Ring -2: -11~-15)

Without tiles: tower number ± 5 Trays 4&5 in sector 4 0f ring+1 Trays 3,4,5,&6 in sector3 0f ring-1

Layout of all the HO trays

Length of a full tray: 2510mm (shorter trays: 2119mm)

> Gap between ring0 and ring ± 1 , the η boundaries of HO tower 4 do not match the barrel η boundaries. So part of HO tower 5 overlaps with tower 4 in the barrel. > Tiles sizes: roughly map the layers of HB to make towers of granularity 0.087×0.087 in η and ϕ .

HO tile dimensions along $\ \eta \$ for different rings and layers

ower #	$\eta_{ m max}$	Length (mm)	Tower #	$\eta_{ m max}$	Length (mm)	
Ring 0 Layer 0			Ring 0 Layer 1			
1	0.087	331.5	1	0.087	351.2	
2	0.174	334.0	2	0.174	353.8	
3	0.262	339.0	3	0.262	359.2	
4	0.326	248.8	4	0.307	189.1	
F	Ring 1 L	ayer 1	Ring 2 Layer 1			
5	0.436	391.5	11	0.960	420.1	
6	0.524	394.2	12	1.047	545.1	
7	0.611	411.0	13	1.135	583.3	
8	0.698	430.9	14	1.222	626.0	
9	0.785	454.0	15	1.262	333.5	
10	0.861	426.0				

View of a typical tile of HO with WLS fibres inserted in the 4 grooves of the tile

The arrangement of scintillation tiles, plastic covers and connectors in a tray.

Ring #	Tiles/tray	Fibres/tray	Fibres/connector
0	8	32	16
±1	6	24	12
± 2	5	20	10

Each tray has two optical connectors mounted on one end of the tray

HCAL-HF

Experience unprecedented particle fluxes.

> On average, 760GeV per proton-proton interaction is deposited into the two forward calorimeters, compared to only 100GeV for the rest of the detector.

> Not uniformly distributed, pronounced maximum at the highest rapidities

radius 130 cm & innner radius 12.5 cm; Length: $165 \text{cm}(\sim 10\lambda)$

Embedded radiation hard quartz fibers:
 Half run over the full depth of the absorber; Provide a fast collection of Cherenkov light. \checkmark 600 \pm 10 μ m in diameter for the fused-silica core, 630^{+5} -10 µm with the polymer hardcladding, and 800 ± 30 µm with the protective

acrylate buffer.

Attenuation length: ~15 m

another half starts at a depth of 22cm from front. ✓ Long (1.65 m) and short (1.43 m) quartz fibers are placed alternately with a separation of 5 mm. ✓ Over 1000km of fibers are used.

 Possible to distinguish EM shower and HAD shower

HF Lateral

>20° modular wedges; 18 wedges. >The fibers are bundled to form 0.175×0.175 towers in η and ϕ .

Ring No	$(r_{\rm in}, r_{\rm out})$	$\Delta\eta$	$\Delta \phi$	$N_{ m fib}$	A_{bundle}	$\frac{A_{\text{bundle}}}{A_{\text{photocathode}}}$
	[mm]		[degree]		$[mm^2]$	1
1	(1162–1300)	0.111	10	594	551	1.14
2	(975–1162)	0.175	10	696	652	1.33
3	(818–975)	0.175	10	491	469	0.96
4	(686–818)	0.175	10	346	324	0.66
5	(576–686)	0.175	10	242	231	0.47
6	(483–576)	0.175	10	171	167	0.34
7	(406–483)	0.175	10	120	120	0.25
8	(340–406)	0.175	10	85	88	0.18
9	(286–340)	0.175	10	59	63	0.13
10	(240–286)	0.175	10	41	46	0.94
11	(201–240)	0.175	10	30	35	0.71
12	(169–201)	0.175	20	42	52	0.11
13	(125–169)	0.300	20	45	50	0.10

Sizes of the HCAL trigger towers

Tower	$ \eta_{ m max} $	Detector	Size	
index			η	ϕ
1–15	$0.087 imes \eta$	HB	0.087	5°
16	1.392	HB, HE	0.087	5°
17–20	$0.087 imes \eta$	HE	0.087	5°
21	1.830	HE	0.090	5°
22	1.930	HE	0.100	5°
23	2.043	HE	0.113	5°
24	2.172	HE	0.129	5°
25	2.322	HE	0.150	5°
26	2.500	HE	0.178	5°
27	2.650	HE	0.150	5°
28	3.000	HE	0.350	5°
29	3.314	HF	0.461	20°
30	3.839	HF	0.525	20°
31	4.363	HF	0.524	20°
32	5.191	HF	0.828	20°