Detector

And for this physics what detector?

A detector which, for this physics, in the energy domain under consideration
collects a maximum of unbiased events

It is clearly neither a LEP ($\mathrm{e}^{+} \mathrm{e}^{-}$) detector nor an LHC detector
even though some reminiscence of LEP detectors, some synergies with the LHC upgrades appear

Detector

Outline

The goal of such a detector Physics constraints
precision, efficiency, hermeticity
angular distributions, energy spectra, needed performances

Charged track measurement
Neutrals measurement

Collider constraints

The degrees of freedom

The technologies
background, timing
the choice of the design is there any?
for the different subsystems scintillator, silicium, gas

Detector

Goal and physics constraints

The basic functions:

Measure
Identify

What?

Detector

Goal and physics constraints

That depends!

top threshhold, measuring the $t \bar{t}$ cross section

$$
\text { identify the } t \bar{t} \text { system }
$$

do I want to identify each t? to measure their asymetry ??

$\mathrm{t} t$ to study the branching fractions of the top
identify a top but where is it?
study the other
in the details of its decay

Detector

\qquad
Goal and physics constraints

That depends!

Higgs study
via ZH
recoil mass to the Z ?
precision on the $\mu \mu$ mass
\Rightarrow precision on the momenta
precision on E_{CM}
\Rightarrow beamstrahlung

Z identification, H signature,
 branching ratios, understanding the b's, the τ 's, the W's

Detector

Goal and physics constraints
Most of the physics we consider implies seeing W's, Z's, H's.

We do not want to see the content of the W's or Z's
(except if we want to measure more accurately their decays)
but we want to identify and measure them
in all their decay modes

But we wish to know in detail the content of the H

Detector

Goal and physics constraints
The functions of our detector are then to:
Measure momenta, energy, spin state Identify leptons, hadrons
the leptons:
primary leptons,
leptons from decays of $\mathrm{Z}, \mathrm{W}, \mathrm{H}$
and heavy flavours

they sign the presence of neutral leptons

the hadrons :
primary
or coming from the $\mathrm{Z}, \mathrm{W}, \mathrm{H}$ decays
identifying those from heavy quarks b and c, or light
the photons, primary or coming from π^{0}.

Goal and physics constraints

The hadrons of interest decay with a lifetime different according to their content in b, c or s: they are first identified
by their flight length, their mass, their decay content.

Do we want to know the jet of a given quark?
or simply to identify this quark and reconstruct the 4-vector of a diquark?
\longrightarrow

Goal and physics constraints

Henri Videau Weihai August 2016

Detector

Goal and physics constraints
The "visible" leptons are charged \Rightarrow measure the charged leptons the neutral leptons never come alone
The hadron jets contain
in majority charged particles (60\%)
but also photons coming from $\pi^{0}(30 \%)$
and a certain number of neutral hadrons with a long life ($\mathrm{K}^{0}, \mathrm{n}$) these fractions fluctuating stongly.

It can be envisaged to measure globally these jets,
some did it, or to measure each of them independently

But to measure a charge or even a muon a magnetic field is mandatory

Detector

Seeing, measuring the particles through their interaction with a surrounding medium which takes note of their passage.

Strong and weak interactions may provoke interactions and decays
but what is observable directly in the detector is linked to the electromagnetic interaction, to the transfer of a little fluctuating energy-momentum from a charged track to the medium.
bubble chamber

This can be incoherent, interaction with the atoms independently, excitation (light emission), ionisation (electron emission, $\mathrm{dE} / \mathrm{dx}$) or coherent, interaction with the medium as a whole (optical index) Cerenkov, transition radiation

Measurement of the charged particles

momentum measurement point precision
do not perturb trajectories, matter

impact parameter measurement

dE/dx measurement

time of flight measurement
range measurement
coherent effects

What defines the level of performance

How to measure a momentum
by a curvature in a magnetic field
Shape of the field :
C(UA1), toroid (Atlas), axial (solenoid) (many many)

Impact on the beam, on the polarisation
For electrons with longitudinal polarisation better to have the field along the beam

Motion of a particle in a magnetic field

$$
P^{\mu}=m U^{\mu}=m \gamma(c, \vec{V})
$$

$$
\frac{d P^{\mu}}{d \tau}=q F^{\mu \nu} U_{v}
$$

in the case of zero electric field the spatial part writes

$$
m \gamma \frac{d \vec{v}}{d \tau}=m \gamma^{2} \frac{d \vec{v}}{d t}=q \gamma(\vec{V} \times \vec{B})
$$

Writing with complex numbers the motion in the plane orthogonal to B
$\frac{d v}{d t}=-i \frac{q B}{m \gamma} V \quad$ then writing $\omega=\frac{q B}{m \gamma}$

$$
\begin{aligned}
& \frac{d v}{v}=-i \omega d t \\
& v=v_{0} e^{-i \omega t}
\end{aligned}
$$

The trajectory is a circle of radius

$$
x=x_{0}+i \frac{v_{0}}{\omega} e^{-i \omega t}
$$

$p_{\perp}=q R B$

$$
R=\frac{v}{\omega}=\frac{m \gamma v}{q B}=\frac{p_{1}}{q B}
$$

in SI, p is in VC/c, qRB in CmT if the charge is in electrons: $p(e V)=c R(m) B(T)$

$p_{1}(\mathrm{GeV})=0.3 B(T) R(m)$

$$
\rho=\frac{p_{\perp}}{\sin \theta}
$$

Detector

momentum measurement in a magnetic field

 by measuring the trajectory sagitta

$$
\begin{aligned}
& p_{\perp} G e V=0.3 B R \quad \mathrm{Tm} \\
& \delta\left(\frac{1}{p_{\perp}}\right)=\frac{\delta p_{\perp}}{p_{\perp}^{2}}=\delta f \frac{8}{0,3 B L^{2}}
\end{aligned}
$$

at constant length, $\delta \mathrm{f}$ for f small is constant, number of points constant, point precision when L varies the number of points reduces like L and δf behaves in $L^{-1 / 2}$

Example: $\mathrm{L}=2 \mathrm{~m}, \mathrm{~B}=4 \mathrm{~T}, \delta \mathrm{f}=10^{-4} \mathrm{~m}, \delta \mathrm{p} / \mathrm{p}^{2}=0,410^{-4}$ the $\%$ for 250 GeV muons

Henri Videau Weihai August 2016

Detector

Angular dependency
a track of momentum p and polar angle θ
what aspect ratio to choose for a cylindric detector?
$p_{\perp}=p \sin \theta \quad \delta p_{\perp}=a p_{\perp}^{2} \quad$ with $\quad a \propto L^{-2.5} \quad \delta p=\frac{\delta p_{\perp}}{\sin \theta}$
we forget about the error on θ

$$
\text { putting } \quad x=\cos \theta
$$

$$
\delta p \propto L^{-2.5} p^{2} \sin ^{2} \theta / \sin \theta=L^{-2.5} p^{2}\left(1-x^{2}\right)^{1 / 2}
$$

Barrel $\mathrm{L}=\mathrm{R}$	$\delta p \propto R^{-2.5} p^{2}\left(1-x^{2}\right)^{1 / 2}$
End cap $\mathrm{L}=\mathrm{Z} \operatorname{tg} \theta$	$\delta p \propto \mathrm{Z}^{-2.5} p^{2} \frac{x^{2.5}}{\left(1-x^{2}\right)^{0.75}}$

Henri Videau Weihai August 2016

Detector

We could consider the following exercise:
considering that the price of, say, the ECAL, is proportional to its surface, then taking the surface as a constant what is the best aspect ratio for the tracker ?
That depends on the physical angular track distribution.
Even though most of interesting physics is more picked than that we can consider a $\left(1+\cos ^{2} \theta\right)$ distribution corresponding to Z or $\gamma \rightarrow 2$ fermions.

Calling R the radius and L half the length $\quad A=2 \pi R 2 L+2 \pi R^{2}$ the area A is around 60 m 2 the aspect ratio the angle of the corner $\theta \quad \alpha=\frac{R}{L}$ take for parameters A and $\cos \theta$

$$
\tan \theta=\frac{R}{L} \quad \cos \theta=\frac{L}{\sqrt{L^{2}+R^{2}}}
$$

$$
L=\sqrt{\frac{A}{2 \pi \alpha(2+\alpha)}} \quad R=\sqrt{\frac{A \alpha}{2 \pi(2+\alpha)}}
$$

$$
\frac{\alpha}{\alpha}=\sqrt{\frac{1}{\cos ^{2} \theta}-1}
$$

Impact parameter

Multiple scattering in \leftarrow induces error on \rightarrow Shortest distance from the the detection element interaction point to the track (essential for decays)

$$
\theta=\frac{13.6}{p \beta} \sqrt{t}
$$

where the thickness t is in radiation length and p in MeV

at a distance r the uncertainty on the impact parameter d is
what is the origin of the particle ?
the interaction point,
a decay point ?

$$
\delta d=r \frac{13,6}{p \beta} \sqrt{t}
$$

be as precise as possible, as close as possible as "transparent" as possible
$\mathrm{dE} / \mathrm{dx}$ \qquad with the hands the global features

Why this first slope in $1 / \beta^{2}$?
The momentum transfered by the incident particle to an electron of the surrounding material depends on the time during which the force induced by the electric field of the incident particle is applied: $1 / \beta$
The energy lost goes like the square of the momentum

Why does it grow up when the γ of the particle grows?

Why a plateau? (Fermi plateau)
The surrounding matter gets polarised as an effect of the field which is then screened stopping the increase of the γ effect.
$\mathrm{dE} / \mathrm{dx} \quad$ Energy lost by a particle passing through matter
Consider a charged particle A passing at a distance b d'un from an electron
-What is the field generated by A at the place of the electron?
-What is the momentum transfered to the electron?
-What is the energy lost by A?
-What happens when a particle A goes through a material?

Particlesystem

Detector

$\mathrm{dE} / \mathrm{dx} \quad$ Energy lost by a particle passing through matter
In the system of A (noted '), the electric field is

$$
\vec{E}^{\prime}=\kappa q \frac{\vec{r}^{\prime}}{r^{\prime 3}}
$$

$$
E_{y}^{\prime}=\kappa q \frac{b}{r^{\prime 3}}=\kappa q \frac{b}{{\sqrt{b^{2}+(\gamma v t)^{2}}}^{3}} \quad \text { with } \kappa=\frac{1}{4 \pi \epsilon_{0}}
$$

Particle system
In the laboratory:
by Lorentz transformation of the field $\quad E_{y}=\gamma E_{y}^{\prime}$

$$
E_{y}=\frac{\kappa \gamma q b}{{\sqrt{b^{2}+(\gamma v t)^{2}}}^{3}}
$$

The force applied to the electron is then

$$
\vec{F}=e \vec{E}=\frac{d \vec{p}}{d t}
$$

and the transfered momentum: $\quad \vec{p}=\int e \vec{E} d t$
When integrating on the time, the component along the motion of A goes to zero

Detector

$\mathrm{dE} / \mathrm{dx} \quad$ Energy lost by a particle passing through matter
The momentum transfered along Oy is:

$$
p_{y}=e \int E_{y} d t=\kappa e q \frac{1}{b v} \int \frac{d x}{{\sqrt{1+x^{2}}}^{3}}
$$

$$
\text { where } x=\frac{y v t}{b}
$$

$$
p=2 \kappa e q \frac{1}{v b}
$$

the electron being non relativistic

$$
E \sim \frac{p^{2}}{2 m} \sim \frac{1}{v^{2} b^{2}}
$$

$$
\begin{aligned}
& \text { the integrand writes } \\
& \text { The integral equal } 2
\end{aligned} \quad \frac{d \xi}{\operatorname{ch}^{2} \xi}=d \text { th } \xi
$$

To get the energy loss, we have to integrate on all the electrons in the medium
i.e. integrate on $b d b d \varphi$ to get the loss by unit length:

$$
\frac{d E}{d x} \propto \frac{1}{\beta^{2}} \int_{b \min }^{b \max } \frac{d b}{b}=\frac{1}{\beta^{2}}\left[\ln b_{\max }-\ln b_{\min }\right]
$$

$\mathrm{b}_{\text {min }}$ is linked to a maximum transfer
$\mathrm{b}_{\text {max }}$ is linked to a minimum transfer

Detector

$\mathrm{dE} / \mathrm{dx} \quad$ Energy lost by a particle passing through matter

$$
E_{\max }=2 m \gamma^{2} v^{2}, \quad b_{\min } \sim \frac{1}{\gamma m v^{2}}
$$

$$
b_{\max }=\frac{\gamma V}{\omega}
$$

where ω is a minimal energy transfer, binding energy
(collision time compared to a period) plasma energy,
screening, Fermi plateau

Detector

Time of flight

Measuring the β of a particle hence its mass if p known Consider a particle describing a trajectory of length L during a time t. Its speed is $\frac{L}{t}=\beta c$ with $0<\beta<1$.
 Knowing its momentum p we deduce the mass which means identify the particle

$$
\beta=\frac{p}{E} \quad m=|p| \sqrt{\frac{1}{\beta^{2}}-1}
$$

Distinguishing two particles of mass m and m^{\prime}

Typically L is around 1 m and t around 3 ns , assume a time measurement with a precision of 10 ps

$$
\delta \frac{\beta}{\beta}=-\frac{\delta t}{t}=\frac{1}{3} 10^{-2}=310^{-3} \quad p_{\max }^{2}=\frac{m^{\prime 2}-m^{2}}{2 \delta \beta}
$$

π can be distinguished from e up to about 2 GeV K from π up to about 6

How realistic is a δ of 10 to 20 ps ? depends on design and technology

Detector

Range

If a particle does not interact strongly and does not decay weakly before to have lost all its energy (mostly muons) it will slow down by $\mathrm{dE} / \mathrm{dx}$ then stop, the range (in calorimeters) depends then entirely on the nature of the particle, its mass and its momentum at the start of the range measurement. The hypothesis that it is a muon can be then tested accurately then its momentum measured more accurately by its range.

Detector

Coherent and macroscopic effects
A medium has a polarisability which transforms E in D
$D=E+4 \pi P \quad$ with $\quad P=\chi E \quad$ where χ is the susceptibility
The dielectric constant is defined as $\quad \epsilon=1+4 \pi \chi$ and the refraction index $n=\Re \sqrt{\epsilon}$

Maxwell equations

$$
\begin{aligned}
& \vec{B}=\mu \vec{H} \\
& \vec{D}=\epsilon \vec{E}
\end{aligned}
$$

$$
\begin{array}{ll}
\nabla \cdot \vec{D}=\rho & \vec{\nabla} \wedge \vec{H}-\frac{\partial \vec{D}}{\partial t}=\vec{j} \\
\nabla \cdot \vec{B}=0 & \vec{\nabla} \wedge \vec{E}+\frac{\partial \vec{B}}{\partial t}=\overrightarrow{0}
\end{array}
$$

Looking for a plane wave solution

$$
\begin{aligned}
& \vec{E}=\vec{E}_{0} \exp [i(\omega t-k z)] \\
& \quad \nabla^{2} \vec{E}=k^{2} \vec{E}=\mu \epsilon \frac{\partial^{2} \vec{E}}{\partial t^{2}}=\mu \epsilon \omega^{2} \vec{E}
\end{aligned}
$$

$$
\vec{\nabla}^{2} \vec{E}-\mu \epsilon \frac{\partial^{2} \vec{E}}{\partial t^{2}}=0
$$

Henri Videau Weihai August 2016

In a non magnetic medium where $\mu=1$
we get the dispersion relation $k^{2}=\epsilon \omega^{2} \quad \mathrm{p}=\mathrm{nE}$ which can be seen as a mass in terms of particles

$$
m^{2}=\omega^{2}-k^{2}=\omega^{2}(1-\epsilon)
$$

Shape of ε as a function of ω :
Suppose that in the medium there is only one transition possible with energy ω_{0}.

$$
\epsilon=1+\frac{\omega_{p}^{2}}{\omega_{0}^{2}-\omega^{2}-i \omega \Gamma}
$$

Detector

In term of mass

$$
m^{2}=\frac{-\omega^{2} \omega_{p}^{2}}{\omega_{0}^{2}-\omega^{2}-i \omega \Gamma}
$$

In case of a weak absorption
we can neglect Γ and:

$$
m^{2}=\frac{\omega_{p}^{2}}{1-\left(\frac{\omega_{0}}{\omega}\right)^{2}}
$$

The square mass is negative below ω_{0}
then goes asymptoticaly toward ω_{p}
When $\mathrm{m}^{2}<0$ spontaneous emission is possible Cerenkov

At high energy the photon mass goes to ω_{p} the emission of photons with a smaller energy
is impossible: quenching
ω_{p} is called plasma frequency, it is the collective oscillation frequency of the electrons around the ions, which corresponds to polarisation

$$
\omega_{p}^{2}=\frac{4 \pi N Z e^{2}}{m}
$$

21 MeV in water

Seen from a charged particle the electron density is $\mathrm{x} \gamma$ and the plasma frequency becomes $\gamma \omega_{p}$
(Synchrotron radiation, bremssthralung) quenching

Detector

Transition radiation
radiation emitted when the particle crosses the boundary between two media with different dielectric constants photon number ~ $\alpha \gamma$
domain: radio, optical, X

beam monitor electron identification (Atlas)

Detector

Cerenkov

When a particle enters a medium where it propagates faster than the speed of light it radiates
scheme derived from the Huyghens principle

Classical image: Cerenkov cone as a spherical waves envelop

Detector

Cerenkov

a particle approach

$$
\begin{aligned}
& E_{1}=E_{\gamma}+E_{2} \\
& p_{1}=p_{\gamma} \cos \theta_{\gamma}+p_{2} \cos \theta_{2} \\
& 0=p_{\gamma} \sin \theta_{\gamma}+p_{2} \sin \theta_{2}
\end{aligned}
$$

$$
\begin{aligned}
\left(p_{1}-p_{\gamma} \cos \theta_{\gamma}\right)^{2}+\left(p_{\gamma} \sin \theta_{\gamma}\right)^{2}=p_{2}^{2} & =E_{2}^{2}-m^{2} \\
& =\left(E_{1}-E_{\gamma}\right)^{2}-m^{2}=p_{1}^{2}+E_{\gamma}^{2}-2 E_{1} E_{\gamma}
\end{aligned}
$$

rewriting the left part

$$
E_{\gamma}^{2}-2 E_{1} E_{\gamma}=p_{\gamma}{ }^{2}-2 p_{1} p_{\gamma} \cos \theta_{\gamma} \quad\left(1-n^{2}\right) E_{\gamma}=2 E_{1}-2 n \beta E_{1} \cos \theta_{\gamma}
$$

$$
\cos \theta_{\gamma}=\frac{1}{n \beta}+\frac{n^{2}-1}{2 n \beta} \frac{E_{\gamma}}{E_{1}}
$$

$$
\text { radiation emission if } \frac{1}{n}<\beta
$$

Remark: $\quad p_{\gamma}=n E_{\gamma} \sim m_{\gamma}{ }^{2}=\left(1-n^{2}\right) E_{\gamma}{ }^{2}<0 \quad$ Cerenkov

the square mass of the photon is negative, that is why the reaction is possible emission up to ω_{0}
 α coupling, $\hbar c$ dimension, kinematics order of magnitude 1/137 if length and energy are in the same unit $\hbar c=1$

Example: $\mathrm{dx}=1 \mathrm{~cm}=510^{4} \mathrm{eV}^{-1}, \mathrm{dE}=0,02 \mathrm{eV} \Rightarrow \mathrm{dN} \sim 7$

Additional remarks: time resolution due to the coherence, linear polarisation due to the problem symmetry

Detector

RICH, CRID, DIRC, ...
like in LHCb (LHC)
DELPHI (LEP)
difficult to integrate in a general purpose onion like detector

Cerenkov

Applications:

 threshold Cerenkov (beams), diaphragm Cerenkov imaging Cerenkov
Detector

Measuring the neutrals

by converting them first into charged particles
through electromagnetic decay or interaction: $\pi^{0} \mathrm{~s}, \gamma^{\prime} \mathrm{s}$ through weak interactions, decays (depends on lifetime) :
$D^{01} s, B^{01} s, K_{s}^{0}$'s

- through strong interactions: n's, K K^{0} 's
but decays may be in neutrals interactions may generate neutrals
\Rightarrow Loop on interactions: < showers.»
The basis of calorimetry

END OF THE THIRD LECTURE ?

Detector

Means of particle identification

What are the properties specific to leptons, electrons, muons, taus, hadrons from different quarks which make them behave differently in the detector?

Their type of interaction : electromagnetic, strong, weak Their mass
Their decays, lifetime, decay mode Their interaction products, showers

They are
Charged, then momentum measurable by its trajectory in B $\frac{\delta p}{p}=\alpha p$
electromagnetic, \quad the energy can be measured in a calorimeter $\quad \frac{\delta E}{E}=\frac{\alpha^{\prime}}{\sqrt{E}}$
Typical values : $\alpha=10^{-4}, \quad \alpha^{\prime}=10^{-1}$ for momenta and energies in GeV
The energy is better measured than momentum
above 100 GeV
But they are light:
they emit photons by bremsstrahlung (spoils the energy measurement)
and generate δ rays (spoils the trajectory measurement by biasing the points)

Detector

Resolution figures

In the domain of interest the tracker is always better.

Only at very high energies does the Ecal compete for electrons measurement but it is needed for bremsstrahlung

Identification tools

- track to shower match

E(calo)/p(tracker) close to 1
positions at entrance of calorimeter close by

- shower shape: longitudinal
and transverse (Moliere radius*),
- shower start
- dE/dx (even δ rays or knock-on, first K identification)
- specific detectors: Cerenkov, transition radiation
is it a "prompt" electron or a γ conversion?
- impact parameter? difficult tangent pointing to interaction
- two tracks tangent where no point is in front
- contact point on a dense medium

Contamination: charge exchange detector imperfections

* radius of a cylinder along the track containing

Detector

Leprince-Ringuet Lhéritier 1943

A way to sign a new particle

Dessin stéréoscopique de la collision.

Exercise: A particle A with mass m_{A} goes through a gas and hits an electron from the medium, which momentum and angle are measured. Compute m_{A} from the data on the figure. Compare to a $\pi(140 \mathrm{MeV})$, a $\mathrm{K}(494 \mathrm{MeV})$ or a proton, is it possible, in such a case, to identify the particle by measuring the electron momentum?

$$
\mathrm{m}_{\mathrm{e}}=511 \mathrm{kEV}
$$

initial state lab

initial state CM
A
final state
final state lab

e

initial state

$$
\binom{E_{A}+m_{e}}{\vec{p}_{A}} \quad E_{A}^{2}=m_{A}^{2}+p_{A}^{2}\binom{\frac{E_{A}^{\prime}}{p_{A}^{\prime}}+\frac{E^{\prime}}{e}}{p_{A}^{\prime}} \quad \begin{aligned}
& E_{A}^{\prime 2}=m_{A}^{2}+p_{A}^{\prime 2} \\
& E_{e}^{\prime 2}=m_{e}^{2}+p_{e}^{\prime 2}
\end{aligned}
$$

ALEPH

$z^{\alpha} e^{-\beta z}$
Parametrisation:

Detector

Electrons
 Muons

$$
e+e-\mu+\mu-
$$

Henri Videau Weihai August 2016

A charged particle which looses energy
 ~ only by dE/dx

Muon identification

penetration, muon chambers*, range shape of the deposit in the calorimeter, link to the track, momentum in material
is not totally negligible
signs the presence of a neutrino

contamination: sail through or punch through, decay in flight

* detectors placed after

Very important for the physics
because of its lifetime 290.3 fs ct about 100μ and hadronic decay modes
which provide a measurement of its spin state
Polarimeter, correlations
Higgs CP state by its decay in two taus transverse/transverse polarisation correlation

main decay modes

Tau identification

by the lifetime by the decays

leptonic decays

hadronic decays

Tau longitudinal polarisation measurement

$\tau \longrightarrow \pi \nu$ decay.

Write the relation between the π energy in the laboratory and the cosine of the angle between the line of flight of the τ and the π in the $\tau C M$.

$$
\begin{gathered}
m_{\tau}=1,77 \mathrm{GeV} m_{\pi}=140 \mathrm{MeV} m_{v}=0 \\
E \pi \sim E \tau / 2\left(1+\cos \theta^{*}\right)
\end{gathered}
$$

Polarisation and angular distribution

$$
\begin{gathered}
W\left(\cos \theta^{*}\right)=\left(1+P \cos \theta^{*}\right) \\
W(E \pi)=(1-P+2 P E \pi / E \tau)
\end{gathered}
$$

More complicated in the case of the ρ, there exist an optimal variable $\sim E_{\pi}-E_{\pi 0}$

In the centre of mass frame *

$$
\begin{array}{ll}
m_{\tau}=E_{\pi}{ }^{*}+E_{v}{ }^{*} & \overrightarrow{0}=\vec{p}_{\pi}{ }^{*}+\vec{p}_{v}{ }^{*} \Rightarrow p_{v}{ }^{*}=p_{\pi}{ }^{*}=p^{*} \\
E_{v}{ }^{* 2}=p^{* 2} & E_{\pi}{ }^{* 2}=p^{* 2}+m_{\pi}^{2} \\
E_{\pi}{ }^{* 2}-E_{v}{ }^{* 2}=m_{\pi}^{2}
\end{array}
$$

$$
E_{\pi}{ }^{*}-E_{v}{ }^{*}=\frac{m_{\pi}^{2}}{m_{\tau}} \quad E_{\pi}{ }^{*}=\frac{1}{2} \frac{m_{\tau}^{2}+m_{\pi}^{2}}{m_{\tau}} \quad E_{v}{ }^{*}=\frac{1}{2} \frac{m_{\tau}^{2}-m_{\pi}^{2}}{m_{\tau}}=p^{*}
$$

Going to the lab frame

$$
\gamma=\frac{E_{r}}{m_{T}}
$$

$$
E_{\pi}=\gamma E_{\pi}^{*}+\beta \gamma p^{*} \cos \theta_{\pi}^{*}
$$

At very high energy

$$
E_{\pi}=\gamma E_{\pi}^{*}\left(1+\cos \theta_{\pi}{ }^{*}\right)
$$

Henri Videau Weihai August 2016

Tau polarisation and decay products angular distribution

$$
\text { Spin } 1 / 2 \text { rotation matrix } \quad \boldsymbol{D}_{\boldsymbol{y}}(\theta)=\left(\begin{array}{ll}
\cos \frac{\theta}{2} & -\sin \frac{\theta}{2} \\
\sin \frac{\theta}{2} & +\cos \frac{\theta}{2}
\end{array}\right)
$$

Taking a tau (spin 1/2) of a given helicity $\hbar / 2$ we move to its rest frame, the spin is aligned with the tau line of flight. After decay in πv, the spin of the π is 0 , the helicity of the v is $\xi(-1 / 2)$ the probability to measure $\hbar / 2$ along a direction at an angle θ^{*} is given by the rotation matrix to be $\cos ^{2} \theta^{*} / 2$

$$
\left\langle 1 / 2,1 / 2 \mid \theta^{*},-1 / 2\right\rangle=\langle 1 / 2,1 / 2| R_{y}\left(\theta^{*}\right)|0,-1 / 2\rangle
$$

The angular distribution is then in $\frac{\left(1+\cos \theta^{*}\right)}{2}$
for the other tau helicity $\left(1-\cos \theta^{*}\right)$ for the other tau helicity $\frac{\left(1-\cos \theta^{*}\right)}{2}$

Henri Videau Weihai August 2016

Tau polarisation and decay products angular distribution
$P^{+}\left(P^{-}\right)$being the probability for the τ to be in the $\hbar / 2(-\hbar / 2)$ state the probability to observe $\hbar / 2$ along the π direction is
$P^{+} \frac{\left(1+\cos \theta^{*}\right)}{2}+P^{-} \frac{\left(1-\cos \theta^{*}\right)}{2} \propto 1+P \cos \theta^{*}$ with $P=\frac{P^{+}-P^{-}}{P^{+}+P^{-}} \quad P$ being the tau polarisation
The angular distribution in the CM writes then

$$
W(\theta, \varphi)=\frac{1}{4 \pi}\left(1+P \cos \theta^{*}\right) d \cos \theta d \varphi
$$

To measure the tau polarisation we use the pion energy in the laboratory

$$
E_{\pi}=\gamma_{\tau} E_{\pi}{ }^{*}+\beta_{\tau} \gamma_{\tau} p_{\pi}{ }^{*} \cos \theta_{\pi}^{*}
$$

neglecting the pion mass squared in front of the tau mass squared

$$
E_{\pi}=E_{\tau} \frac{1+\cos \theta^{*}}{2}
$$

the pion energy spectrum is then $W\left(E_{\pi}\right)=1-P+2 P \frac{E_{\pi}}{E_{\tau}}$
The slope of the pion energy spectrum provides P

The hadrons and the study of the energy flows.

Except when they come from taus, hadrons appear in jets issued from quarks hadrons are a problem of jets
The charged hadrons: they are measured in the trajectometer they are seen in the calorimeter also
they are identified as not being leptons
Knowing where they come from : what vertex, V0's, decays
The neutral hadrons are seen only in the calorimeter
$\begin{array}{lll}\text { Typical energy fractions at ILC in jets: } & \text { charged tracks } & 60 \% \\ & \text { neutral hadrons } & 12 \% \\ & \text { photons } & 28 \%\end{array}$
These are only mean numbers, they fluctuate a lot depending of the event type and on the specific event

Identify the jet nature by identifying the jet vertex :
b with a lifetime of B0 1520fs but also c D0 410fs

It is a strong advantage to have a good vertex detector precise, stable close to the interaction point

Detector

The hadrons and the study of the energy flows.

Henri Videau Weihai August 2016

Before to go deeper on the PFA, a brief recall on calorimetry
electromagnetic: the photon or électron develop a shower of electrons and positrơns through Bremsstrahlung/pair creation (above 2 MeV)

The incident energy is estimated
by measuring the energy deposited by the shower charged tračks
hadronic:
the hadrons interact in the matter
creating hadrons and $\pi^{0} \mathrm{~s}$! $+\mathrm{n}+\mathrm{KO}$..
those develop electromagnetic showers
when țhe charged hadron deposit by $\mathrm{dE} / \mathrm{dx}$,
but there are nuclear effectsi, creation of slow neutrons

Henri Videau Weihai August 2016

The radiator is characterised by the cross sections of the incoming particles

For electromagnetic processes (pair conversions, Bremsstrahlung) the cross sections are essentially flat above 100 MeV
concept of radiation length $\left(\mathrm{X}_{0}\right)$:
length of material after which electrons have lost 1/e of their energy. It is expressed in units of length (cm) but often in $\mathrm{g} / \mathrm{cm}^{2}$ by dividing by the density.

$$
\text { Approximately } \quad X_{0}=180 \frac{\mathrm{~A}}{\mathrm{Z}^{2}} \mathrm{~g} \mathrm{~cm}^{-2}
$$

Critical energy, comparing the radiation loss with the $\mathrm{dE} / \mathrm{dx}$
At low energies ($<2 \mathrm{GeV}$)
Compton
Photoelectric effect

At high energy at the level of 10^{-4}
muon pair creation
pions

Detector

Above few GeV the cross sections are flat and not too different, concept of interaction length Below, huge differences due to resonances.

About one third of the products of a strong interaction are $\pi^{0^{b}} s$

The non interacting charged hadrons loose energy by $\mathrm{dE} / \mathrm{dx}$ and nuclear collisions with nuclei (40\%)
$\pi^{+} p$ and $\pi^{-} p$ cross sections from PDG

10 mbarn $=1 \mathrm{fm}^{-2}$

Detector

The importance of the calorimeter grain in space and time.

It could seem that the point is on measuring the energy but we measure the 4-momentum and the position of the shower which provides, for neutrals, the momentum direction is at least as essential.
The identification of the shower which rests on its shape needs a grain < shower size longitudinal and transverse.
The separation between close by showers needs the same type of grain.
Recently, linked to technological progress and to the cell size, the precise measurement of the time has revealed as a powerful tool.

Detector

Calorimetric devices

- The homogeneous calorimeters getting a medium where a large fraction of the deposited energy can be seen

Examples: Cerenkov calorimeters lead glass, (superK) scintillation.
crystals Nal, CsI, BGO, PbW04 (CMS)
The energy resolution is excellent, but a fine granularity is difficult to realise

- The sampling calorimeters the functions of radiator to develop the shower and of detector to see the charged tracks are separated the sampling determines the energy resolution since the energy deposited in the radiator is lost. This makes it much easier for the grain.

Today the grain is determined by a detecting cell size
cloud chamber with Pb plates

Detector

Losses and fluctuations

Electromagnetic
Aside what is lost due to sampling (see previous slide) photons below certain energy electrons stopping in the detecting medium

Hadronic
the hadrons passing through the calorimeter medium break nuclei, emitting nuclei fragments which may
 generate huge energy deposit in the detecting medium but also numerous low energy neutrons which wander slowly till they eject a free proton.
Not measuring the neutronic energy creates an imbalance between electromagnetic and hadronic deposits (e/h ratio often around 1.3) introducing in the energy measurement the fluctuations of the electromagnetic fraction

Time problem : the signals from the wandering neutrons is always delayed but may be by times large compared to the electronic integration time or the time between crossing.

Detector

The problem of hadronic shower resolution is mostly related to the different response of the calorimeter to the hadronic component, where neutrons are lost, and to the electromagnetic one, i.e. π^{0}

There are two solutions:
one is to adjust the medium to obtain equal response, (next slide) the other to identify the two components and weight them adequately

This last solution can be obtained by hardware (dual read-out) or by some recognition, this was already the case in H 1 with a liquid argon calorimeter...

These methods to optimise the hadronic resolution are often referred to as "energy flow" techniques as well and indeed the ideas behind are similar.
Also example from ILD AHCAL

Detector

Dual read-out

if you can have access to two informations, one more sensitive to electrons like Cerenkov one less, for the same volume you can combine the two results to correct e/h.

Adjusting e/h

adapt the medium sensitivity to neutrons
by adjusting the amount of hydrogen (Uranium, scintillator)
tune the response by playing with the interaction/radiation length ratio, (10 for Fe, 30 for W).
play with the integration time or using time measurement play with the cell size or FD for digital read out.

Radiator physical properties

Material		Z	$\lambda_{\mathrm{I}} / \mathrm{X}_{0}$	$\mathrm{dE} / \mathrm{dx} \times \mathrm{X}_{0}$ MeV	X_{u} cm
				20.1	1.76
Iron	Fe	26	9.5	7.7	0.35
Tungsten	W	74	27.4	7.1	0.56
Lead	Pb	82	30.5	6.7	0.32
Uranium	U	92	32.8		
				29.8	14.
Argon (liq)	A	18	6.0	66.7	30300
Air			2.5		

Detector

much remains to be done on the subject

As a result of these corrections depending on the energy density and the overall energy of the cluster

> less tails, more Gaussian distribution better resolution (by 15\% in H1)

An approach by neural net on LC simulation gives an improvement of 30%.

This means that we have to design the capability to distinguish electromagnetic and hadronic components.
This may rely on energy density measurement if the cell size is adequate, in case of a read-out by cells small enough fractal dimension .
Notice that in the case of digital read-out the cell size modifies the e/h as measured by counting the hits
time measurement

Detector

The digital read-out

If you measure globally a shower the only information you have is one number meant to be the shower energy your read-out needs to be analogue you may use a dual read-out and have two numbers.
if your detector has been split in pieces, you have a measurement in each piece plus the topology of the fired pieces.
and you may have that way tools to reduce the fluctuations.
The simplest way is to count the number of fired cells, you loose the information on the deposited energy in the cell but you get rid of its fluctuations. It is a trade.
The cell size has to be adjusted for the energy range and for the measurement accuracy.
As the typical size for an electromagnetic shower differs from a hadronic shower, the cell size plays on compensation.

An adequate compromise may be the semi-digital read-out where we record the cells according to different threshold.

The digital mode is less sensitive to the deposits.

Detector

Gas / scintillator as detecting medium Geant4 simulation
10 GeV electrons \quad electron hit cells \square positron hit cells

Gas

Gas advantage slimmer showers, drawback: energy lost
scintillator

the halo blue hits come from Compton induced in Sc by photons

Detector

\square electron hit cells $\quad \square$ positron hit cells

20 GeV pions
\square proton hit cells
\square pion +. hit cells
\square an effect of density gas /sc
the halo green dots are protons kicked out by neutrons

Can you collect, eliminate, the neutrons?
What's best?

Detector

Particle flow algorithm

An approach to jet energy measurement
by separating the different particles of the jet and estimating at best the energy of each of them.

The charged particles are measured in the tracker but the calorimeter has to be cleaned from their deposit The electrons are measured by both combined.
The photons rely on the electromagnetic calorimeter only The neutral hadrons are what remains if proper.

The challenge is 1) to effectively separate and not create fakes identify the decays
2) to optimise the resolutions and particularly the hadronic one

It may imply some level of particle identification

Detector

Once the decays (secondary vertices) have been properly found we can write the 4-momentum of a set of particles as

$$
\begin{aligned}
& \vec{P}=\sum \vec{P}_{\text {charged particles }}+\vec{P}_{\gamma}+\vec{P}_{\text {neutral hadrons }} \\
& \text { and } \quad \sigma^{2}=\sigma_{c h p}^{2}+\sigma_{\gamma}^{2}+\sigma_{n h}^{2}
\end{aligned}
$$

10-4 tracker
0.1 elmgn
0.5 hadronic

$$
\frac{\Delta E}{E} \approx \frac{0.18}{\sqrt{E}}
$$

The photon resolution plays little role and the effort has to be on the hadronic resolution: going to 0.3 would achieve 0.12 on the jet

Detector

But for a real detector two effects play a role
The existence of an effective threshold on

- charged particles due to the high magnetic field needed for background, precision and separation
- photons due to cell threshold and physical background

The probability of confusion

- efficiency of track reconstruction
- vertex misidentification
- wrong associations between tracks and calorimeter cells

$$
\sigma^{2}=\sigma_{c h p}^{2}+\sigma_{\gamma}^{2}+\sigma_{n h}^{2}+\sigma_{\text {conf }}^{2}+\sigma_{\text {thresh }}^{2}
$$

The main enemy is confusion, far more than resolution and the design of the detector has to address this point first
possible algorithm for such a flow analysis goes by descending order of clarity
tracks with vertices, V^{0} 's and $\gamma^{\prime} s$
electron identification
photons from the Ecal knowing the tracks
muon identification
charged hadrons in the calorimeter
neutral hadrons, by topology with energy balance check
then build masses, energies, momenta for any set

And now

Trying to figure out
a real detector on a real collider.

Advantages and problems linked to the IL collider
Advantages

Clean events no pile-up

The laboratory frame is almost the centre of mass
We could naively expect almost isotropic angular distributions
(for example à la $1+\cos ^{2} \theta$ like in $\mathrm{e}+\mathrm{e}-\rightarrow \mathrm{ff}$), but ..,
a large part of the physics is forward !!
Good precision of the vertex
It is possible to measure the tracks very close to the interaction point, 1.6 cm in fact it is limited by the pairs
precise interaction point but for the crossing angle
For a superconducting machine good time separation between events

Detector

But

The energy-momentum constraint is partially lost due to the beamstrahlung.

Pair background due to beamstrahlung. imposes a minimum size to the beam tube/ vertex detector generates background in the forward detectors
Measurement of beam energy, luminosity, polarisation

Timing is difficult for a warm machine. (CLIC)

Crossing angle

The evacuation of the spent beams imposes an angle of 14 mrad between the two beams, breaking the symmetry.

What is then the detector axis, the field axis?
up to now the detector and field axes are the same
they make an angle of 7 mrad with beams, impact on:

- forward detectors, they have two holes
- beam polarisation for incoming beam
- pair background ending on the forward calorimeters

The low energy pairs due to beamstrahlung are captured by the field along the axis and not along the spent beam.
anti Dipole Integrated Device
Henri Videau Weihai August 2016

Detector

L* and cavern size

in today's ILC concept there are two detectors able to occupy the interaction point one after the other, the push-pull scheme

Each of them has to have an assembly / garage place be able to move to the interaction point not to generate fringe fields detrimental to the other

In view of its cost the cavern has to be as small as reasonable

The accelerator has to focus the beam to the point of interaction with a quadrupole which front is at a distance called L* about 4m.
It is much shorter in CEPC which makes things difficult

This L* dictates more or less the length of the detector

The detector design

Basically I will describe here a detector à la ILD.
ILD is not a formal collaboration, there exist no TDR and the design is still in evolution.
driven by the technological developments and the weight of the software

How to ensure:
the hermeticity up to very low angles (Susy) where an axial field becomes inefficient the charged tracks and neutrals measurement the lepton identification ;
but should we forget the hadrons ? (jet charge)

The degrees of freedom

An affair of symmetries

Physicists have an obsession with symmetry.
quasi a religion which does not need to be followed
There is one "point" of interaction would we go for a sphere? paving a sphere? not easy for mechanics!

Neglecting the crossing angle, there is an axis that speaks for a cylindrical symmetry which is convenient for the coil of a solenoid not an infinite cylinder though (good for rapidity)
end caps for a limit which re-establish roughly the spherical symmetry

But again a cylindrical symmetry is not mechanically trivial and the 2π symmetry gets broken to a regular polygon the more sides, the closer to a circle the choice depends on other considerations like holes, feed through ..
but be carefull not to ruin the asymmetries you measure
Henri Videau Weihai August 2016

From sphere to real
the eightfold way

Henri Videau Weihai August 2016

Detector

You may feel free to construct your design from nice principles BUT
It depends first on the amount you consider possible to spend!
which here boils down to what was CMS or Atlas price (at the time of TDR or real?).

And the coil??

An onion with

the tracker at the centre surrounded by the calorimeter

High precision close to the IP with high transparency
then reveal the event pattern and measure the momenta
and very close tothe calorimetry which tries to separate at best photons and hadrons

Provide an information on particles redundant and
as continuous as possible no crack in depth.

ALEPH a detector for LEP

place of the coil:
an historical evolution
first after the tracker UA1, PEP4 then after the electromagnetic calorimeter ALEPH for example
now after the hadron calorimeter

The typical longitudinal design

In a cylindrical scheme
we have to close the cylinder, or the different cylinders
We try to follow the onion scheme but
the beam needs a hole
the field needs to be returned, by iron or coils generating strong mechanical constraints the accelerator has constraints like L*

The nightmare of the beam vicinity in particular if you choose a TPC
How to close the vertex, pixel disks
 how do you close the tracker down to ?
The trouble of a Luminosity calorimeter with its constraints, physical/technical

In a cylinder the delicate corners

Not speaking about how power gets in and signal out

Detector

The choices of ILD

ILD follows the recipe with:

- a composite central tracker,
gaseous TPC in the middle a silicon tracker
vertex
inner Si tracker
outer Si tracker
- a forward system,
lumical
\Rightarrow conical beam tube tracking disks
LHCAL, fills transverse and depth holes beamCal

- a calorimetric system inside the coil

ECal
HCal

- the coil in its cryostat
- the return yoke instrumented

The specific id detector with coherent effects Cerenkov TR detector

Detector

the field system

need of a 3.5-4 T field to

- provide the momentum precision
- squeeze the background in the beam tube

To be rather homogeneous in TPC
at least well mapped
even though we may add a dipole field to focus the background (anti-DID)
well returned by an instrumented yoke fringe field

Precision in $B R^{2}$ or rather in $B R^{2.5}$ but R very forward??
What field? 3, 4, 5, 6 T? mechanical stability in $B^{2} R$

Little exercise

Consider a coil with $\mathrm{R}=3 \mathrm{~m}, \mathrm{~B}=4 \mathrm{~T}$ with a tracker $R=1.7 \mathrm{~m}$ as the calorimeter is inside 1.3 m

$$
\mathrm{BR}^{2}=11.56 \quad \text { et } \mathrm{B}^{2} \mathrm{R}=36
$$

To reduce size and cost, we cut the tracking zone at $R=1,2 m$ et preserve le calorimeter hence $\mathrm{R}=2.5$

We obtain the same resolution with $B=8 T$!!! $\quad B^{2} R=160$!!!!

It is clear that we must first improve the measurement precision: by a factor $(1.2 / 1.7)^{2}$ i.E. ~ 2 hard!
and we should keep the tracker transparent, little material in front of the calorimeter

Detector

the forward system
The luminosity calorimeter Lumical to measure the luminosity with Bhabhas
no material in front
\Rightarrow conical beam tube centred around the outgoing beam, not the detector axis

The beam tube transparent : Beryllium in its centre but loaded with cables

LHCAL

a hadron calorimeter which helps hermeticity and provides pion/muon separation forward SUSY

conical beam tube lumical for the luminosity LHCAL to sign low angle hadrons beamcal survey of the beam and closure

BeamCal

a small calorimeter which receives and backscatters a lot of background, identifies electrons and monitors the beam

Detector

LumiCal LHCal BCal

Henri Videau Weihai August 2016
Pump to be removed L*

Recipe for the vertex detector

Very precise, close to the interaction vertex, very transparent, but with enough layers to be able to do an autonomous track reconstruction (low momenta)
precision: intrinsic (pixels), alignment a priori, using data close to IP, but the price is a strong background, radiation hardness, occupation level \Rightarrow pixels
 read-out speed
transparent then thin with a minimum of mechanical structure and electronics but stability. Cabling more power than data.
number of layers, cost ? amount of material at the start of the tracker

Recipe or a central tracker

```
A TPC surrounded by silicon:
a gaseous TPC for transparency (except end plates)
    redundancy }200\mathrm{ points
        then easy pattern
    dE/dx
a silicon envelope for ultimate precision (factor 2)
    safety
    alignment
```

 Forward the field does not help
 we can only count on
 kinematical opening:
 do it large and mostly long!!
 but stability, alignment, distortions, cost!!
 and it does not help to make it large if you can not ensure
 an adequate separation.
 Dilemma: small precise (for good separation) / lousy large?

Recipe or a central tracker

2 solutions: silicon à la CMS hopefully lighter! gaseous detector TPC a mix

Silicon
beyond a certain radius, the occupation level is such that strips are enough, pixels are not needed but may become competitive
make it thin, though preserving the positioning precision stability at a level of few microns!
problem of mechanical support and electronic volume and power supplies

Detector

Recipe or a central tracker

TPC the principle
In a volume of gas there are a magnetic field and an electric field more or less parallel.
The particle passing through excite some atoms luminescence and ionize others.
The freed electrons start to drift under the joint effect of the fields.

The TPC is a cylindrical field cage defining properly E between a central electrode and two end plates.
The electrons drift toward the end plate their time of arrival provides the z coordinate, pads on the end plates provide X and y

central electrode

Drift under the action of electric and magnetic fields

$$
\left(\frac{d}{d t}+\frac{1}{\tau}\right) \vec{v}=\frac{e}{m}(\vec{E}+\vec{v} \wedge \vec{B})
$$

Where kv is a braking force

$$
\frac{d \vec{P}}{d t}=\vec{F}-\kappa \vec{V}
$$

the form can be inferred from a microscopic model
In the absence of field

$$
\frac{d}{d t} \vec{v}=-\frac{1}{\tau} \vec{v} \quad \vec{v}=\vec{v}_{0} e^{\frac{-t}{\tau}}
$$ with the atoms.

In stationary regime (!) $\tau \frac{e}{m} \vec{E}=\vec{v}-\tau \frac{e}{m} \vec{V} \wedge \vec{B}$
writing $\quad \vec{\omega}=\frac{e}{m} \vec{B} \quad \tau \frac{e}{m} \vec{E}=\boldsymbol{M} \vec{V} \quad$ where $\boldsymbol{M}=\left(\begin{array}{ccc}1 & -\omega_{z} \tau & \omega_{y} \tau \\ \omega_{z} \tau & 1 & -\omega_{x} \tau \\ -\omega_{y} \tau & \omega_{x} \tau & 1\end{array}\right)$

$$
\vec{v}=\tau \frac{e}{m} \boldsymbol{M}^{-1} \vec{E}
$$

To simplify the writing without loosing anything we take B along Oz and E in the zOx plane.

$$
\boldsymbol{M}^{-\mathbf{1}}=\frac{1}{1+\omega^{2} \tau^{2}}\left(\begin{array}{ccc}
1 & -\omega \tau & 0 \\
\omega \tau & 1 & 0 \\
0 & 0 & 1+\omega^{2} \tau^{2}
\end{array}\right)
$$

Detector

$$
\begin{aligned}
& v_{x}=\tau \frac{e}{m} \frac{1}{1+\omega^{2} \tau^{2}} E_{x} \\
& v_{y}=\tau \frac{e}{m} \frac{1}{1+\omega^{2} \tau^{2}} \omega \tau E_{x} \\
& v_{z}=\tau \frac{e}{m} E_{z}
\end{aligned}
$$

The locus of v as a function of $\omega \tau$ in the plane $x O y$ is a half-circle centred in $(1 / 2,0)$

Two extreme regimes : $\omega \tau \gg 1 \quad v_{x}=v_{y}=0 \quad v_{z}=\tau \frac{e}{m} E_{z}$
The mean time between collisions is much larger than the circling time, the electron follows B
$\omega \tau \ll 1 \quad v_{y}=0 \quad v_{x}=\tau \frac{e}{m} E_{x} \quad v_{z}=\tau \frac{e}{m} E_{z}$
The mean time between collisions is much smaller than the circling time, the electron follows E

Detector

Recipe or a central tracker

TPC is gas then transparent
but the end plates have a structure and a lot of electronics
but the field cages are thick
in front of the ECAL and not that close

Recipe for a calorimeter

The neutrals get separated only with distance
put the calorimeter as far as possible
electromagnetic part: large ratio λ_{1} / X^{0}
good depth about $24 \mathrm{X}_{0}$ at our energies very dense, reduced Molière radius very granular $\sim 1 / 4 R_{M}$ no hole toward

hadronic part: dense, where the showers stay narrow with a good ratio $\quad \lambda_{l} / X^{0}$ may enter e/h very granular, as much as you dare

Detector

Cut of the quadrant for ILD
a weight which may reach 14000t.
2 times the Eiffel tower

1) the magnet 2) around the beam

The impact of earthquakes

Henri Videau Weihai August 2016

Detector

Putting in place the calorimeter shell
Field return muon detector
Coil 4T
Field plate Hcal end cap Hcal barrel Ecal end cap Ecal barrel

Tracking detectors

Forward chambers
Time Projection Chamber Silicon Inner Tracker Forward disks Vertex detector Vacuum tube

```
SET ?
```


Henri Videau Weihai August 2016

Henri Videau Weihai August 2016
mounting

> Trigger and acquisition

Due to the low backgrounds, to the rarity of events, to the will of not loosing anything,

GMSB

and because it is possible

NO TRIGGER, or rather a self-trigger of the measuring cells

electromagnetic calo cut at $1 / 3$ mip
Identification of the crossing number for the interaction
The acquisition may suffer from long trains
The depth underground the detector should be built (Kitakami) precludes any impact of cosmics the muon halo from accelerator should not harm.

Detector

Services

power supplies, cooling

A front-end electronics entirely embedded in the detector means bringing in a lot of low voltage power and some heat.

Use of the time structure in ILC / CEPC
power pulsing to gain a factor 100 on the heat.

A partial review of technologies studied for not a full review of ILD:
vertex detector
central tracker
silicon pixels ..
silicon strips, gas TPC
electromagnetic calorimeter silicon, scintillator
hadron calorimeter scintillator, gas
tail catcher / muon detector detection at low angle

Notice that the question is not of the best technology
but of the best group of people
to make sure that at any price they will make it work
first goal : measure as precisely as possible the track impact parameter to identify displaced vertices.
this implies point resolution, low multiple scattering, occupancy

second

it is a part of the tracker and contributes
to the momentum measurement precision and
to the track pattern recognition in particular for low energy tracks
it can also contribute to the alignment/calibration of a TPC
quality criteria: spatial resolution read-out time material budget

Detector

vertex detector

As it comes at the end and is of reduced size
it does not need a long construction, can come late and the R\&D can be pursued.

Different choices with different strategies not linked solely to ILC but to many developments for other experiments or even out of our discipline.

Technological solutions under consideration

- SOI:
- SOFIST 1: first prototype delivered end 2015
> Analog read-out + col. ADC circuit
KEK, Osaka University,
- SOFIST 2: time stamp (lay-out in 2016)
- FPCCD
- Large FPCCD prototype ($6 \mu \mathrm{~m}, 50 \mu \mathrm{~m}$ thick)
- Neutron irradiation studies
> Dark current, hot pixels, CTI
${ }^{1}$ Tohoku University ${ }^{2}$ KEK
${ }^{3}$ Shinshu University
- Double sided Iadder concept
- Next steps: Beam test, ladders, read-out speed, etc.
- DEPFET
- Development driven by Belle-II PXD
- PXD DEPFET modules ready for series production
- Micro-channel cooling under devpt

DEPFET Collaboration

- Interests in Pixelated FTD
- Next steps: r.o. speed, integration
- CPS : already used in STAR (3 years of physics data taking)
- Development driven by ALICE-ITS and CBM-MVD
- Focus on increased read-out speed: O(few $\mu \mathrm{s})$ у Bunch tagging
> to comply with beam backgd uncertainties
- Extend CPS to trackers (large surfaces)
> Large pixels det. eff. demonstrated
Henri Videau Weihai August 2016

Detector

Speaking of technologies

central tracker

A mix

Due to the distortions induced by the positive ions close to the interaction, the TPC can not start at a small radius ILD 33 cm

The pixel vertex detector ends at about 10 cm

The TPC offers a poor precision at low angle
The zone between vertex and TPC is then equipped with few silicon cylinders or disks read out by strips or pixels the last one becoming more fashionable with the technological evolution

It is considered to install a silicon layer just outside the TPC to improve the resolution (\sim by 2), be less sensitive to distortions align and calibrate the TPC.

Two arguments for a TPC:

- the redundancy is large (> 100 points par trace)
\Rightarrow easy pattern, in particular for V^{0} 's or kinks ($\mathrm{K}+-$).
- the $d E / d x$ in the gas presents a relativistic rise which enables electron identification up to $10-20 \mathrm{GeV}$ as well as π / K separation

Two questions:
what will be the point precision, 100μ ?
a constant term $\sim 50 \mu$ (plate) plus diffusion, depends on the square root of the drift length and the distortions in a field possibly quite inhomogeneous DID?
how much material, how much space in front of ECAL?

Detector

goal: very compact, hermetic, good separation
hence high transverse granularity high longitudinal granularity (\neq CMS) the energy resolution is NOT a decisive criterion

Notice the structure of the modules
 to avoid cracks

All the technical aspects of calorimetry for ILD are developed in the collaboration CALICE

Today, but for the cost,
the preference (mine) goes to tungsten-silicon sandwiches
The silicon is stable in temperature, voltage, good resolution depending on sampling, Si thickness, the granularity may be excellent.

Typically $24 X_{0}$ in about 20 cm , a Moliere radius around 1.5 cm a resolution between 15 and 20%.
Read-out by pads $\left(-5 \times 5 \mathrm{~mm}^{2}\right)$ on 6 to 8 inch wafers
the size of these pads has been proven essential for jet resolution

Huge number of read-out channels (tens of millions)
but silicon area, cost
The front-end electronics is embedded power supply, heat, cooling, read-out

Si 2 to $3 \$ \mathrm{du} \mathrm{cm}^{2}$ to be more studied but CMS

Detector Speaking of technologies electromagnetic calorimeter

Silicon detectors

Using thin wafers of high resistivity silicon, from 100μ to 725μ

When a charged particle crosses the wafer diode it creates a number of pairs electron-hole, more than 10000 per mm , no need of local amplification. The diode has an electric field large enough to be completely depleted. Then the number of collected charges depends only on the Si thickness (stability, calibration) The electrons (faster) are collected and their signal recorded.

The same technology is to serve for the end cap calorimeter upgrade of CMS

$\sqrt{ }$ Detector

electromagnetic calorimeter

A structure in carbon fibres embedding half of the W radiator

Detecting slabs

Henri Videau Weihai August 2016

Once you have chosen a sampling calorimeter inside the coil what are the main parameters ?
the radiator material, amagnetic and not too good a conductor, brass (CMS), stainless steel (ILD), tungsten (tried for CLIC)? the number of interaction lengths (5-6) knowing that the ECal has 1 the coil behind has 2 and a tail catcher can be built beyond the sampling, intrinsic resolution + longitudinal granularity the detecting medium, gas scintillator the size of the detecting cells.

ILD studies two solutions

A classical solution: scintillator cells as small as technology permits about $3 \times 3 \mathrm{~cm}^{2}$ read in situ using a non classical SiPM (MPPC). The energy deposited in the cells is collected with a good dynamics 12 bits

Or
digital (semi) calorimeter
In view of the fluctuations of the energy deposited by cell it has been shown that the resolution may be better (up to a certain energy) using a single read out threshold or up to three in cells adapted in size:
gas cells $1 \mathrm{~cm}^{2}$, RPC , but scintillator cells (3x3) also read out in situ

It can be noticed that is has been shown that the analogue treated as semi-digital exhibits better resolution

Detector


```
SDHCAL ILD barrel
```

SDHCAL ILD module
A choice of structure to be made soon

SDHCAL 1.3m3 prototype

An interesting software development ,

finding the showers
with their associated tracks
in a highly granular calorimeter, where the MIPs are well seen but some discontinuities linked to neutrals the resolution optimisation (compensation) by an adequate weighting.
the particle flow!
with time

Detector

How do we know all of these pieces belong to the same shower?

Can we link the tracks in the Hcal and Ecal ?

How to estimate at best the energy How to estimate the leakage

Detector

Tail catcher and muon detector

Rather ordinary techniques scintillators, RPC or tubes, the low occupation rates and the high multiple scattering make the requested qualities rather easy.

Detector

A word on the corners, often called overlap region

The place where particles enter in the barrel and continue in the end caps

Again the problem of connection
Try to close it but :

- safety margin for the closure of the detector
- space for services

Detector

```
compared to LEP detectors (the preceding e+e-collider):
10 times better in momentum,
100 times more granular
2 times better in jet energy
no trigger
time measurement.
```


A detector full of innovations fun to conceive

by its grain, its resolution, the absence of trigger should offer an optimal collection of all the physics reachable between 0.25 and 1.5 TeV .

The end of our visit through detectors

Detector

I hope to have helped you to realise that we have here a project
capable of bringing a new essential understanding, even after what LHC has discovered and still will discover.

The machine is a challenge shown to be realistic (TDR)
and excellent detectors can be built with a lot more funny developments to come like time.

Now it is up to you!

fluctuat, mergitur ?

Henri Videau Weihai August 2016

Autres solutions DEpFET

DEPFET - principle idea

Kemmer, Lutz (1987):

- integrate preamplifier into Sensor Si- Substrate

Advantage:

- Small input capacitance
- no stray capacitance
$=>$ Large Signal to Noise Ratio

Henri Videau Weihai August 2016

ALEPH a detector for LEP

