creating the initial state you dream of, the collider system

Outline

The goal
The acceleration techniques
Linear, why?
Energy and luminosity challenges nasty consequences
end of lecture 1
Collider elements
Polarisation
e-e- option
$\gamma \gamma$ option
ey option

Henri Videau Weihai August 2016

Build an accelerator

- with enough energy to reach a valuable physics
- to collect all the physics reachable in a reachable time, around 15 years.

That supposes an adequate luminosity.

$$
\Delta \mathrm{E} \times \mathcal{L} \sim \mathrm{cst}
$$

electrostatic

RF cavities, modes, losses, dependence in ω

superconducting / warm accelerators
plasma accelerators

Study of the techniques to accelerate particles

Apply to a particle of charge e an electric field E. It generates on the particle a force $F=e E=m a$
and the particle supports an acceleration

$$
\mathrm{a}=\frac{\mathrm{eE}}{\mathrm{~m}}
$$

After a length L, the energy acquired by the particle is the work of the force $E=e E L$ where $E L$ if the voltage difference V
$E=\mathrm{eV}$

Method I.

Apply to the particles, here electrons, a static voltage. The electron acqires the energy $\mathrm{e} \Delta \mathrm{V}$.
We have an electrostatic accelerator. Beware of the limitations dues to breakdowns

This will be used for polarised sources, see later.

Do you know what a triod is? a classical source of electrons is just that.

Method II.
Can we apply a time-dependent field, an electromagnetic wave?

In the absence of boundary conditions, the solutions to Maxwell equations are plane waves where E and B are orthogonal to the plane wave direction of propagation. Not very convenient.

Is it possible to impose boundary conditions such that the E field becomes aligned with the propagation direction?

In a cylindrical wave guide, YES but unfortunately the phase speed becomes > c !!

OK when introducing boundary conditions in z.

Existence of oscillation modes
$\nabla \cdot \vec{D}=\rho \quad \vec{\nabla} \times \vec{H}-\frac{\partial \vec{D}}{\partial t}=\vec{j}$
$\vec{B}=\mu \vec{H} \quad \nabla \times$ is the curl
$\nabla \cdot \vec{B}=0 \quad \vec{\nabla} \times \vec{E}+\frac{\partial \vec{B}}{\partial t}=\overrightarrow{0}$
In the absence of electric charges and currents

$$
\nabla \cdot \vec{D}=0 \quad \vec{\nabla} \times \vec{H}-\frac{\partial \vec{D}}{\partial t}=\overrightarrow{0}
$$

$$
\begin{aligned}
& \vec{\nabla} \times(\vec{\nabla} \times \vec{E}) \equiv \vec{\nabla}(\vec{\nabla} \cdot \vec{E})-\vec{\nabla}^{2} \vec{E}=-\vec{\nabla} \times \frac{\partial \vec{B}}{\partial t} \\
& \vec{\nabla}^{2} \vec{E}=\mu \frac{\partial}{\partial t}(\vec{\nabla} \times \vec{H}) \quad \vec{\nabla}^{2} \vec{E}=\mu \frac{\partial^{2} \vec{D}}{\partial t^{2}}
\end{aligned}
$$

$$
\vec{\nabla}^{2} \vec{E}=\frac{\partial}{\partial t}(\vec{\nabla} \wedge \vec{B})
$$

wave equation

$$
F^{\mu v}=\left(\left.\begin{array}{cccc}
0 & -E_{x} & -E_{y} & -E_{z} \\
E_{x} & 0 & -B_{z} & B_{y} \\
E_{y} & B_{z} & 0 & -B_{x} \\
E_{z} & -B_{y} & B_{x} & 0
\end{array} \right\rvert\, \quad \text { Lorentz invariants: } \quad E \cdot B \quad E^{2}-B^{2}\right.
$$

$\partial_{\mu} F^{\mu \nu}=j^{\nu}$
where j^{ν} is the electric current $j^{\mu}=(\rho, \dot{j})$
Current conservation is obvious: $\quad \partial_{v} j^{\mu}=\partial_{\nu} \partial_{\mu} F^{\mu v}=0$
The other group of equations is obtained by duality: noting that there is no magnetic charge or current
$\vec{B} \rightarrow \vec{E}, \vec{E} \rightarrow-\vec{B}$

$$
\partial_{\mu} \epsilon^{\mu \nu \rho \sigma} F_{\rho \sigma}=0
$$

where $\varepsilon^{\mu \nu \rho \sigma}$ is the order 4 totally antisymetric tensor (Levi Civita).

Accelerators

Looking for a free wave solution of

We take the z axis along the propagation direction and look for a plane wave solution.

The absence of boundary conditions, a homogeneous and isotropic vacuum,

$$
\begin{aligned}
& \vec{\nabla}^{2} \vec{E}-\mu \epsilon \frac{\partial^{2} \vec{E}}{\partial t^{2}}=0 \\
& \vec{\nabla}^{2} \vec{H}-\mu \epsilon \frac{\partial^{2} \vec{H}}{\partial t^{2}}=0
\end{aligned}
$$ requires that E_{0} et H_{0} are constants.

Applying the wave equation to the electric field

$$
\nabla^{2} \vec{E}=k^{2} \vec{E}=\mu \epsilon \frac{\partial^{2} \vec{E}}{\partial t^{2}}=\mu \in \omega^{2} \vec{E}
$$

$$
k^{2}=\mu \epsilon \omega^{2} \rightarrow \frac{\omega}{k}=\frac{1}{\sqrt{\mu \epsilon}}
$$

It is a plane wave with phase speed equal to $1 / \sqrt{ } \mu \varepsilon$, in the vacuum it propagates at the speed c .

Applying Maxwell equations to this solution:

$$
\vec{\nabla} \cdot \vec{E}=\frac{\partial \vec{E}}{\partial z}=-i k E_{0, z} \exp [i(\omega t-k z)]=0
$$

either k or $\mathrm{E}_{0 \mathrm{z}}$ have to be 0
$\mathrm{k}=0$ no wave
$E_{0 z}=0$ the field is perpendicular to the direction of propagation!!

Accelerators

Looking for a solution with boundary conditions

We introduce boundary conditions in x and y in order to compensate the z derivative of the field by non zero derivatives in x and y.

We take a conducting tube with axis z and radius b .

We look for solutions like:

$$
\vec{E}=\vec{E}_{0} \exp [i(\omega t-k z)]
$$

$$
\vec{H}=\vec{H}_{0} \exp [i(\omega t-k z)]
$$

where E_{0} et H_{0} depend on x and y or going to semipolar coordinates on ρ and θ but not on z and t
we have then

$$
\begin{aligned}
& \frac{\partial}{\partial z}=-i k, \frac{\partial^{2}}{\partial z^{2}}=-k^{2} \\
& \frac{\partial}{\partial t}=+i \omega, \frac{\partial^{2}}{\partial t^{2}}=-\omega^{2}
\end{aligned}
$$

At the boundary $(r=b)$, the normal component of B and the tangential component of E are continuous. If the conductor is perfect the fields are zero inside and when $r \rightarrow b \quad H_{r}, E_{z}$ and $E_{\theta} \rightarrow 0$

Since $E_{\theta}=0$, the θ component of the magnetic field curl vanishes. and we have :
$E_{0}=0$
\square
$H_{r}=0$

Accelerators

Speaking of continuity

$\int_{c} \vec{E} \cdot \vec{d}=\iint_{s}(\vec{\nabla} \times \vec{E}) \cdot \overrightarrow{d S}=-\frac{\partial}{\partial t} \iint_{s} \vec{B} \cdot \overrightarrow{d S}$

$$
\iint_{S} B \cdot \overrightarrow{d s}=-\frac{\partial}{\partial t} \iiint_{V} \bar{\nabla} \cdot \vec{B} d \tau
$$

Stokes theorem

Rewriting the z component of the wave equation as
$\nabla_{\perp}^{2} E_{z}-k^{2} E_{z}+\mu \in \omega^{2} E_{z}=0$

defining

$$
k_{c}^{2}=\mu \epsilon \omega^{2}-k^{2}
$$

$$
\nabla_{1}^{2} E_{0,2}+k_{c}^{2} E_{0, z}=0
$$

where J_{n} are Bessel functions of the first type

Henri Videau Weihai August 2016

1. n is an integer because the field is monovalued
$--\cos [n(\theta+2 \pi)]=\cos n \theta \quad$ if n is integer.
2. to impose $E_{z} \rightarrow 0 @ r=b, k_{c} b=z_{n p}$, where $z_{n p}$ is the $p^{t h}$ zero of J_{n}.

Notice that it implies $\mathrm{k}_{\mathrm{c}}>0$ and

$$
E_{0, z}=\sum_{p=1}^{\infty} \sum_{n=0}^{\infty} a_{n p} J_{n}\left(k_{c, n p} r\right) \cos \left(n \theta+\theta_{n p}\right)
$$

Notice that

$$
k_{c, n p}=\frac{Z_{n p}}{b}=\sqrt{\mu \in \omega^{2}-k^{2}}
$$

Hence $\mathrm{k}=0$ corresponds to a

$$
\omega_{c, n p}=\frac{1}{\sqrt{\mu \epsilon}} \frac{z_{q p}}{b}
$$

non-zero ω :

Cut frequency

mass
$\omega>\omega_{\mathrm{C}}$: k real is possible, the wave is a complex exponential
$\omega<\omega_{\mathrm{C}}$: k is imaginary, the wave decreases exponentialy with z , it can not propagate - evanescent wave!

Phase and group wave speeds:
$v_{g r}=\frac{\partial \omega}{\partial k}=\frac{1}{\sqrt{\mu \epsilon}} \frac{\sqrt{\omega^{2}-\omega_{c}^{2}}}{\omega}<c$
Since particles move with a speed <c they will dephase against the field no acceleration is possible!

We have to introduce z boundaries multicavities acceleration.

Accelerators

Use of progressive (travelling)
or standing waves
Progressive wave : phase speed c
the particle bunches see a constant field

if not for the energy absorbed by the beam (beam loading)

\mathbf{E}_{z}

\mathbf{E}_{z}

Stationary or standing wave
Resonant cavity:
the particles see the field :

$$
E_{z}=E_{0} \sin (\omega t+\varphi) \sin (k z)
$$

A standing wave is less efficient by a transit factor $\mathrm{T}=\sin (\psi / 2) /(\psi / 2)$ where ψ is the transit angle, wave phase variation during the particle transit in the cavity.

Electric field in a TESLA cavity for the fundamental mode π at $1.3 \mathrm{GHz}(\mathrm{S})$.

The beam passing through induces in the cavity a decelerating field

Wake fields in the RF structures

Wake fields induced by the beam passing through the cavities

The wake fields have long lifetimes

$$
\tau=2 \mathrm{Q} / \omega_{\mathrm{RF}} \sim 1 \mathrm{~s}
$$

The out of axis bunchs generate dipole fields which deflect the following bunchs \Rightarrow attenuation $\tau<100 \mu \mathrm{~s}$

Important quantities / RF mode standing waves

$$
\begin{array}{ccc}
\text { Voltage gain along the axis } & \text { values for EXFEL } & \text { ILC } \\
\qquad U=\int d z E_{z}(z, t=z / c) & 20 & 31.5 \mathrm{MV}
\end{array}
$$

Stored energy: W

Power dissipated:
P_{Ω} corresponds to the ohmic losses

$$
P=d W / d t=P_{\Omega}+P_{\text {beam }}
$$

Quality factor $\quad \mathrm{Q}_{0}=\omega_{\mathrm{RF}} \mathrm{W} / \mathrm{P}_{\Omega} \quad \sim 10^{10}$
(Shunt Impedance $R=U^{2} / P$)
The size of the cavities is about the wave length

The power transferred to the beam is in ω^{2}, it is more efficient to go to higher frequencies super $1.3 \mathrm{GHZ}(\mathrm{S})$, warm $11.4 \mathrm{GHz}(\mathrm{X})$, CLIC 30 GHz , (plasma 3THz).

RF power when accelerating

The RF power is provided by klystrons: $\mathrm{Q}_{\mathrm{ext}}=\omega_{\mathrm{RF}} \mathrm{W} / \mathrm{P}_{\mathrm{RF}}$ The RF power is dissipated in the beam
and in the resistive losses

$$
\begin{array}{ll}
P_{R F}=P_{\text {beam }}+P_{\Omega} & \text { valeurs TESLA } \\
P_{\text {beam }}=U \mathrm{I}_{\text {beam }} & 230 \mathrm{~kW}=25 \mathrm{MV} .9 \mathrm{~mA} \\
P_{\Omega}=\omega_{R F} W / Q_{0}=U^{2} / \mathrm{R} & 2,5 \mathrm{~mW}
\end{array}
$$

with
NB $\quad P_{\Omega} \sim R_{S}$ surface resistance

$$
R_{S}(\mathrm{Nb} @ 2 \mathrm{~K}) \simeq \mathrm{R}_{\mathrm{S}}(\mathrm{Cu} @ 300 \mathrm{~K}) 1^{-6}
$$

$$
P_{\Omega} \ll P_{\text {beam }} \text { for } \mathrm{Nb}, \mathrm{P}_{\Omega} \simeq \mathrm{P}_{\text {beam }} \text { for } \mathrm{Cu}
$$

The difference between warm and superconducting

Energy loss:

$$
P_{\text {in }}=P_{\text {beam }}+P_{\Omega}+P_{\text {out }}
$$

For superconducting $\mathrm{P}_{\Omega} \sim$ zero.
In stationary mode $\mathrm{P}_{\text {out }}$ zero.
For warm as $\mathrm{P}_{\text {out }}$ is dominated by P_{Ω} (2/3 de Pin), progressive waves with constant gradient,
for cold it is more favourable to use standing waves.

If P_{Ω} nul, the wave stays longer, long pulse, 1 ms against $\mu \mathrm{s}$.
A cavity quality is measured by its « Q » value fraction of the stored energy lost in the walls in 2π times the RF period.

Running cost: electric consumption

$$
P_{\text {total }}=\left(P_{\text {beam }}+P_{\Omega}\right) / \eta_{R F}+P_{\Omega} / \eta_{\text {cooling }}(T)
$$

Beam power: $P_{\text {beam }}=E_{C M} \times N_{\text {part }}=E_{C M} / e I_{\text {beam }}=N_{\text {cavity }} U I_{\text {beam }}$

Ohmic losses: $\mathrm{P}_{\Omega}=\mathrm{N}_{\text {cavity }} \mathrm{U}^{2} / \mathrm{R}=\mathrm{E}_{\mathrm{CM}} / \mathrm{e} \mathrm{N}_{\text {cavity }} \mathrm{R}$

A cooling is necessary to maintain the Linac at the temperature T
In a cryogenic machine the ohmic losses are dissipated in a refrigerator providing the temperature T :
Efficiency (Carnot)
$\eta_{\text {cooling }}(T) \sim(T / 300) / 4=$

$$
\begin{aligned}
& \text { 1/300 @ LEP (4K) } \\
& \text { 1/600 @ ILC (2K) }
\end{aligned}
$$

In a superconducting accelerator with cavities $\mathrm{Q} \sim 10^{10}$
The RF stays long and should be used fully.
At a given power it will be better to have few trains per second with numerous bunchs properly spaced.
RF beam efficiency at ILC 44%

In a warm accelerator
the RF pulses are short, few bunches well packed in numerous trains.
good transfer efficiency, higher fields.
shorter accelerators

Remark: all the stored energy can not be used for accelerating due to beam loading the last bunchs would be submitted to very reduced fields.

Accelerators

Time structure:
in ILC 5 RF pulses 1 ms long per second, every 200 ms (5H) in each pulse a train of about 3000 bunches separated by 300 ns .

Warm accelerator, 100 pulses per second, containing 150 bunches separated by 1.4 ns , about 40 cm .

This implies that the two beams cross at angle to avoid crossing at more than one point This induces a loss in luminosity which can be corrected by a crab crossing which degrades in turn the interaction point knowledge.
~idem at CEPC

The choice for ILC has been the superconducting accelerator CLIC is a warm accelerator.

This is linked to the gradients expected for superconducting cavities today about $1 / 2$ of warm cavities

ILC has two prototypes : the EXFEL in construction at DESY LCLS II in design

ILC power consumption
160 MW to 210 to 300 500 L upgrade 1 TeV

Superconducting cavities

Those used at LEP reached 6 to $7 \mathrm{MV} / \mathrm{m}$, much too low for a linear accelerator. But they were running in a continuous mode.
TDR : ILC 500 GeV needs $31.5 \mathrm{MV} / \mathrm{m}+-20 \% \mathrm{Q}_{0}=0.810^{10}$
The technology has much improved for the voltage and the Q . Industrial cavities reach $45 \mathrm{MV} / \mathrm{m}$ currently, this is not so far from the «theoretical limit» close to $50 \mathrm{MV} / \mathrm{m}$, linked to the field on the surface which induces the return of the niobium to its normal state.

$$
\text { from } H_{\theta}<H_{c}=200 \mathrm{mT} \text { for the massive Niobium }
$$

$$
\text { LC goal for } 1 \mathrm{TeV}: 40-45 \mathrm{MV} / \mathrm{m} \quad \mathrm{Q}_{0}=1-210^{10}
$$

It is essentially a question of the state of the surface which can be improved by different techniques like RF burning, electropolishing in presence of nitrogen...
but also: Large grain niobium new shape for cavities coating of Nb2Sn or MgB2 (47 \% increase)

Shemelin PAC 2007
"standard" 120C bake vs "N infused" 120C bake

Increase in Q factor of two, increase in gradient $\sim 15 \%$

JLAB SRF 1-Cell 1.3 GHz Large-Grain Niobium Cavity G2

Geng et alii IPAC 2015

Accelerating cavities for the american project NLC the wavelength is reduced by a factor 10 from ILC.

CLIC accelerating cavity

A continuous beam ($<500 \mathrm{kV},<500 \mathrm{~A}$) is emitted by an electron gun. A low power signal, at a chosen frequency, excites the input cavity The particles are accelerated or decelerated according to the phase when they enter the input cavity.
The speed modulation is transformed by the drift in the tube in a time modulation (the beam is pulsed at the pilote frequency)
The pulsed beam excites the output cavity at the chosen frequency (beam loading)
The beam is finaly stopped in the collector.

Henri Videau Weihai August 2016

Multibeam klystrons
going these days from 66 \% efficiency toward 90 \%

To reach really higher energies the next electron accelerator should be linear!

Radiative losses:

a charged particle with energy E
following an orbit of radius R looses the energy:

$$
\delta E=610^{-15} R^{-1} \gamma^{4}
$$

where R is in meters and E in MeV
Example:
a 100 GeV electron and a 1 km radius

$$
m_{e}=0.5 \mathrm{MeV}, \gamma=210^{5} \quad \delta E=6.10^{-15} 10^{-3} 16.10^{20} \approx 10 \mathrm{GeV}
$$

Radius such that $\delta E=E$
that does not mean that the beam stops in one turn
$E^{3} \approx 10^{7} R$ with E in GeV and R in km
i.e. 100 m for $100 \mathrm{GeV}, 100 \mathrm{~km}$ for 1 TeV the earth radius for 4 TeV !!
R increases like E^{3} when in a linear accelerator L increases like E as the cost is $\simeq L$ (or $2 \pi R$) at some energy the linear becomes cheaper.
The proton, 2000 times heavier, radiates much less (about 10^{13}), the muon also

Motion of a charged particle in a magnetic field

$P^{\mu}=m U^{\mu}=m \gamma(c, \vec{V})$

X^{μ} is the time-position 4-vector
U^{μ} is the speed 4 -vector
P^{μ} is the energy-momentum 4-vector

$$
\begin{aligned}
& U^{\mu}=\frac{d X^{\mu}}{d \tau} \\
& P^{\mu}=m U^{\mu}=m \gamma\left(1, \beta^{u}\right)
\end{aligned}
$$

in the absence of electric field the spatial part writes $m \gamma \frac{d \vec{v}}{d \tau}=m \gamma^{2} \frac{d \vec{v}}{d t}=q \gamma(\vec{V} \wedge \vec{B})$
Writing with complex numbers the motion in the plane orthogonal to B

writing

$$
\frac{d v}{v}=-i \omega d t
$$

$$
v=v_{0} e^{-i \omega t}
$$

The trajectory is a circle with radius

$$
R=\frac{v}{\omega}=\frac{m \gamma v}{q B}=\frac{p}{q B}
$$

$$
p=q R B
$$

in SI, p is in VC / c, qRB in CmT
if the charge is in electrons: $p(e V)=c R(m) B(T)$

$$
p(\mathrm{GeV})=0.3 B(T) R(\mathrm{~m})
$$

Accelerators

$$
U^{\mu}=(\gamma C, \gamma \vec{V}) \quad U^{2}=\gamma^{2} C^{2}\left(1-\beta^{2}\right)^{2}=c^{2}
$$

Acceleration 4-vector $\quad A^{\mu}=\frac{d U^{\mu}}{d \tau} \quad U^{2}=c^{2} \Rightarrow U_{\mu} \frac{d U^{\mu}}{d \tau}=0 \Rightarrow U_{\mu} A^{\mu}=0$
writing $\vec{a}=\frac{d \vec{v}}{d t} \quad A=\left(\frac{d \gamma}{d \tau} c, \frac{d \gamma}{d \tau} \vec{v}+\gamma \frac{d \vec{v}}{d \tau}\right) \quad d \tau=\frac{1}{\gamma} d t$

Accelerators

Synchrotron radiation

power radiated by a charge q with A for acceleration 4-vector

In a uniform rotation
$\vec{a}=\frac{v}{\rho} \vec{v} \wedge \vec{n}$

$$
\wp=\frac{q^{2} A^{2}}{6 \pi \epsilon_{0} c^{3}}
$$

$$
A=\left(0, \gamma^{2} \vec{a}\right)
$$

time for a turn:

factor to convert in MeV :

$$
\frac{1.610^{-19}}{38.810^{-12}} 10^{-6}=610^{-15}
$$

Expressing the radiated power as a function of E (energy) and B for an electron

$$
\rho^{-1}=\frac{e B}{p}=\frac{e c B}{\beta E}
$$

in relativistic regime ($\beta=1$),

and for a revolution $(T=2 \pi \rho / \beta c), \quad \wp_{r} \propto E^{3} B$

This is a purely classical approach which does not take into account the quantum mechanics aspects
synchrotron radiation spectrum critical frequency

What about cost?

The cost for building increases like L hence E

The proportionality factor depends on the acceleration gradient from 35 at ILC to $100 \mathrm{MV} / \mathrm{m}$ at CLIC

The running cost depends on the power consumption
Beam power: 5×3000 bunches of 10^{10} electrons of 500 GeV few tens of MW.

Balance between construction and running costs

Accelerators

The ancestor, a proof of feasability

SLAC

Henri Videau Weihai August 2016

And the progress to be made

	SLC	LC	
E_{cm}	100	$500-1000$	GeV
$\mathrm{P}_{\text {beam }}$	0.04	$5-20$	MW
$\mathrm{o}_{\mathrm{y}}^{\star}$	500	$1-5$	nm
$\mathrm{dE} / \mathrm{E}_{\mathrm{bs}}$	0.03	$3-10$	$\%$
\mathcal{L}	0.0003	3	$10^{34} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$

\mathcal{L} is a number characteristic of the collider which, multiplied by the cross section σ gives the number of events per second: $\mathrm{N}=\mathrm{L} \sigma$ dimension $\left[\mathrm{T}^{-1} \mathrm{~L}^{-2}\right.$] or E^{3}, current (non SI) units $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$

$$
\mathscr{L}=\frac{l_{1} l_{2}}{A} H_{D} \quad \begin{aligned}
& I_{i} \text { is the current in the beam } \mathrm{i}, \\
& \mathrm{~A} \text { is the beam section at the interaction point } \\
& \mathrm{H}_{\mathrm{D}} \text { an amelioration factor (pinch effect). }
\end{aligned}
$$

In the case of a pulsed beam with gaussian profile

$$
\mathscr{L}=\frac{n_{b} N^{2} f_{\text {rep }}}{4 \pi \sigma_{x} \sigma_{y}} H_{D}
$$

where n_{b} is the bunch number,
N the number of electrons per bunch
$f_{\text {rep }}$ the repetition frequency
σ_{x} et σ_{y} the lateral and vertical size of the beam.
one size at least is very small to limit the disruption at the collision few nm at LC

The luminosity per bunch crossing is a Lorentz invariant:
J_{1} and J_{2} are the 4 -vector current densities of the 2 beams

$$
J_{1}=\rho_{1}(x) \gamma(x)\left(1, \vec{\beta}_{1}(x)\right)
$$

$$
\int \mathscr{L} d t=\int\left[\left(J_{1} \cdot J_{2}\right)^{2}-J_{1}^{2} J_{2}^{2}\right]^{1 / 2} d^{4} x
$$

For relativistic beams ($\beta=1$)
$\int \mathscr{L} d t$ is the overlap between the spatial distributions of the two beams :

$$
\int \mathscr{L} d t \simeq 2 \rho_{1}(x) \rho_{2}(x) d^{4} x
$$

For two identical and gaussian beams

$$
\int \mathscr{L} d t \simeq \frac{N^{2}}{4 \pi \sigma_{x} * \sigma_{y} *} \quad \mathscr{L} \simeq n_{b} f_{\text {rep }} \frac{N^{2}}{4 \pi \sigma_{x} * \sigma_{y} *}
$$

with $n_{b}=$ \# bunchs / pulse , $f_{\text {rep }}=\#$ pulse $/ \mathrm{s}$

Integrated luminosity

is measured in cm^{-2}
we are still at the time of CGS
or more usually in fb^{-1}
$1 \mathrm{fb}=10^{-15} 10^{-24} \mathrm{~cm}^{2}$
which is much smaller than a barn.
« it's as big as a barn »

The notion of emittance

The emittance measures the volume or spread of a bunch of particles in its phase space

$$
\epsilon=\Delta_{x} \Delta_{p_{x}} \Delta_{y} \Delta_{p_{y}} \Delta_{z} \Delta_{p_{z}}
$$

In the absence of couplings between planes we can consider independently the x emittance idem for y and z

$$
\epsilon_{x}=\Delta_{x} \Delta_{p_{x}}
$$

When the beam is accelerated P_{z} growths
the emittance goes down.
The normalised emittance we will use further is defined to stay constant as

$$
\epsilon^{*}=\beta \gamma \epsilon \quad \theta_{x}=\frac{p_{x}}{p} \text { at high energy it becomes } \epsilon_{x}=\Delta_{x} \Delta_{\theta_{x}}
$$

Disruption in linear and circular.

Few effects which degrade the collider performances

Hourglass effect

Beamstrahlung

At the focal point or interaction point ,
The hourglass effect the emittance is
$\varepsilon=\sigma^{*} \times \theta^{*}=$ beam invariant
the depth of the focus is $\beta^{*}=\sigma^{*} / \theta^{*}=\sigma^{\star 2} / \varepsilon$

Collision point

The hourglass effect requires

$$
\sigma_{z} \leq \beta^{*}
$$

Reducing σ^{*} does not help except if ε or σ_{z} are much smaller!

The vertical σ is currently at ~ 1 nm
what is the ultimate σ ?

Accelerators

During the collisions
the particles see the field of the particles of the other beam and can emit photons by bremsstrahlung
collisions $\gamma \gamma$.

At the linear collider the bunchs are so dense that the particles radiate in the macroscopic magnetic field from the opposite bunches.

$$
\underset{\text { for a small disruption }}{\text { mean energy loss: }}\left\langle\frac{\Delta E}{E}\right\rangle \propto \frac{1}{\sigma_{z}\left(\sigma_{x}{ }^{*}+\sigma_{y}{ }^{*}\right)^{2}}
$$

$$
\langle B\rangle=B_{s} \times \frac{5 r_{e}^{2} N}{6 \alpha_{e} \sigma_{z}\left(\sigma_{x}{ }^{*}+\sigma_{y}{ }^{*}\right)}
$$

Compton length : $\lambda=\frac{h}{m c}$
where $B_{S}=m_{e}{ }^{2} C^{2} / e=4.410^{9} T \quad$ (Schwinger field) $e E_{S} \frac{1}{m}=m \quad$ applied to an electron its work on a compton length equals the mass

$$
\langle B\rangle=0.32 T @ L E P, 60 T \text { @ SLC, } 360 T @ \text { TESLA }
$$

Notice the s^{-1} term. Could be terrible for plasma acceleration but QM effects.

Consequences

This radiation induces a reduction of the energy in the collision CM giving an energy spectrum extending to lower energies.

AND
The beamstrahlung gammas induce an important background creating a cloud of $\mathrm{e}^{+} \mathrm{e}^{-}$pairs and minijets backscattering on the forward calorimeters up to the vertex detector.

The detection of particles emitted very forward becomes delicate.

Accelerators

Observe the behaviour of the positrons / electrons

Henri Videau Weihai August 2016

Accelerators

Beam energy spectrum

Differential energy spectrum

Integrated beam energy spectrum

Beam fraction with an energy greater than a fraction of the nominal energy

The luminosity challenge at the linear collider:
keep the power consumption at a reasonable level e.g. few hundreds of MW It would be politically incorrect
to reach the power of a nuclear plant ~ 1 GW

In a circular accelerator the bunchs recirculate and we have « just » to reinject the energy lost in the turn, for example at the LEP the bunchs were recirculating at a frequency of 44 kHz . what if the energy loss becomes heavy?

For the linear, the power consumption is directly proportional to the repetition frequency.
Then to increase the luminosity we rather play with the interaction zone size, hence the beam emittance.

By making $\sigma_{y}{ }^{*} \ll \sigma_{x}$ the beamstrahlung strength
i.e. $\langle\Delta E / E\rangle$, is made independent of σ_{y}^{*}.

The luminosity is then increased by reducing $\sigma_{y}{ }^{*}$.
Other way of looking at this :
maximising $\left(\sigma_{x}^{*}+\sigma_{y}^{*}\right)$ at constant luminosity $\left(\sigma_{x}^{*} x \sigma_{y}^{*}\right)$
leads to flat beams with:

$$
\sigma_{x}^{*} \ll \sigma_{y}^{*} \text { or } \sigma_{y}^{*} \ll \sigma_{x}^{*}
$$

\Rightarrow 'razor blades' with $R=\left(\sigma_{x}^{*} / \sigma_{y}^{*}\right) \simeq 100$

The particles of one beam are sensitive only to the field created by the opposite beam in their vicinity

Henri Videau Weihai August 2016

End of the first lecture

Summary of what we saw up to know
How to accelerate charged particles
How cavity structures bring the RF in phase with accelerated particles
Travelling or standing waves
Warm or super conducting cavities
Why this collider has to be linear
Notion of luminosity
Notion of emittance
Beamstrahlung
that concerns the main linac
Now we go for:
structure of the collider complex
sources : electrons and positrons
damping rings
beam delivery system
alignment
luminosity, polarisation measurements
options e- e-, $\mathrm{Y} Y$
cost
plasma acceleration

LC conceptual scheme

Accelerators

schematic layout of ILC in the TDR

Henri Videau Weihai August 2016

Looking at the other parts of the collider

We have to:
produce the electrons produce the positrons reduce the emittance
electron source positron source cooling (damping) rings

Requirements:
produce long trains (RF) of bunches
with high charge
with an excellent emittance
and polarised (electrons and positrons)

1ms @ 5-10 Hz 3000 bunches few nC or 10^{10} particles
$\varepsilon_{n x, y} \sim 10^{-6}, 10^{-8} \mathrm{~m}$

Iaser photo-injector :
circularly polarised photons on a GaAs strained cathode
to differentiate the energy levels of the two spin states
\Rightarrow longitudinaly polarised ethe laser pulse is modulated to provide the required time structure a strong vacuum is required for GaAs ($<10^{-11}$ mbar) the beam quality is dominated by the space charge (note $v \sim 0.2 c$)

$1000 \AA$	Active Region
$25 \mu \mathrm{~m}$	$\begin{gathered} \text { GaAs }_{0.64} P_{0.36} \\ \text { Buffer } \end{gathered}$
$25 \mu \mathrm{~m}$	$\operatorname{GaAs}_{(1-x)} \mathrm{P}_{\mathrm{x}}$ Graded Layer
	GaAs Substrate

we have to gain a
factor 10 in the plane x
factor ~ 500 in the plane y

Transition -3/2 $\rightarrow-1 / 2$
or $-1 / 2 \rightarrow+1 / 2$
the first one is 3 times more probable

$$
P=\frac{P^{+}-P^{-}}{P^{+}+P^{-}}=\frac{1-3}{1+3}=0.5
$$

The strain differentiate the $3 / 2$ and $1 / 2$ levels in theory could reach 100 \% polarisation

Accelerators

Actual scheme for electron source from gun to damping rin

$\mathrm{e}^{+} \mathrm{e}^{-}$pairs production
by converting photons on a target keeps partly the photon polarisation
the photons having been produced by

- Bremsstrahlung of electrons on a target
- through an undulator (baseline in ILC)
- by backward Compton scattering, the last two solutions providing polarised photons.

pair creation

bremsstrahlung

set of opposite magnets

The coherent synchrotron radiation in the undulator generates photons of around 30 MeV a $0.4 \mathrm{X}^{0}$ target produces $\mathrm{e}^{+} \mathrm{e}^{-}$pairs a thin target reduces the scattering for a better emittance, which stays way too high. $10^{-2} \mathrm{~m}$ less power left in the target 5 kW but need an electron energy > 150 GeV !

And the circular polarisation? helical undulator

Static structure providing a periodical field, electrical or magnetic :
k is the spatial frequency, the wave length is then
in the laboratory

$$
\begin{aligned}
& \lambda=\frac{2 \pi}{k} \quad E_{x}=0, \quad E_{y}=E_{0} \cos k z, \quad E_{z}=0 \\
& \text { an electron comes in with the speed: } \quad \beta=\frac{p_{e}}{E_{e}}
\end{aligned}
$$

In the electron frame:

$$
B_{x}^{\prime} \sim E_{y}^{\prime}=\gamma E_{0} \cos k\left(\gamma z^{\prime}+\beta \gamma t^{\prime}\right)
$$

at high energy $(\beta=1)$ it is a plane wave of frequency $k \gamma$
or an ensemble of photons with energy $k \gamma$ polarised linearly or circularly depending on the geometry of the undulator

Backscattering If the photon energy is $\ll \mathrm{m}_{\mathrm{e}}$, the backscattered photons have an energy $k \gamma$ or $\gamma \lambda^{-1}$

Going back to the laboratory, the photons take a boost γ and their energy is $\gamma^{2} \lambda^{-1}$

Example: with a structure pitch of 1 cm , electrons of $150 \mathrm{GeV}\left(\gamma=310{ }^{5}\right)$ $1 \mathrm{~cm} \simeq 510^{-4} \mathrm{eV}$ hence $\mathrm{E}_{\mathrm{Y}}=45 \mathrm{MeV}$

Problem : we need photons of about 30 MeV to generate positrons energetic enough to resist the Coulomb forces the pitch of undulators is imposed by technology $\sim 1 \mathrm{~cm}$ then the electron energy in the undulator has to be high enough too high for running at the Z !

Remark : plasma undulator

Emittance: a size times an angular dispersion ; dimension $L \quad \epsilon_{x} ; \epsilon_{y}$ conservation of emittance along the accelerator: Liouville's theorem

Rings in which the bunch train is stored for a time T ($\sim 20-200 \mathrm{~ms}$)
to reduce the emittance under the concomitant action of the synchrotron emission and the acceleration by the RF.

Accelerators

vertical damping
the slope y^{\prime} is not modified by the photon emission
δp restored by RF in such a way

We have to integrate over all β phases :
that

$$
\Delta p_{Z}=\delta p_{z}
$$

due to the adiabatic cooling

$$
y^{\prime}=d y / d s=p_{y} / p_{Z}
$$

and the amplitude is reduced by:

$$
\delta y=-\delta p y^{\prime}
$$

$\tau_{D} \approx \frac{2 E}{\left\langle\wp_{\gamma}\right\rangle} \quad$ with $\wp_{\gamma} \propto E^{4} \rho^{-2}$ hence $\tau_{D} \propto E^{-3} \rho^{2}$
LEP: $E \sim 90 \mathrm{GeV}, P_{\gamma} \sim 15000 \mathrm{GeV} / \mathrm{s}, \tau_{D} \sim 12 \mathrm{~ms}$

Accelerators

horizontal damping

The particles undergo then β oscillations around the new closed orbite $\rho_{1} \Rightarrow$ emittance increase

The equilibrium is reached when

$$
\frac{d \epsilon_{x}}{d t}=Q
$$

$$
\frac{d \epsilon_{x}}{d t}=0=Q-\frac{2}{\tau_{D}} \epsilon_{x}
$$

Henri Videau Weihai August 2016
$\tau_{D} \propto E^{-3} \rho^{2}$ suggests high-energy and small ring. But
required RF power: $\quad P_{R F} \propto \frac{E^{4}}{\rho^{2}} \times n_{b} N$
equilibrium emittance:
example:

$$
\epsilon_{n, x} \propto E^{2} \rho^{-1}
$$

Take $E \approx 2 \mathrm{GeV}$
$B_{\text {bend }}=0.13 \mathrm{~T} \Rightarrow \rho \approx 50 \mathrm{~m}$
$\left.<P_{\gamma}\right\rangle=27 \mathrm{GeV} / \mathrm{s}[28 \mathrm{kV} / t u r n]$
hence $\tau_{D} \approx 148 \mathrm{~ms}$ - few ms required!!!
Increase $<P_{\gamma}>$ by ~ 30 using wiggler magnets

Remember: $8 \times{ }^{\tau} D$ needed to reduce e^{+} vertical emittance.

Store time set by $f_{\text {rep: }} \quad t_{s} \approx n_{\text {train }} / f_{\text {rep }}$
radius: $\rho=\frac{n_{\text {train }} n_{b} \Delta t_{b} c}{2 \pi}$

The horizontal emittance $\varepsilon_{x}{ }^{e q}$ is set by the dispersion of trajectories with random energies around the ring .

The vertical emittance $\varepsilon_{y}{ }^{\text {eq }}$ is set by the random angle of γ emission, and by $x-y$ coupling due to defects .
\Rightarrow The damping rings produce naturally flat beams !

... and the quantum excitations

In fact

The emission of photons is not a continuous process, the radiation is emitted by discrete quanta which number and energy spectrum follow statistical laws. The emission process can be modelled as a series of "kicks" which excite longitudinal and transverse oscillations.

Bunch compression

The length of the bunchs coming out of the damping rings
~ few mm
at the interaction point it has to be in the range 100-300 $\mu \mathrm{m}$
evolution of the longitudinal phase space
rotation in phase space we trade the chromaticity for the length

Henri Videau Weihai August 2016

Final focus

Chromatic corrections In order to focus efficiently it is necessary for the energy spread (chromaticity) to be very small before collision

Henri Videau Weihai August 2016

In view of the distance between bunches $300 \times 0.3 \mathrm{~m}$ the beams cross at an angle of 14 mrad
normalised emittances 10000 /35nm
bunch length $300 \mu \mathrm{~m}$
horizontal beam size 500 nm
vertical beam size 6 nm at $500 \mathrm{GeV}\left(\gamma=10^{6}\right)$

Henri Videau Weihai August 2016

Stability

- Beams with very small emittance
- Very strict tolerances on the components
- Quality of the fields
- Alignment
- Question on vibrations and ground motion
- Active stabilisation
- Feed-back systems
much worse for CLIC
, The alignment tolerances vary like $\omega_{R F}{ }^{3}$, and are below $1 \mu \mathrm{~m}$.
- The laser systems offer an alignement precision $\sim 100 \mu \mathrm{~m}$
> The beam itself is used to define straight lines passing through very precise beam position monitors (BPM)
> The magnetic centre of the quadrupoles and the electric centre of the RF cavities are measured and moved.

Beam-Beam orbit feedback

use strong beambeam kick to keep beams colliding

Generally, orbit control (feedback) will be used extensively in LC

The first bunches determine the corrections for the rest of the train

Spectrum of ground motion

Vibration damping, for the accelerator (QD0), and for the detector (platform)

Luminosity measurement

Using reference reactions well known and computed theoretically

Usually the BhaBha scattering
but it is very sensitive to the measurement of the polar angle in θ^{4}.

Use of WW

Note: The Bhabha acolinearity measurement provides the beamstrahlung spectrum

Polarisation

Essential ingredient for numerous physics subjects especially at the GigaZ to measure $A_{\text {LR }}$

The electrons can be polarised at 80% or better
electron gun with a GaAs cathod lit by a laser in a reasonnable electric field (no RF)

Positrons could be polarised at 30-60\% depending
on the length of the undulator 147-220m
undulator plus damping ring
It is essential to know it with a very good precision
Polarimeter before and after interaction point by Compton scattering + measurement from the data utilise WW in the forward direction

Option $\mathrm{e}^{-} \mathrm{e}^{-}$

Luminosity reduced by a factor 3 (pinch effect)
No technical probleme
double beta inverse

With a left polarisation study LNV leptonic number violation
LFV leptonic flavour violation
$W^{-} W^{-}$scattering isospin 2
doubly charged Higgs

Møller scattering to explore Z^{\prime}

Can be provided with two electron beams
 no need of positrons

Probleme of the laser power: recycling cavity

Henri Videau Weihai August 2016

Henri Videau Weihai August 2016

Higgs factory, (X750 factory ?)

e γ Luminosity Spectra

Henri Videau Weihai August 2016

Figure 15.8. Distribution of the ILC value estimate by system and common infrastructure, in ILC Units. The numbers give the TDR estimate for each system in MILCU.

Figure 15.10. Distribution of the ILC Labour estimate by accelerator system. The numbers give the TDR estimate for each system in thousand person-hrs.

Accelerators

Henri Videau Weihai August 2016

Plasma accelerators

with « classical » accelerators we can dream of reaching about $100 \mathrm{MeV} / \mathrm{m}$ with problems of structure degradation. going farther?

We can consider creating accelerating structures of short wavelength in an already disrupted medium : a plasma.

In an ionised gas the speed of the move for ions is much lower than for electrons, as their mass ratio, at a certain scale we can consider the ions as static, the electrons oscillating collectively at the plasma frequency $\quad \omega_{p}^{2}=\frac{4 \pi N Z e^{2}}{m}$
gaseous target, electronic density 10^{16} to $10^{19} \mathrm{~cm}^{-3}$
$\lambda_{p} \sim 300$ to $10 \mu \mathrm{~m}$
Exciting a longitudinal wave
the plasma wave propagates at a phase speed equal to the laser group speed creating very high electric fields, about 1000 times those

Charged particles injected at the right place of the wave are submitted to accelerating and focusing forces.

How to excite plasma waves ?
By a short and powerfull laser shock, few tens of fs, >50 TW $>1 \mathrm{~J}$ few tens of fs.

$$
\begin{aligned}
& 1 \mathrm{nss}=310^{5} \mu \mathrm{~m} \\
& 1 \mathrm{fs}= 310^{-1} \mu \mathrm{~m} \sim 1 \text { optical wavelength } \\
& \quad \quad \text { laser pulses at } 1 \mathrm{fs} \text { are white }
\end{aligned}
$$

By a pulse of electrons, experiments at SLAC doubling the beam energy for the tail of the bunch.

By a pulse of protons, experiment AWAKE at CERN.

A bunch of particles entering the gas cell looses its energy to the gas as a plasma wave (a clever beam dump) which in turn transfers its energy to the second beam.

Accelerators

Proliferation of the PW and UHI Iaser systems in the world ($>10^{20} \mathrm{~W} / \mathrm{cm}^{2}$)

Many installations with 1-10 PW lasers are under development in the world with a focus on particle acceleration, the record is a 4 GeV acceleration in a 10 cm long plasma on BELLA at the LBNL.
longitudinal electric field accelerating transverse electric field focussing

quasi-linear regime

- Iongitudinal plasma wave
- external injection
- laser pulse O(100fs)
- plasma density 10^{16} to $10^{17} \mathrm{~cm}^{-3}$

non linear regime (bubble)
- electric central wakefield
- self-injection
- laser pulse O(20fs)
- plasma density 10^{18} to $10^{19} \mathrm{~cm}^{-3}$

But the devil is in the details: few problems
the phase speed depends on the plasma density, at a point $\gamma_{e l}>\gamma_{p}$ the acceleration also
the speed is lower than c and grows by reducing the density $L_{\max } \propto n_{0}^{-3 / 2}$ then the acceleration goes down.
Like in RF accelerators we need then cells and a multistage accelerator
The laser beam is focussed in the plasma but diverges (Rayleigh length) and, except if we introduce some guidance (autofocus, capillaries, discharges...), the acceleration length is limited (10 cm max up to now)

But the main issue is the energy yield.
The beam energy in a current laser is about 0.025 \% of the plug energy !!! recall that the total yield from the plug of an ILC is about 17 \%
plus the efficiency of the transfer to the plasma plus the efficiency of the transfer to the particle beam, beam loading.

Fibre lasers pumped with diodes are efficient, up to 50 \% but of low power need for coherent bundles of fibres.

In order to gain in energy per stage :
reduce the plasma density
increase the laser power

A TeV collider in a few hundreds of meters Leemans \& Esarey Physics Today 2009
A lot to develop to reach that
Eupraxia : an intermediate step, a reliable accelerator at 5 GeV

End of the section on accelerators

TESLA

TESLA Multi Beam Klystrons

Three Thales TH1801 Multi Beam Klystrons have been produced and tested

MBKs reduce HV and improve the efficiency: lower space charge.
Seven beams, 18.6 A, 110 kV , produce 10 MW with 70\% eff.
Cathodes are still the weak point

Operational experience
Achieved efficiency 65\%
RF pulse width $\quad 1.5 \mathrm{~ms}$
Repetition rate 5 Hz

Operation experience $>5000 \mathrm{~h}$
10% of operation time at full spec's
A new design proposed by Toshiba looks more robust and should reach 75\% efficiency

Superconducting linac
long RF pulse: 1 ms 300 km

5 per second for reason of power consumption, could go to 10
bunchs every 300 ns i.e. 3000 bunchs per train

Strong consequences on the detector
Warm
short RF pulse
100 Hz
bunches every 1.4 ns i.e. 200 bunchs per train

Accelerators

Parameter	X	L	X	L
C. M. Energy/Evergy Reach [TeV]	0.5/0.625	0.5/0.625	1/1.3	1/1
Loaded of gradient [MV/m]	52	28	52	35
2-linac total length [km]	13.4	27.0	26.8	42.5
	3.6	9.6	3.6	9.6
$\gamma_{\mathrm{c}}^{\mathrm{y}}$ (IP) [$\mu \mathrm{mm}$-rad] $]$	0.04	0.04	0.04	0.04
$f_{8}\left[10^{33} \mathrm{~cm}^{-2} 5^{-1}\right]$	14.2	14.5	22.2	22.7
D_{y}	12.9	22.0	10.1	17.3
$H_{\text {D }}$	1.46	1.77	1.41	1.68
$\int\left[10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right]$	20.8	25.6	31.3	38.1
Number of main linac klystrons	4520	603	8984	1211
Number of main linac RF structures	18080	18096	35936	29064
Peak RF power per structure [MW]	56	0.28	56	0.35
Average power per beam [MW]	6.9	11.3	13.8	22.6
Linac AC to beam efficiency [\%]	6.6	17.0	7.1	15.3
Site Operating AC power [MW]	260	179	454	356

Henri Videau Weihai August 2016

