LHCb Experiment

Yuanning Gao
Tsinghua University
Aug. 5, 2016

Outline

- Part I
- Basics on Flavor Physics \& CP violation
- Part II
- The LHCb Experiment
- Selected topics on physics at LHCb

Basics on
Flavor Physics \& CP Violation
Part I

Flavor (particle physics)

WIKIPEDIA

The Free Encyclopedia

- In particle physics, flavour or flavor refers to a species of an elementary particle. The Standard Model counts six flavours of quarks and six flavours of leptons. They are conventionally parameterized with flavour quantum numbers that are assigned to all subatomic particles, including composite ones. For hadrons, these quantum numbers depend on the numbers of constituent quarks of each particular flavour.

What is an electron (in quantum physics)?

- There is a quantum state $|\psi\rangle$
- Measurements (operations on the state)

$$
\left.\begin{array}{rl}
\hat{H}|\psi\rangle & =E|\psi\rangle \\
\hat{\vec{P}}|\psi\rangle & =\vec{p}|\psi\rangle \\
\hat{Q}|\psi\rangle & =-e|\psi\rangle \\
E^{2}-\vec{J}^{2}=m_{e}^{2} & \left.\hat{J}_{z}\left|\begin{array}{c}
\psi_{+} \\
\psi_{-}
\end{array}\right\rangle=\frac{1}{\psi_{+}}\left(\begin{array}{c}
1 \\
0
\end{array}\right\rangle=+\frac{1}{2}\left|\begin{array}{c}
\psi_{+}
\end{array}\right\rangle \begin{array}{c}
\psi_{+} \\
\psi_{-}
\end{array}\right\rangle \\
0
\end{array}\right\rangle \begin{aligned}
& \hat{J}_{z}\left|\begin{array}{c}
0 \\
\psi_{-}
\end{array}\right\rangle=-\frac{1}{2}\left|\begin{array}{c}
0 \\
\psi_{-}
\end{array}\right\rangle
\end{aligned}
$$

- The meanings of

$$
\pi^{0}: \frac{1}{\sqrt{2}}(u \bar{u}+d \bar{d})
$$

Flavor is a quantum number ...

- $\hat{H}\left|\psi_{f}\right\rangle=E_{f}\left|\psi_{f}\right\rangle$

Flavor \& Color

$$
\begin{array}{r}
\hat{H}\left|\psi_{f_{c}}\right\rangle=E_{f_{c}}\left|\psi_{f_{c}}\right\rangle \\
c=R, G, B
\end{array}
$$

The term flavor was first used in particle physics in the context of the quark model of hadrons. It was coined in 1971 by Murray Gell-Mann and his student at the time, Harald Fritzsch, at a Baskin-Robbins ice-cream store in Pasadena. Just as ice cream has both color and flavor so do quarks (Fritzsch, 2008).

The quark sector of The Standard Model

- Quark states

$$
\binom{u}{d}_{L}\binom{c}{s}_{L}\binom{t}{b}_{L}, \ldots \ldots u_{R}, d_{R}, c_{R}, s_{R}, t_{R}, b_{R}
$$

- The lagrangian

$$
L_{c c}=-\frac{g}{\sqrt{2}} J_{c c}^{\mu} W_{\mu}^{*}+h . c
$$

- The current

$$
J_{c c}^{\mu}=(\bar{u}, \bar{c}, \bar{t})_{L} \gamma^{\mu} V_{C K M}\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right)_{L}
$$

CKM Matrix

- $V_{\text {CKM }}$ describes rotation between the weak eigenstates ($\mathrm{d}^{\prime}, \mathrm{s}$ ',b') and mass eigenstates (d,s,b)

| weak
 states | CKM matrix | mass
 states |
| :--- | :--- | :--- | | $V_{i j}$ proportional to transition |
| :--- |
| amplitude from quark j to quark i |

Quarks

$$
\left(\begin{array}{c}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right)
$$

Antiquarks

$$
\left(\begin{array}{c}
\bar{c}^{\prime} \\
\bar{s}^{\prime} \\
\bar{b}^{\prime}
\end{array}\right)=\left(\begin{array}{lll}
V_{u d}^{*} & V_{u s}^{*} & V_{u b}^{*} \\
V_{c d}^{*} & V_{c s}^{*} & V_{c b}^{*} \\
V_{t d}^{*} & V_{t s}^{*} & V_{t b}^{*}
\end{array}\right)\left(\begin{array}{c}
\bar{d} \\
\bar{s} \\
\bar{b}
\end{array}\right)
$$

CP transformation

- CP: connect matter and anti-matter

particle world
antiparticle world

Matter-Antimatter Asymmetry in universe

amount of matter
$=$ amount of anti-matter
our universe only with matter

What do we know?

- Evidences
- no anti-nucleus in the cosmic ray
- no γ rays from $p \bar{p}$ annihilation in space
- Conclusions
- no evidence of anti-matter in our domain of universe

$$
\left(\sim 20 \mathrm{Mps} \approx 10^{8} \text { light-years }\right)
$$

- "Inverse Emmental Cheese" ? Unlikely
- most likely, no anti-matter in our universe

$$
\left(-3000 \mathrm{Mps} \approx 10^{10} \text { light-years }\right)
$$

Two key numbers:

stars, gas etc.
Number of baryons (N_{B})

$$
=10^{-9} \sim 10^{-10}
$$

Number of photons $\left(N_{\gamma}\right)$
cosmic microwave background radiation

Number of baryons now ≈ 0 but $\neq 0$
$\longrightarrow \frac{N_{\mathrm{B}}-N_{\overline{\mathrm{B}}}}{N_{\mathrm{B}}+N_{\overline{\mathrm{B}}}}=10^{-9} \sim 10^{-10}$
1 baryon out of 10^{10} did not annihilate and survived.

```
How can we generate
\[
\frac{N_{\mathrm{B}}-N_{\overline{\mathrm{B}}}}{N_{\mathrm{B}}+N_{\overline{\mathrm{B}}}}=10^{-9} \sim 10^{-10}
\]
\[
\text { from } \left.N_{\mathrm{B}}-N_{\overline{\mathrm{B}}}=0 \text { (initial condition for Big Bang at } t=0\right) ?
\]
```

Necessary conditions:

1) Baryon number violations:
initial and final baryon numbers are different.
2) C and CP violation: partial decay widths are different.
3) Out of equilibrium: no reversing reaction installing the initial state.
(A.Sakharov, 1967)

CP violations in Hamiltonian

- Parity is violated, Charge conjugation is violated
- CPT must be respected, CP is like X
- T transformation is like making complex conjugation:

$$
e^{-i E t} \rightarrow \mathrm{~T} \rightarrow e^{i E t}
$$

T transformation to the Hamiltonian operator H

$$
\begin{gathered}
H \rightarrow \mathrm{~T} \rightarrow H^{*} \\
\text { if } H \neq H^{*}, \mathrm{e}^{-i H t} \rightarrow \mathrm{e}^{i H^{*} t} \neq \mathrm{e}^{i H t} \quad \text { Xi.e. C } P
\end{gathered}
$$

CP violations in SM

- Need a complex phase for CP in SM!
- CKM is the only place

$$
L_{c c}=-\frac{g}{\sqrt{2}} J_{c c}^{\mu} W_{\mu}^{*}+h c .
$$

$$
J_{c c}^{\mu}=(\bar{u}, \bar{c}, \bar{t})_{L} \gamma^{\mu} V_{C K M}\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right)_{L}
$$

$$
V_{\text {CKM }}^{+} V_{\text {CKM }}=I
$$

Standard parametrization of CKM matrix

- 4 independent parameters: 3 angles $\left(\theta_{12}, \theta_{23}, \theta_{13}\right)$ and 1 phase δ

$$
V_{C K M}=R_{23} \times R_{13} \times R_{12}
$$

$R_{12}=\left(\begin{array}{ccc}c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1\end{array}\right) \quad R_{23}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23}\end{array}\right) \quad R_{13}=\left(\begin{array}{ccc}c_{13} & 0 & s_{13} e^{-\mathrm{ii}} \\ 0 & 1 & 0 \\ -s_{13} e^{i 8} & 0 & c_{13}\end{array}\right)$

$$
s_{i j}=\sin \theta_{i j} \quad c_{i j}=\cos \theta_{i j}
$$

The discovery of CP violation

CPV

1964, J.H. Christenson et al., $\operatorname{Br}\left(\mathrm{K}_{\mathrm{L}}^{0} \rightarrow \pi^{+} \pi^{-}\right) \neq 0$
$p_{+-}=p_{\pi+}{ }^{+} p_{\pi^{-}}$
$\theta=$ angle between p_{KL} and p_{+}

The need of three families \cdots

- Kabayashi \& Maskawa (1973)

- c quark discovered in 1974
- b quark discovered in 1977
- t quark discovered in 1995

"for the discovery of the mechanism of spontaneous broken symmetry in subatomic physics"
"for the discovery of the origin of the broken symmetry which predicts the existence of at least three families of quarks in nature"

Problem!!

CP violation in
 the K and B meson decays
 can
 be explained by the Standard Model.

$$
\text { Universe: } \frac{N_{\mathrm{B}}-N_{\overline{\mathrm{B}}}}{N_{\mathrm{B}}+N_{\overline{\mathrm{B}}}}=10^{-9} \sim 10^{-10}
$$

Standard Model: $\frac{N_{\mathrm{B}}-N_{\overline{\mathrm{B}}}}{N_{\mathrm{B}}+N_{\overline{\mathrm{B}}}}=\sim 10^{-20}$

Wolfenstein Parameterization

Wolfenstein parameterization (perturbative form)

$$
\begin{array}{r}
\lambda=s_{12} \quad A=\frac{s_{23}}{s_{12}^{2}} \quad \rho=\frac{s_{13} \cos \delta}{s_{12} s_{23}} \quad \eta=\frac{s_{13} \sin \delta}{s_{12} s_{23}} \\
\lambda=\sin \theta_{12} \approx 0.23
\end{array}
$$

Reflects hierarchy of strengths of quark transitions

Wolfenstein Parameterization

Wolfenstein parameterization to $O\left(\lambda^{3}\right)$:

$$
\mathrm{V}_{\mathrm{ckM}}=\left(\begin{array}{ccc}
\mathrm{V}_{\mathrm{dd}} & \mathrm{~V}_{\mathrm{us}} & \mathrm{~V}_{\mathrm{tb}} \\
\mathrm{~V}_{\mathrm{cd}} & \mathrm{~V}_{\mathrm{cs}} & \mathrm{~V}_{\mathrm{cb}} \\
\mathrm{~V}_{\mathrm{td}} & \mathrm{~V}_{\mathrm{t}} & \mathrm{~V}_{\mathrm{tb}}
\end{array}\right)=\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & \mathrm{~A} \lambda^{3}(\rho-\mathrm{i} \eta) \\
-\lambda & 1-\lambda^{2} / 2 & \mathrm{~A} \lambda^{2} \\
\mathrm{~A} \lambda^{3}(1-\rho-\mathrm{i} \eta) & -\mathrm{A} \lambda^{2} & 1
\end{array}\right)+\mathrm{O}\left(\lambda^{4}\right)
$$

Next-to leading order corrections in λ will be important in LHC era:

$$
V_{C} \begin{array}{r}
V_{C K M}=\left(\begin{array}{ccc}
1-\lambda^{2} / 2-\lambda^{4} / 8 & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda+A^{2} \lambda^{5}(1 / 2-\rho-i \eta) & 1-\lambda^{2} / 2-\lambda^{4} / 8\left(1+4 A^{2}\right) & A \lambda^{2} \\
A \lambda^{3}(1-\bar{\rho}-i \bar{\eta}) & -A \lambda^{2}+A \lambda^{4}(1 / 2-\rho-i \eta) & 1-A^{2} \lambda^{4} / 2
\end{array}\right)+O\left(\lambda^{6}\right) \\
\\
(\rho \bar{\eta})=\left(1-\lambda^{2} / 2\right)(a \eta)
\end{array}
$$

CP Violation in the Standard Model

Requirements for CP violation

$$
\begin{array}{|c|}
\hline\left(m_{t}^{2}-m_{c}^{2}\right)\left(m_{t}^{2}-m_{u}^{2}\right)\left(m_{c}^{2}-m_{u}^{2}\right) \\
\times\left(m_{b}^{2}-m_{s}^{2}\right)\left(m_{b}^{2}-m_{d}^{2}\right)\left(m_{s}^{2}-m_{d}^{2}\right) \times J_{C P} \neq 0
\end{array}
$$

$$
J_{C P} \text { Jarliskog }
$$

where

$$
J_{C p}=\operatorname{Im}\left\{V_{i \alpha} V_{j \beta} V_{i \beta}^{*} V_{j \alpha}^{*}\right\} \mid \quad(i \neq j, \alpha \neq \beta)
$$

Using parameterizations

$$
J_{C P}=s_{12} s_{13} s_{23} c_{12} c_{23} c_{13} \sin \delta=\lambda^{6} A^{2} \eta=O\left(10^{-5}\right)
$$

CP violation is small in the Standard Model

Unitarity Triangles

CKM matrix is unitary: 12 conditions (6 normalisation, 6 orthoganality)

All 6Δ 's have the same area ($=J_{C P} / 2$), a measure of CPV in the Standard Model.

The Unitarity Triangle

Redraw "unsquashed" Δ 's and take real divide by

$$
\alpha \equiv \pi-\beta-\gamma
$$

$$
\gamma \equiv \arg \left[-\frac{V_{u b}^{*} V_{u d}}{V_{c b}^{*} V_{c d}}\right]=\tan ^{-1} \frac{\eta}{\rho} \sim 70^{\circ} \quad \beta \equiv \arg \left[-\frac{V_{c b}^{*} V_{c d}}{V_{t b}^{*} V_{t d}}\right]=\tan ^{-1} \frac{\bar{\eta}}{1-\bar{\rho}} \sim 21^{\circ}
$$

The ... other...Unitarity Triangle

$$
\beta_{s} \equiv \arg \left[-\frac{V_{c b}^{*} V_{c s}}{V_{t b}^{*} V_{t s}}\right] \sim \eta \lambda^{2} \sim 1^{\circ}
$$

2Δ 's identical to $\mathrm{O}\left(\lambda^{3}\right)$

The role of flavor physics

- Flavor Physics deal with transitions among particles (states) with different flavors
- Flavor is conserved in Strong and EM interactions. Effects from new physics could be relatively large in flavor changing processes.
- Some theoretical predictions are reasonably reliable
- Search for (small) deviations from SM predictions ...

Searches for New Physics- Direct or Indirect

- New Physics could be found in smaller and smaller scale

- New Particles could be created by higher and higher energy collisions

Particle Physics \approx High Energy Physics

Large Hadron Collider (LHC)

Searches for New Physics- Direct or Indirect

- However you might also heard some other projects
- B Factories ($\sim 10 \mathrm{GeV}$)
- Beijing Electron Positron Collider (BEPC, 2-5 GeV)
- LHCb (at LHC but …)
- ...
$\mu \rightarrow e \gamma$
$g_{\mu}-2$

Searches for New Physics- Direct or Indirect

- "Indirect Search"

$$
\begin{aligned}
O_{o b s} & -O_{t h}=\Delta O_{N P} \\
O & : \text { an observable } \\
O_{o b s} & : \text { value from the measurement } \\
O_{t h} & : \text { value from the theory prediction } \\
\Delta O_{N P} & : \text { new physics effect }
\end{aligned}
$$

- Precision is the lord!

$$
\sqrt{\sigma_{O_{o b s}}^{2}+\sigma_{O_{t h}}^{2}} \ll \Delta O_{N P}: \text { an indirect discovery }
$$

Searches for New Physics- Direct or Indirect

- Two frontiers of modern particle physics: High Energy \& High Precision

What is on the moon?

Of course going there...

And may be finding something new?

Instruments can be improved and

We see far beyond the direct reach...

Long time ago...

$$
K^{0} \nrightarrow \mu^{+} \mu^{-}
$$

Long time ago...

$$
K^{0} \nrightarrow \mu^{+} \mu^{-}
$$

GIM mechanism: prediction of c-quark

Long time ago...

$$
K^{0} \nrightarrow \mu^{+} \mu^{-}
$$

Long time ago...

$$
K^{0} \nrightarrow \mu^{+} \mu^{-}
$$

The Quest...

NP models introduce new particles which could

- be produced and discovered as real particles
- appear as virtual particles in loop processes \rightarrow observable deviations from the SM expectations in flavour physics and CPV

Heavy flavour programme

- Precision measurements of CKM elements
- Compare tree level processes with loop processes sensitive to NP
- Measure all angles and sides in many different ways and look for inconsistencies
- Measure processes very suppressed in SM

Why the b-quark ?

- Heaviest quark that forms hadronic bound
- Must decay outside $3^{\text {rd }}$ family
- All decays are CKM suppressed
- Long lifetime (~1.6 ps)
- High mass: many accessible final states
- Dominant decay process: "tree" b \rightarrow c transition
- Very suppressed "tree" b \rightarrow u transition
- FCNC: "penguin" b $\rightarrow \mathrm{s}, \mathrm{d}$ transition
- Flavour oscillations ($\mathrm{b} \rightarrow \mathrm{t}$ "box" diagram)
- CP violation - expect large CP asymmetries in some B decays

End of part I

