基于GEM探测器的阻性阳极读出方法研究

董明义 鞠旭东 赵逸琛 欧阳群

高能物理研究所 核探测与核电子学国家重点实验室

主要内容

- 二维阻性阳极读出方法介绍
- 阻性阳极读出重建算法研究
- 阻性阳极读出板的优化
- 探测器公共触发系统的研究
- 总结

背景

- 微结构气体探测器的特点
 - 高位置分辨、高计数率、抗辐照性能、快时间响应......
- 高位置分辨↔高密度电子学通道
- 电子学方面: 高集成度的芯片
- 探测器方面: 保持高位置分辨的同时, 节约电子学通道, 信号读出及处理方法
 - 科大延迟线读出
 - 清华大学楔形阳极读出
 - 科大的编码读出
 - 锯齿读出(Zigzag)
 - 开关电容阵列读出
 - 高能所开展的阻性阳极读出方法研究

阻性阳极读出方法

- 阻性阳极读出方法
 - 位置灵敏硅探测器中广泛 应用
 - Gear-type 无枕形失真
 - Doke-type 优化改进
 - 德国Giegen大学Micro-CAT 探测器
 - $\sigma = 200 \sim 400 \ \mu m$
 - 7×7 Cells, 8×8 mm²
- 我们的工作
 - 2011年起,原理探测器, 单读出pad (8mm × 8mm),中心区域位置 分辨σ好于150μm
 - 2014年系统性研究

C.W. Gear. USAEC Conf-670301:552, 1969. T. Doke et al. Nucl. Instrum. Meth., 261(3):605 - 609, 1987.

A. Orthen et al. Nucl. Instrum. Meth., 478(1{2}:200 - 204, 2002. M. Y. Dong et al. Chin. Phys. C., 37:26002, 2013.

阻性阳极读出方法研究

- 算法研究
- 阻性阳极读出板优化
- X 射线成像探测器的 研制
- 微结构气体探测器 上的拓展应用

- 3×3,6×6,11× 11阵列,
- Pad尺寸:
 6 mm × 6mm,
 8mm × 8mm,
 10mm × 10mm

n- I.	广	块宽	条宽	块阻	条阻		
<u>版本</u>	家	mm	mm	kΩ/□	kΩ/□	备注	
V1-8	Α	7.8	0.2	1000	1	A第一版,导线直接连接焊盘, <mark>可以</mark>	
V2-8	Α	7.8	0.2	100	1	改进引出方式,枕形失真较大, <mark>较好</mark>	
V3-8	В	7.8	0.2	100	1	B第一版,高阻覆盖低阻,不好	
V4-8	Α	7.8	0.4	100	1	换回A,未电气连接, <mark>不能用</mark>	
V5-6	Α	5.8	0.4	100	1	不同Pad尺寸,Node击中多, <mark>可以</mark>	
V5-10	Α	9.8	0.4	100	1	不同Pad尺寸,Node击中多,可以	
V6-8	В	7.8	0.4	100	1	换回B,调整焊盘和条宽,不太好	
V7-8	С	7.8	0.4	100	1	c第一版,可测方阻,畸变最严重	
V8-8	В	7.85	0.2	150	5	修改Pad尺寸,不同方阻比,可以	
V8-8	В	7.85	0.2	500	5	修改Pad尺寸,不同方阻比,可以	
V8-8	В	7.85	0.2	250	5	修改Pad尺寸,不同方阻比,可以	
V9-8	С	7.85	0.25	100	1	修改Pad尺寸,未电气连接,不能用	
V10-6	С	5.85	0.25	100	1	改进电气连接,不同Pad尺寸,较好	
V10-10	С	9.85	0.25	100	1	改进电气连接,不同Pad尺寸,较好	
V11-8	С	7.85	0.25	200	1	大面积陶瓷板,增大方阻比,好	
V11-8	С	7.85	0.25	250	1	大面积陶瓷板,增大方阻比,好	

阻性阳极读出方法的原理及数学模型

 $c = \frac{\varepsilon}{d}$

- 读出板基本结构:
 - 高阻pad
 - 周围环绕的低阻 边界
 - 读出节点
- 二维RC网络
- 电荷输运扩散过程可等效为

$$c\frac{\partial V(x,y,t)}{\partial t} - \nabla \cdot \left(\sigma(x,y)\nabla V(x,y,t)\right) = I(x,y,t)$$

• 有限差分法

重建算法研究

- 本质上为电荷重心法,集中位置不同导致不同节点收集的电荷量不同而重建出位置信息:
 - -4节点重建: 电荷扩散到周边相邻pad
 - -3、6节点重建:可以重建出扩散部分电荷
 - 多节点重建 (9、12、16): 所用pad数目较多
 - 模拟查表法:根据插值法,结合实验数据刻度出不同位置电荷的扩散损失量,计算量大,耗时长

阻性阳极读出重建算法研究: 3,4,6节点重建

阻性阳极读出重建算法研究: 3、4、6节点加权迭代

(0, 1)

(0,0)

- 基本原理
 - $X_{346} = a_x X_4 + (1 a_x)[b_x X_3 + (1 b_x) X_6]$
 - 分区重建
 - ◆ 4节点 ⇒ Cell中心
 - ◆ 3节点 ⇒ Node
 - ◆ 6节点 ⇒ Cell边缘
 - 参数 a_x 、 b_x 的确定 \Rightarrow 初值 + 多次迭代

H.Wagner et al. Nucl. Instrum.Meth., A523:287{301, 2004. Q. L. Xiu, M. Y. Dong et al. Chin. Phys. C., 37:106002, 2013.

阻性阳极读出板的优化

- 阻性阳极板的参数决定探测的性能
 - Pad与其边界strip的电阻比
 - Pad 阻值的均匀性
 - Pad的尺寸
 - Pad的方租
 - Strip的尺寸
 - 读出节点尺寸及负载

Pad和Strip阻值比模拟研究

- Pad与strip的阻值比越大,电荷扩散到相邻pad的损失率越小,4节点重建可以 看出枕形失真小
- 当该阻值比>5时,电荷损失率越为3%,失真已经很小

Pad和Strip阻值比实验结果

- 测试了阻值比为3和5的两款读出板,4节点重建的结果得到了与模拟一致的结果
- 对探测器的性能上,可以得到阻值比为5的读出板位置分辨率以 及位置分辨的均匀性比阻值比为3的读出板有显著提高

Pad方阻均匀性模拟结果

- 将pad等分4部分,设定不同的方阻值,简单模拟方阻的不均匀性
- 不均匀性大于20%时,重建图像明显扭曲失真

Pad方阻均匀性实验结果

- 实际加工阻性板的方阻实测值,除个别pad外,均匀性好于20%
- 探测器的位置非线性好于0.34%,代表探测器良好的成像性能
- 目前的厚膜电阻工艺可以将方阻不均匀性控制在20%之内,甚至更好

高阻Pad的尺寸

- Pad的尺寸直接决定探测器的位置分辨
- 6mm×6mm的pad可以得 到约67μm的位置分辨
- · 小尺寸pad意味着电子学 通道的增多,需根据实际 需求选择

位置分辨率测试结果(双高斯拟合法)

W_{Cell} (mm)	σ_{C} (μ m)	$\sigma_D(\mu m)$
6	103.4	66.7
8	112.2	80.0
10	145.1	109.9

X.D. JU, M. Y. Dong et al. Chin. Phys. C., 086004, 2016

6 mm×6 mm

8 mm×8 mm

10 mm×10 mm

100mm×100mm 探测器

• 基于研究结果,研制了100mm×100mm探测器,Pad尺寸8mm×8 mm

10 20 30 40 50 60 70 80

X346 [mm]

55

• 详细内容参考鞠旭东报告

45

X [mm]

50

40

厚GEM探测器上的尝试及其他应用

- 谢宇广提供的厚GEM膜
- 单层厚GEM膜,放射源初步测试
- 需进一步分析和研究

公共触发信号研究

- 常用的触发方式有自触发和公共触发,公共触发利用GEM3下表面的信号,可以降低电子学的要求,降低探测器研制成本
- 测试中发现不仅有正触发信号,还有负触发信号

产生正负触发信号条件分析

• Ramo定理:两个有限平板间运动电荷在读出电极上 产生的感应电流为

$$i = qvE(x) = qv/d$$

q为运动电荷的电荷量; v为其瞬时速度; E(x)为沿其速度方向的权重电场强度; d为两平板间距

• Q₁与G3D距离为 x_1 ,速度为 $v_1(x_1)$,其在G3D上感应出信号为 i_N ;Q₂与G3D距离为 x_2 ,速度为 $v_2(x_2)$,其在G3D上感应出信号为 i_p ;则探测器G3D上的信号为这两部分信号的叠加:

$$i = i_N + i_P = [Q_2 \cdot v_2(x_2) - Q_1 \cdot v_1(x_1)]/d$$

- Q₁·v₁(x₁)和Q₂·v₂(x₂) 大小决定触发信号极性
- Q_1 和 Q_2 由GEM3的电子出孔率,也即感应的场强 E_I 决定

garfield模拟研究

- G3D上的感应信号由正、负两部分组成,分别对应 Q_2 和 Q_1 的感应信号,信号的幅度与感应区场强 E_i 相关
- Q₁的感应信号为快脉冲信号,Q₂的感应信号随着Q₂漂移速度趋于稳定而变为一个电平,直至其被收集

感应器场强对触发信号的影响

• 当0.6kV/cm < E_I < 1.4kV/cm时, G3D可提供负极性触发信号

触发率随EI的变化

• 当1.5kV/cm $\leq E_l \leq$ 2.1kV/cm时,信号小于触发阈值,不能提供有效的触发

触发信号幅度随Ei的变化

• 当E₁>2.2kV/cm后,触发信号变为正信号,且幅度随E₁的增大而增大

正负触发对探测器性能的影响

探测器工作高压设置

电极	CAT	G1U	G1D	G2U	G2D	G3U	G3D
● 负触发工作高压/ V	-2620	-2270	-1890	-1490	-1120	-620	-250
正触发工作高压/ V	-3370	-3020	-2640	-2240	-1870	-1370	-1000

- 正、负两种触发高压下好事例率分别为96.02%和95.32%
- 正、负两种触发高压下探测器的位置分辨分别为131μm和129μm,
- 正、负公共触发配置高压下的成像效果,两者之间看不出显著的区别

总结

- 模拟和实验研究了微结气体探测器的阻性阳极读出方法,采用346节点加权迭代重建可以得到较好的重建效果
- 研究了阻性阳极参数对探测器性能的影响,理想的参数为: pad与strip的电阻比大于5%, pad方阻不均匀性好于20%, pad尺寸应根据需求设计
- 完成100mm×100mm探测器的研制及测试,整体位置分辨平均值好于100μm,具有良好的成像性能
- 研究了探测器公共触发信号,为GEM探测器采用不同的公共触发高压设置提供参考