

Building Virtual Scientific Computing Environment with Openstack

Yaodong Cheng, CC-IHEP, CAS chyd@ihep.ac.cn

Contents

Science facilities and computing requirements

- Cloud for scientific computing
- IHEP Cloud
- Conclusion

Contents

Science facilities and computing requirements

- Cloud for scientific computing
- IHEP Cloud
- Conclusion

Large science facilities

- IHEP: The largest fundamental research center in China
- IHEP serves as the backbone of China's large science facilities
 - Beijing Electron Positron Collider BEPCII/BESIII
 - Yangbajing Cosmic Ray Observatory: ASg & ARGO
 - Daya Bay Neutrino Experiment
 - China Spallation Neutron Source (CSNS)
 - Hard X-ray Modulation Telescope(HXMT)
 - □ Jiangmen Neutrino Underground Observatory (JUNO)
 - Large High Altitude Air Shower Observatory (LHAASO)
 - Accelerator-driven Sub-critical System (ADS)
 - Under planning: BAPS, XTP, HERD, CEPC, ...

BEPCII/BESIII

- 59 Institutions from China, US, Germany, Italy, Russian, Japan, ...
- □ > 5PB in 5 years
- ~ 6000 CPU cores
 - □ simulation, reconstruction, analysis, ...
- Iong-term data preservation
- data sharing between partners

Other experiments

Daya Bay Neutrino Experiment

~200TB per year

- JUNO: Jiangmen Neutrino Experiment
 - ~2PB per year
- LHAASO
 - ~ 2PB per year
- Atlas and CMS Tier2 site
 - 940TB disk, 1088 CPU cores

CSNS, HXMT, ...

100PB data in coming years!!

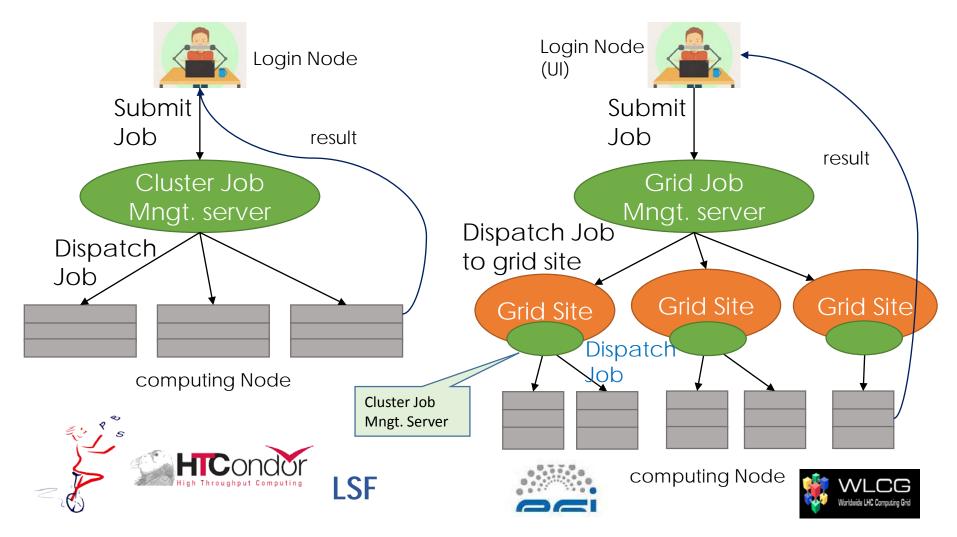
Computing resources status

- ~ 12000 CPU cores
 - ~ 50 queues, managed by Torque/PBS and HTCondor
 - difficult to share
- 🗖 ~ 7PB disk
 - Lustre, Glustre, EOS, dCache/DPM, ...
- ~ 5PB LTO4 tape
 - two IBM 3584 tape libraries
 - modified CERN CASTOR 1.7

Tape libraries

PC farm built with blades

- More HEP experiments, need to manage twice or more servers as today
- but, no possibility of significant increase in staff numbers
- □ Is cloud a good solution ?
- Is cloud suitable for Scientific Computing?
- □ Time to change IT strategy!!



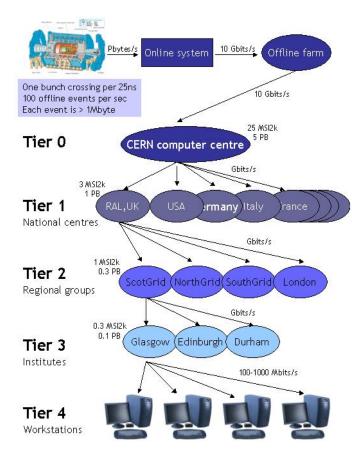
Contents

Science facilities and computing requirements

- Cloud for scientific computing
- IHEP Cloud
- Conclusion

Traditional Scientific computing

Cluster


Grid: Cluster of Cluster

WLCG Grid

- Worldwide Lhc Computing Grid
- 42 countries, 170 computing center's
- Tier0: CERN
 - First copy and First pass reconstruction
 - distribution of data to the Tier 1s
- □ Tier1: 15 large computer centers
 - sufficient storage and computing
 - distribution of data to Tier 2s
- □ Tier2: 150 sites
 - analysis, production and reconstruction
- Tier3: local computing resources

Resource

600k CPU core, 320PB disk, 300PB tape

Barriers for Adoption of Grid Model

Grid computing was never adopted outside (a part of) the scientific community

- a huge effort is needed to develop and maintain the non industry standard middleware
- collaboration and tool sharing across experiments has always been difficult
- very difficult to use non-dedicated resources (all existing middleware is highly invasive) and the resource sharing issue still holds.

Grids are difficult to maintain, operate and use

What is Cloud Computing?

Cloud computing

A technology to ease resource management, provisioning and sharing

An industrial standard technology

NIST Definitions

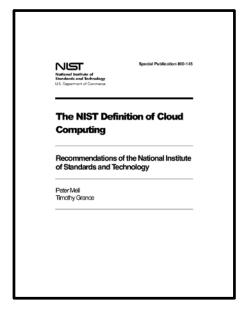
Essential characteristics (5)

On-demand self-service

Broad network access

Resource pooling

Rapid elasticity


Measured service

Service models (3)

IaaS, PaaS, SaaS

Deployment models (4)

Public, private, community, hybrid

http://dx.doi.org/10.6028/NIST.SP.800-145

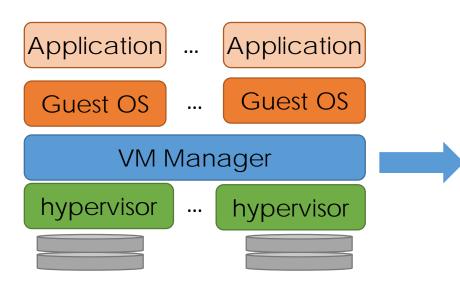
Virtualization

□ Virtualization – the key technology to improve the utilization of server

- Separation of Virtual Machines from Physical Infrastructure
- A VM is an isolated runtime environment (guest OS and applications)

Applications	Applications		Applications		
VM Guest OS	VM Guest OS	000	VM Guest OS		
Hypervisor (Xen, KVM, VMware)					
Physical Machine					

One Physical machine

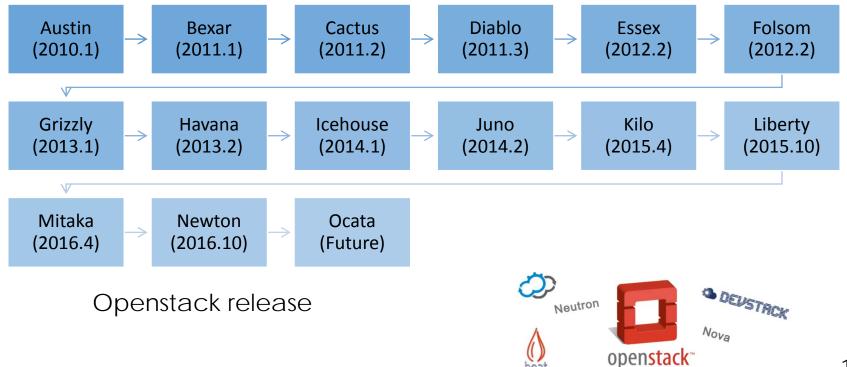

Benefits of Virtualization Platforms

- Natural way to deal with the heterogeneity of the infrastructure
- Allow partitioning and isolating of physical resources
- Execution of legacy applications

VM Manager

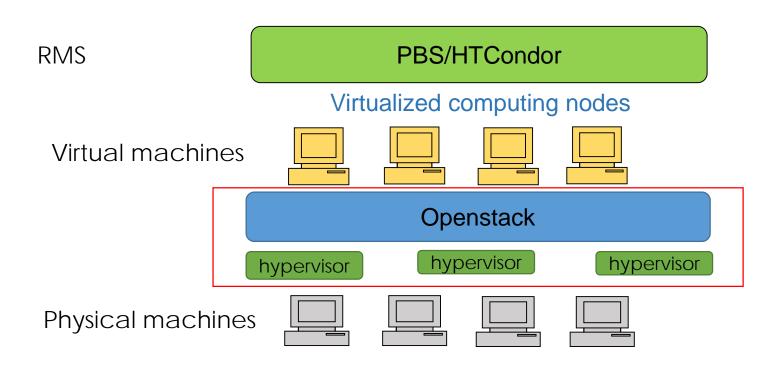
VM Manager creates a distributed virtualization layer

- decouple the VM from the physical location
- Transform a distributed physical infrastructure into a flexible and elastic virtual infrastructure


Many physical machines

Centralized management Balance of workload Server consolidation Dynamic resizing of the infrastructure Dynamic cluster partitioning Support for heterogeneous workloads On-demand provision of VMs

Openstack


a popular VM manger, also called cloud operating system

- Controls large pools of compute, storage, and networking resources throughout a data center
- Hundreds of the world's largest brands rely on OpenStack to run their businesses every day

Virtual Computing Cluster

- Computing nodes are installed in virtual machines
- Seamless integration with the existing middleware stacks.
- Completely transparent to the computing service and end users

CERN Cloud

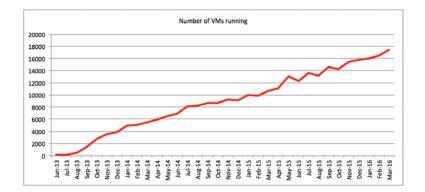
CERN Cloud is one of largest virtual computing cluster

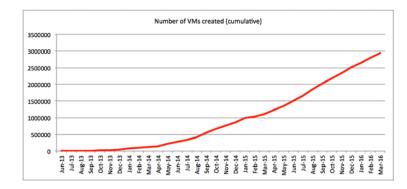
- CERN Cloud Service is one of the three major components in CERN IT's AI project
 - Policy: Servers in CERN IT shall be virtual
 - □ It will be a milestone for scientific cloud
- Based on OpenStack
 - Production service since July 2013
 - Already transition from Juno to Kilo

Nova, Glance, Keystone, Horizon, Cinder, Ceilometer, Heat

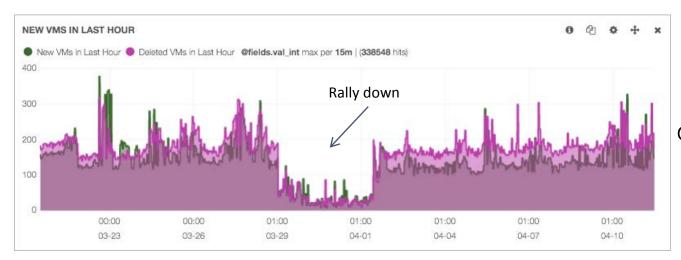
CERN Cloud in Numbers (1)

□5'800 hypervisors in production (6m ago: +25%)


- Majority qemu/kvm now on CC7 (~150 Hyper-V hosts)
- ~2'100 HVs at Wigner in Hungary (batch, compute, services)
- 370 HVs on critical power (+50%)


□155k Cores (+30k)

- □~350 TB RAM (+100TB)
- □~18′000 VMs (+3′000)


□To be increased in 2016!

- +57k cores in spring
- +400kHS06 in autumn

CERN Cloud in Numbers (2)

Every 10s a VM gets created or deleted in CERN cloud!

2'700 images/snapshots (+700)

- Glance on Ceph

2'200 volumes (+700, uptake doubled)

- Cinder on Ceph (& NetApp) in GVA & Wigner

Performance problem

- HS06: HEP-wide benchmark for measuring CPU performance
- CERN: The "20% overhead" problem
 - HS06 rating of full node VMs was ~20% lower than on the underlying host
 - Full node VMs are needed to the limit of the total number of hosts in LSF
 - □ Smaller VMs behaved much better: ~8%
 - The sum of simultaneous HS06 runs on 4x 8-core VMs on a 32-core host
 - Better, but still pretty high
- IN2P3 reported significant performance penalties for ATLAS MC jobs when EPT* was switched on
 - 26% vs. 6% in wall clock time for EPT on vs. EPT off compared to bare metal
 - Surprising as EPT is supposed to make things faster

*EPT: Extended Page Tables is Intel's implementation of a hardware-assisted virtualization technology for page table management (secondary address translation or nested pages). AMD's implementation is called RVI (Rapid Virtualization Indexing).

Virtual machine performance test (1)

BES simulation job

Same number of jobs running on physical vs VM, each VM runs one job.

The number of VM on physical machine(24 cores):1,12,24

Test environment

	Job	alltime	usertime	CPU	slow
Virtual machine:	000				510 11
1 CPU cores, 2GB memory	1-pm	3318.51	3303.13	99.5%	
Physical machine:	1-vm	3427.12	3391.56	98.9%	3.3%
24 CPU cores, 16GB memory	12-pm	3761.75	3740.76	99.5%	
Test Result:	12-vm	3862.58	3828.31	99.1%	2.7%
□ 1 job :Running time penalty	24-pm	3786.45	3750.01	99.5%	
on VM is about 3%	24-vm	3870.08	3829.19	98.9%	2.2%
2 4 job: ~2%					

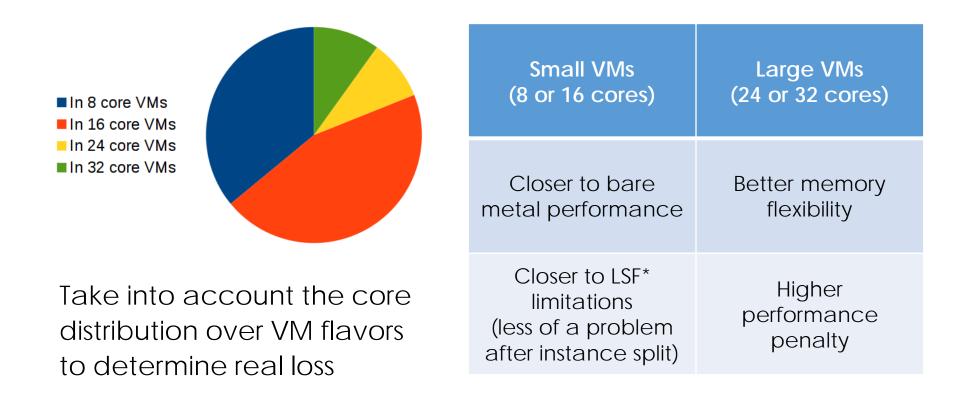
Virtual machine performance test (2)

BES reconstruction job

Same number of jobs running on physical vs VM, each VM runs one job.

The number of VM on physical machine(24 cores):1,12,24

Test environment


- □ Virtual machine:
 - 1CPU cores, 2GB memory
- Physical machine:
 24CPU cores , 16GB memory

Test Result:

- 1 job :Running time penalty on VM is about 3%
- **2**4 job: about 6%

	Job	alltime	usertime	CPU	slow
	1-pm	6409.75	6394.53	99.7%	
	1-vm	6642.33	6632.84	99.3%	3.6%
,	12-pm	7333.58	7305.78	99.7%	
	12-vm	7639.41	7583.24	99.4%	4.2%
	24-pm	7366.25	7333.02	99.7%	
	24-vm	8564.37	8286.49	97%	5.7%

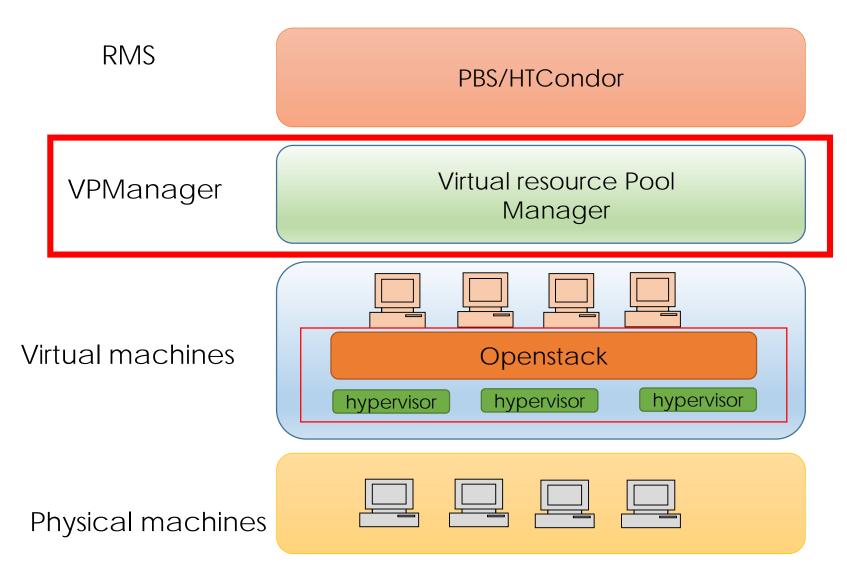
Core Distribution & Effective Impact

Contents

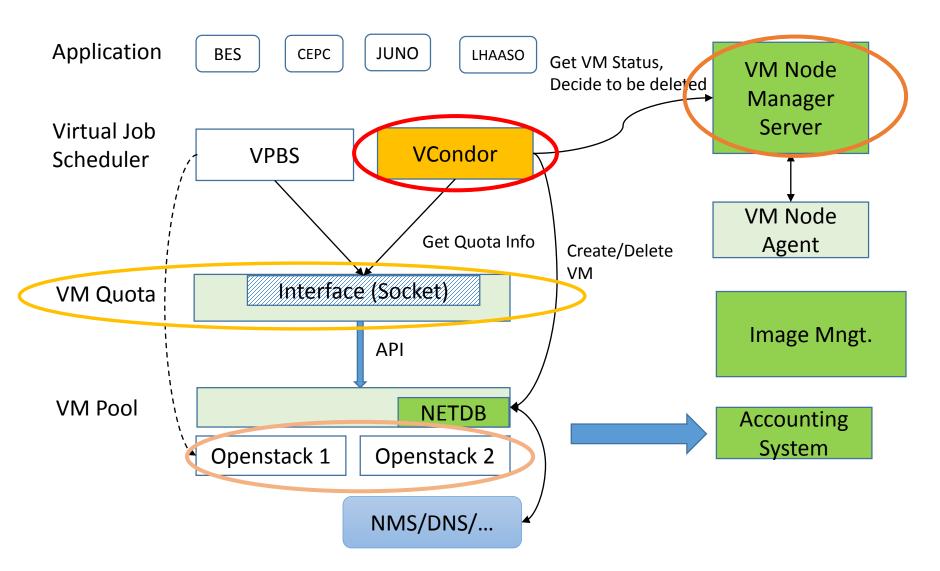
Science facilities and computing requirements

- Cloud for scientific computing
- □ IHEP Cloud
- Conclusion

Motivation


- More HEP experiments, need to manage twice or more servers as today
- Low resources utilization
 - Annual Utilization of computing resources is less than 50% on average
- Computing resources are non-shared
 - Every experiment such as BESIII,YBJ, has its own computing machines
- Cloud widely accepted in scientific and industrial domain
 - Improve operational efficiency
 - □ Improve resource efficiency
 - Improve responsiveness

IHEPCloud: a Private laaS platform


- Launched in May 2014
- Three use scenario
 - User self-Service virtual machine platform (laaS)
 - User register and destroy VM on-demand
 - dynamic Virtual Computing Cluster
 - Job will be allocated to virtual queue automatically when physical queue is busy
 - Distributed computing system
 - Work as a cloud site: Dirac or other applications call cloud interface to start or stop virtual work nodes

	ttp://cloud.ihep.ac.cn
登录	
用户名	
密码	
帮助	登入

Dynamic virtual computing cluster

VPManager(Virtual resource Pool Manager)

VPManager components

□VM Pool

manages one or more openstack deployments, which hides the detailed information of openstack from upper applications

makes it possible to deploy multiple and different versions of openstack

VM Quota

checks the information of VM Pool and requirements of different applications to allocate or reserve resources.

Virtual job manager, VPBS and VCondor

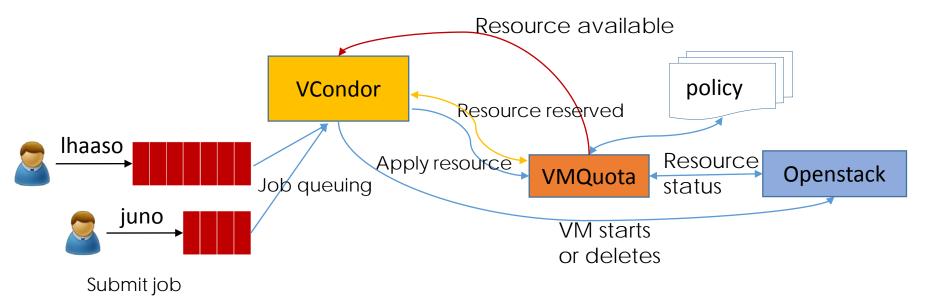
checks the status of different queue and get the available VM number and create new VMs or destroy existing VMs.

VM node manager

checks and controls all the VM run environment such network status, affiliated job queue by an agent running in the virtual machine

Accounting system

keeps all the usage information of each virtual machine and generate bills to user


VCondor

■VCondor

- Resource allocation as demand
- Using HTCondor

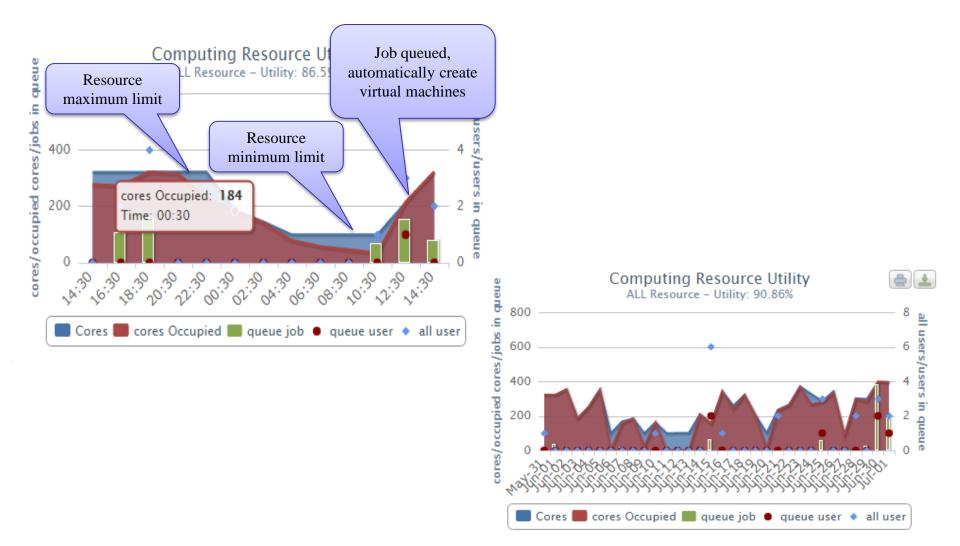
VMQuota

Resource quota management system


VMQuota

Resource Quota management for different experiments

Different experiments have different resource queues


□Allocate and reserve resources for different queues

Queue Name	Min	Max	Available	Reserve time (s)
BES	100	400	200	600
JUNO	100	300	200	600

[{"ResID":"juno","MIN":100,"AVAILABLE":50}]

VCondor monitoring

Future deployment plan

□Four layers

□1st layer: Physical machines

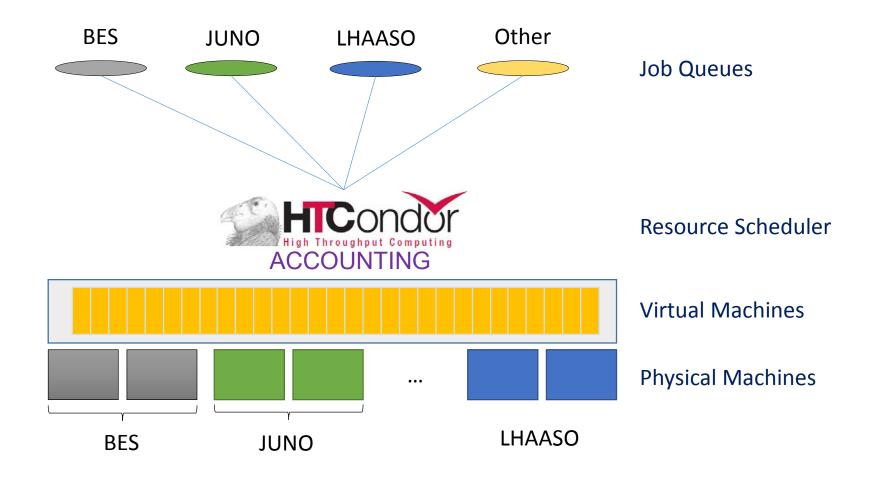
bought and owned by different experiments

2nd layer: Virtual machines

Shared resource pools, not belong to any experiments

□ 3rd layer: Resource scheduler

- Dynamically allocate resources to different experiments depending on the task list
- Resource allocation policies to balance the resource sharing and physical machine invest

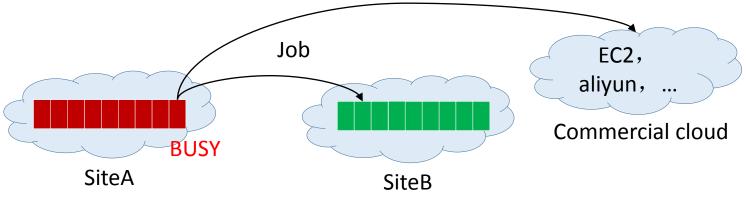

Detailed accounting for resource use

■4th layer: job queues

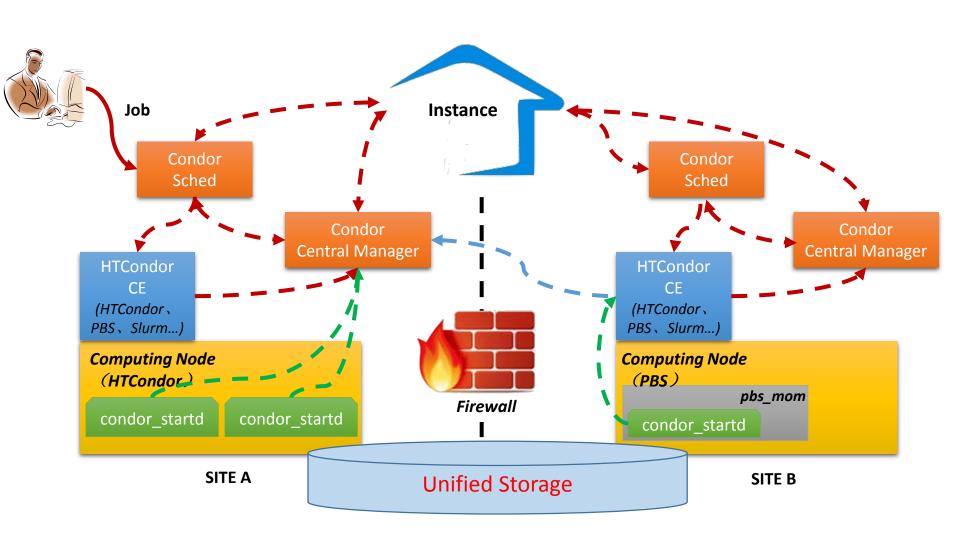
Different job queues for end users of different experiments

Same way to use as traditional cluster

Deployment architecture



China HEP Community Cloud Plan


Sharing resource across different sites
 improve resource utilization

Different data management solution from grid

- Job dispatched to site where data is located in grid
- Impossible to subscribe data in dynamic cloud
- Same storage / file system view across different sites
- Streaming and cache data in cloud
- EOS or LEAF (our planned system)

Distributed Cloud deployment

Cloud computing is widely accepted by industrial and scientific domain

- Scientific computing are preparing the move to cloud
- The performance penalties is acceptable
- IHEPCloud aims at providing self-service virtual machine platform and virtual computing environment
- More resources will be added to IHEPCloud

Thank you!

Any Questions?