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Scattering amplitudes

Correlation functions

Wilson loops

Progress
Significant progress for scattering amplitudes in past years.

Most of these developments are focused on “on-shell” quantities.
Can we go beyond this ?

More powerful computational techniques: 
MHV, BCFW, Unitarity, DCS 

Surprising relations between 
different observables 
(in N=4 SYM)Dual conformal 

symmetry (DCS)
Integrability (Yangian)

AdS/CFT

1 The one-loop operator insertion

We compute the three-point functions at one-loop. The quantum corrections have to be

taken into account and we need to compute the corresponding Feynamnn diagrams. For a

three-point function, there are two di↵erent types of Feynmann diagrams. The first kind

involves only two operators and is called the two-body process, which is given in Fig(
fig:2body
1.1).

This kind of Feynmann diagram also appears in the calculation of higher loop two-point

functions and essentially they contribute to the correction of scaling dimensions as we

shall discuss later. Another type of correction, which is novel in the three-point function

Figure 1.1 – Examples of the two-body process. This kind of processes involves

only two operators. In our example, it involves only O
1

and O
2

. This kind of

diagram also appears in the loop calculation of two-point functions.fig:2body

case involves three operators at the same time, which is depicted in Fig(
fig:3body
1.2) In general,

Figure 1.2 – Examples of the three-body process. This kind of process is new in

the three-point function case since it involves three operators at the same time.fig:3body

in the computation of the three-point functions at higher loop there will be divergences

and one needs to regularize the result. Let us consider three scalar operators O
1

, O
2

and

O
3

. The two-point functions at one-loop reads

hO
i

(x
1

)O
i

(x
2

)i = N
i

x
2�0,i

12

✓
1 + 2g2a

i

� �
i

log

✓
x2

12

"2

◆◆
, i = 1, 2, 3. (1.1)

where �
0,i

and �
i

are tree level scaling dimension and the one-loop anomalous dimensions,

respectively. Here " is the regulator and a
i

is a scheme dependent constant. It is easy to
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PV, IBP
Unitarity

Lectures on Evaluating Feynman Integrals

Gang Yang

Abstract: We consider the state of the art of loop Feynman integral computation and
focus on three methods: Mellin-Barnes (MB) method; Sector decomposition method; and
differential equation (DE) method.

1 Preparation

Observables in quantum field theory, such as scattering amplitudes, Wilson loops or
correlation functions, are given by a sum of Feynman diagrams. At loop level, they are
given by a sum of Feynman loop integrals. We will focus on loop scattering amplitudes.

A =
∑

Feynman diagrams . (1)

There are usually three steps. In the first step, a compact integrand should be
obtained. Then, the integrand may be reduced or reformulated as a linear combination of
a finite set of basis integrals. Finally, the basis integrals are evaluated. We will only give
a brief account of the first and second step and mostly focus on the last step of computing
integrals. PV reduction. IBP reduction. Unitarity cut method.

Before going to details of those technical points, let us briefly review some important
general facts of Feynman integrals.

1.1 Wick rotation and iε

Kinematics in quantum field theory is in Minkowski space with signature in R1,3.
The Lorentz product of two momenta is given as

p · q = p0q0 − p⃗ · q⃗. (2)

After Feynman parametrization, one needs to deal with integral over a loop momentum
kµ in Minkowski space.

1

2 Integrand and its reduction

2.1 Integral by part (IBP) reduction

Integrand =
∑

ci × Ii (19)

It is known that given any particular class of Feynman integrals can be written in
terms of a linear combination of a finite set of basis integrals [?].

ann integral family → a finite set of basis (20)

One key point in mind is that there is no unique choice of the basis, and a ‘good’ choice
of basis is sometimes very important, which may allow to solve the integrals automatically.
See later discussion of the differential equation method. Also, see the quasi-

Still given the basis, the reduction is also a challenge. An ‘good’ basis may be not
easy to the performance of the reduction.

2.2 Examples

2.3 Programs

FIRE - IBP

Reduze - IBP

LiteRed - IBP

Air - IBP

Mint - counting the number of basis
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Obtain integrand based on physical singularities, 
without using Feynman diagrams

Advantages (compared to Feynman diagram method):

• more compact expression 
• better UV behaviour 
• structure and symmetries made obvious 
• way to find ‘nice’ basis
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such that

p2 → −p20 − p⃗ · q⃗ = −p2E , (3)

where pE is the Euclidean momentum.

Once Wick-rotated, the integrals are evaluated in a straightforward way. Note that
the Wick rotation is just a trick for evaluating integrals. There is nothing physical about
it. Also, the Wick rotation can be justified only if there are no new poles that invalidate
the contour rotation. [This caveat is relevant for 2-loop and higher integrals.]

1.2 Feynman parametrization

Schwinger parametrization:

1

Aa
=

1

Γ(a)

∫ ∞

0

dxxa−1 e−xA. (4)

Feynman parametrization:

1

AaBb
=

Γ(a + b)

Γ(a)Γ(b)

∫ 1

0

dx1dx2
δ(1− x1 − x2) x

a−1
1 xb−1

2

(x1A+ x2B)a+b
. (5)

By mathematica induction, one can easily get that

1
∏n

i=1A
ai
i

=
Γ(a1 + · · ·+ an)

∏n
i=1 Γ(ai)

∫ 1

0

[

n
∏

i=1

dxix
ai−1
i

] δ(1−
∑n

i=1 xi)

(
∑n

i=1 xiAi)a1+···+an
. (6)

Let us consider the one-loop case.

G(1)
n =

∫

dDk

iπD/2

1

(−k2 +m2
1)

a1 [−(k + p1)2 +m2
2]
a2 · · · [−(k + p1 + . . .+ pn−1)2 +m2

n]
an

.

(7)

Using the Feynman parametrization, performing a change of variables, and integrating
over the loop momentum k, one gets

G(1)
n =

Γ(a)
∏n

i=1 Γ(ai)

∫ ∞

0

[

n
∏

i=1

dxix
ai−1
i

]

δ(1−
n

∑

i=1

cixi)
Ua−D

(V + U
∑n

i=1m
2
ixi)a−D/2

, (8)

where a =
∑n

i=1 ai, U =
∑n

i=1 xi, and V =
∑

i<j xixj [−(pi + pi+1 + ..+ pj−1)2]. Note that
ci can be chosen as any value as long as one of them is non-zero. This is related to the
so-called Cheng-Wu theorem mentioned below.

Consider general higher loop integrals

G(L) =

∫

[

L
∏

i=1

dDki
iπD/2

] 1

(−q21 +m2
1)

ν1 [−q22 +m2
2]
ν2 · · · [−q2N +m2

N ]
νN

. (9)
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Feynman/Schwinger parametrization  
+ Wick rotation to Euclidean space 
+ Gaussian integral over the loop momentum k

G(1)
n =
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∏n

i=1 Γ(ai)
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0

[

n
∏

i=1

dxix
ai−1
i
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δ(1−
n

∑

i=1
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Ua−D

(V + U
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i=1m
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] 1

(−q21 +m2
1)

ν1 [−q22 +m2
2]
ν2 · · · [−q2N +m2

N ]
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one has

G(L) =
Γ(ν − LD/2)
∏N

i=1 Γ(νi)

∫ ∞

0

[

N
∏

i=1

dxix
νi−1
i

]

δ(1−
N
∑

i=1

xi)
Uν−(L+1)D/2

F ν−LD/2
, (12)

where ν =
∑N

i=1 νi. And U and F are the well-known Symanzik polynomial of degree
L and L+ 1, which depends only on the topology of the corresponding Feynman graph.
They are given as

U(x⃗) =
∑

T∈T1

∏

i/∈T1

xi , (13)

V (x⃗) =
∑

T∈T2

∏

i/∈T2

xi(−sT ) , (14)

F (x⃗) = V + U
n

∑

i=1

m2
ixi . (15)

T1 is the connected tree obtained by cutting L propagators of a L-loop graph, thus U is
a homogeneous polynomial of degree L. T2 is obtained by cutting L-loop graph into two
trees, therefore L+ 1 propagators are cut and V is a homogeneous polynomial of degree
L + 1. sT is the square of the momentum flow though the L + 1-cut. Note that in the
one-loop case, one has U = 1 (when all ci = 1); while in the massless cases, F = V .

The case with numerators are more complicated but can be treated similarly. On the
other hand, a numerator can be taken as a inverse propagator thus put in the above form
as well. Furthermore, Any tensor integral can be expressed in terms of scalar integrals
in shifted dimensions, with some of the propagator powers different from unity. For
illustration purpose we will mostly focus on the case without numerators.

Later we will often take (12) as our starting point.

1.3 Divergence and Regularization

We will focus on the dimensional regularization introduced by ’t Hooft and Veltman.
One advantage is that it preserves gauge invariance. Another advantage is that it can
regularization ultraviolet (UV) and infrared (IR) divergences at once.
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U, F are homogeneous polynomial in x, 
with degree L and L+1 respectively.

At one-loop, one can set U=1. 
In massless case, F = V.
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other hand, a numerator can be taken as a inverse propagator thus put in the above form
as well. Furthermore, Any tensor integral can be expressed in terms of scalar integrals
in shifted dimensions, with some of the propagator powers different from unity. For
illustration purpose we will mostly focus on the case without numerators.

Later we will often take (12) as our starting point.

1.3 Divergence and Regularization

We will focus on the dimensional regularization introduced by ’t Hooft and Veltman.
One advantage is that it preserves gauge invariance. Another advantage is that it can
regularization ultraviolet (UV) and infrared (IR) divergences at once.
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Let us understand the origin of the divergences from the parametric form (12). In the
so-called Euclidean region where all sT are negative, F is a positive semi-definite function
of xi. U is also positive semi-definite. The parametric integral can only have divergence
when xi goes to zero.

Overall UV divergences, if present, will always be contained in the prefactor Γ(ν −
LD/2), therefore it is simply determined by the topology and power counting. The UV
sub-divergence would be related to the vanishing of U . It requires ϵUV > 0 to regularize
UV divergences.

On the other hand, IR divergences is related the polynomial F . The vanishing of F
does not necessarily lead to an IR singularity. Only if some of the invariants are zero, for
example if some of the external momenta are light-like or in the soft limit, the vanishing
of F may induce an IR divergence. Thus it depends on the kinematics and not only
on the topology (like in the UV case) whether a zero of F leads to a divergence or not.
This is also consistent with the well-known fact that IR divergences have two origin: soft
and collinear. This fact makes it much harder to formulate general theorems for the
subtraction of IR singularities of multi-loop Feynman graphs.1 We need to set ϵIR < 0 to
regularize IR divergences.

A few remarks follows.

• Degree of divergences

Unlike Pauli-Villars regularization with a cut-off, the degree of divergences are ob-
scured in dimensional regularization. For example, both logarithm divergence and
quadratic divergence give simple pole 1

ϵ when expanded around D = 4.

However, the information is hidden but not disappear. Dimensional regularization
characterizes the degree to which integrals diverge at high energy through analytic
properties of regulated results, rather than through powers of a cutoff scale. For
example, logarithmically divergent integral contains a factor Γ(2 − D

2 ) which has a
simple pole at D = 4, while the quadratic divergence contains a factor Γ(1 − D

2 )
which contains a simple pole already start at D = 2. Dimensional regularization
translates the degree of divergence into the singularity structure of amplitudes in D
dimensions.

• Tadpole and scaleless integrals

Scaleless integrals are taken to be zero in the dimensional regularization scheme.
Typical examples include the massless bubble and massless tadpole integrals.

1The necessary (but not sufficient) conditions for an IR divergence are given by the Landau equations,
which, in parameter space, simply mean that the necessary condition F = 0 for an IR divergence can
only be fulfilled if some of the parameters xi go to zero, provided that all kinematic invariants sT are
negative.
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T1 is the connected tree obtained by cutting L propagators of a L-loop graph, thus U is
a homogeneous polynomial of degree L. T2 is obtained by cutting L-loop graph into two
trees, therefore L+ 1 propagators are cut and V is a homogeneous polynomial of degree
L+ 1. sT is the square of the momentum flow though the (L+ 1)-cut. Note that in the
one-loop case, one has U = 1 (when all ci = 1); while in the massless cases, F = V .

The case with numerators are more complicated but can be treated similarly. On the
other hand, a numerator can be taken as a inverse propagator thus put in the above form
as well. Furthermore, Any tensor integral can be expressed in terms of scalar integrals
in shifted dimensions, with some of the propagator powers different from unity. For
illustration purpose we will mostly focus on the case without numerators.

Later we will often take (12) as our starting point.

1.3 Divergence and Regularization

We will focus on the dimensional regularization introduced by ’t Hooft and Veltman.
D = 4 − 2ϵ. One advantage is that it preserves gauge invariance. Another advantage is
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so-called Euclidean region where all sT are negative, F is a positive semi-definite function
of xi. U is also positive semi-definite. The parametric integral can only have divergence
when xi goes to zero.

Overall UV divergences, if present, will always be contained in the prefactor Γ(ν −
LD/2), therefore it is simply determined by the topology and power counting. The UV
sub-divergence would be related to the vanishing of U . It requires ϵUV > 0 to regularize
UV divergences.

On the other hand, IR divergences is related the polynomial F . The vanishing of F
does not necessarily lead to an IR singularity. Only if some of the invariants are zero, for
example if some of the external momenta are light-like or in the soft limit, the vanishing
of F may induce an IR divergence. Thus it depends on the kinematics and not only
on the topology (like in the UV case) whether a zero of F leads to a divergence or not.
This is also consistent with the well-known fact that IR divergences have two origin: soft
and collinear. This fact makes it much harder to formulate general theorems for the
subtraction of IR singularities of multi-loop Feynman graphs.1 We need to set ϵIR < 0 to
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A few remarks follows.
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Typical examples include the massless bubble and massless tadpole integrals.

1The necessary (but not sufficient) conditions for an IR divergence are given by the Landau equations,
which, in parameter space, simply mean that the necessary condition F = 0 for an IR divergence can
only be fulfilled if some of the parameters xi go to zero, provided that all kinematic invariants sT are
negative.

4

G(1)
n =

Γ(a−D/2)
∏n

i=1 Γ(ai)

∫ ∞

0

[

n
∏

i=1

dxix
ai−1
i

]

δ(1−
n

∑

i=1

cixi)
Ua−D

(V + U
∑n

i=1m
2
ixi)a−D/2

, (10)

where a =
∑n

i=1 ai, U =
∑n

i=1 xi, and V =
∑

i<j xixj [−(pi + pi+1 + ..+ pj−1)2]. Note that
ci can be chosen as any value as long as one of them is non-zero. This is related to the
so-called Cheng-Wu theorem mentioned below.

Consider general higher loop integrals

G(L) =

∫

[

L
∏

i=1

dDki
iπD/2

] 1

(−q21 +m2
1)

ν1 [−q22 +m2
2]
ν2 · · · [−q2N +m2

N ]
νN

. (11)

one has

G(L) =
Γ(ν − LD/2)
∏N

i=1 Γ(νi)

∫ ∞

0

[

N
∏

i=1

dxix
νi−1
i

]

δ(1−
N
∑

i=1

xi)
Uν−(L+1)D/2

F ν−LD/2
, (12)

where ν =
∑N

i=1 νi. And U and F are the well-known Symanzik polynomial of degree
L and L+ 1, which depends only on the topology of the corresponding Feynman graph.
They are given as

U(x⃗) =
∑

T∈T1

∏

i/∈T1

xi , (13)

V (x⃗) =
∑

T∈T2

∏

i/∈T2

xi(−sT ) , (14)

F (x⃗) = V + U
n

∑

i=1

m2
ixi . (15)

T1 is the connected tree obtained by cutting L propagators of a L-loop graph, thus U is
a homogeneous polynomial of degree L. T2 is obtained by cutting L-loop graph into two
trees, therefore L+ 1 propagators are cut and V is a homogeneous polynomial of degree
L+ 1. sT is the square of the momentum flow though the (L+ 1)-cut. Note that in the
one-loop case, one has U = 1 (when all ci = 1); while in the massless cases, F = V .

The case with numerators are more complicated but can be treated similarly. On the
other hand, a numerator can be taken as a inverse propagator thus put in the above form
as well. Furthermore, Any tensor integral can be expressed in terms of scalar integrals
in shifted dimensions, with some of the propagator powers different from unity. For
illustration purpose we will mostly focus on the case without numerators.

Later we will often take (12) as our starting point.

1.3 Divergence and Regularization

We will focus on the dimensional regularization introduced by ’t Hooft and Veltman.
D = 4 − 2ϵ. One advantage is that it preserves gauge invariance. Another advantage is
that it can regularization ultraviolet (UV) and infrared (IR) divergences at once.

3

Let us understand the origin of the divergences from the parametric form (12). In the
so-called Euclidean region where all sT are negative, F is a positive semi-definite function
of xi. U is also positive semi-definite. The parametric integral can only have divergence
when xi goes to zero.

Overall UV divergences, if present, will always be contained in the prefactor Γ(ν −
LD/2), therefore it is simply determined by the topology and power counting. The UV
sub-divergence would be related to the vanishing of U . It requires ϵUV > 0 to regularize
UV divergences.

On the other hand, IR divergences is related the polynomial F . The vanishing of F
does not necessarily lead to an IR singularity. Only if some of the invariants are zero, for
example if some of the external momenta are light-like or in the soft limit, the vanishing
of F may induce an IR divergence. Thus it depends on the kinematics and not only
on the topology (like in the UV case) whether a zero of F leads to a divergence or not.
This is also consistent with the well-known fact that IR divergences have two origin: soft
and collinear. This fact makes it much harder to formulate general theorems for the
subtraction of IR singularities of multi-loop Feynman graphs.1 We need to set ϵIR < 0 to
regularize IR divergences.

A few remarks follows.

• Degree of divergences

Unlike Pauli-Villars regularization with a cut-off, the degree of divergences are ob-
scured in dimensional regularization. For example, both logarithm divergence and
quadratic divergence give simple pole 1

ϵ when expanded around D = 4.

However, the information is hidden but not disappear. Dimensional regularization
characterizes the degree to which integrals diverge at high energy through analytic
properties of regulated results, rather than through powers of a cutoff scale. For
example, logarithmically divergent integral contains a factor Γ(2 − D

2 ) which has a
simple pole at D = 4, while the quadratic divergence contains a factor Γ(1 − D

2 )
which contains a simple pole already start at D = 2. Dimensional regularization
translates the degree of divergence into the singularity structure of amplitudes in D
dimensions.

• Tadpole and scaleless integrals

Scaleless integrals are taken to be zero in the dimensional regularization scheme.
Typical examples include the massless bubble and massless tadpole integrals.

1The necessary (but not sufficient) conditions for an IR divergence are given by the Landau equations,
which, in parameter space, simply mean that the necessary condition F = 0 for an IR divergence can
only be fulfilled if some of the parameters xi go to zero, provided that all kinematic invariants sT are
negative.
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where a =
∑n

i=1 ai, U =
∑n

i=1 xi, and V =
∑

i<j xixj [−(pi + pi+1 + ..+ pj−1)2]. Note that
ci can be chosen as any value as long as one of them is non-zero. This is related to the
so-called Cheng-Wu theorem mentioned below.

Consider general higher loop integrals
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where ν =
∑N

i=1 νi. And U and F are the well-known Symanzik polynomial of degree
L and L+ 1, which depends only on the topology of the corresponding Feynman graph.
They are given as

U(x⃗) =
∑

T∈T1

∏

i/∈T1

xi , (13)

V (x⃗) =
∑

T∈T2

∏

i/∈T2

xi(−sT ) , (14)

F (x⃗) = V + U
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∑
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ixi . (15)

T1 is the connected tree obtained by cutting L propagators of a L-loop graph, thus U is
a homogeneous polynomial of degree L. T2 is obtained by cutting L-loop graph into two
trees, therefore L+ 1 propagators are cut and V is a homogeneous polynomial of degree
L + 1. sT is the square of the momentum flow though the L + 1-cut. Note that in the
one-loop case, one has U = 1 (when all ci = 1); while in the massless cases, F = V .

The case with numerators are more complicated but can be treated similarly. On the
other hand, a numerator can be taken as a inverse propagator thus put in the above form
as well. Furthermore, Any tensor integral can be expressed in terms of scalar integrals
in shifted dimensions, with some of the propagator powers different from unity. For
illustration purpose we will mostly focus on the case without numerators.

Later we will often take (12) as our starting point.

1.3 Divergence and Regularization

We will focus on the dimensional regularization introduced by ’t Hooft and Veltman.
One advantage is that it preserves gauge invariance. Another advantage is that it can
regularization ultraviolet (UV) and infrared (IR) divergences at once.

3

Let us understand the origin of the divergences from the parametric form (12). In the
so-called Euclidean region where all sT are negative, F is a positive semi-definite function
of xi. U is also positive semi-definite. The parametric integral can only have divergence
when xi goes to zero.

Overall UV divergences, if present, will always be contained in the prefactor Γ(ν −
LD/2), therefore it is simply determined by the topology and power counting. The UV
sub-divergence would be related to the vanishing of U . It requires ϵUV > 0 to regularize
UV divergences.

On the other hand, IR divergences is related the polynomial F . The vanishing of F
does not necessarily lead to an IR singularity. Only if some of the invariants are zero, for
example if some of the external momenta are light-like or in the soft limit, the vanishing
of F may induce an IR divergence. Thus it depends on the kinematics and not only
on the topology (like in the UV case) whether a zero of F leads to a divergence or not.
This is also consistent with the well-known fact that IR divergences have two origin: soft
and collinear. This fact makes it much harder to formulate general theorems for the
subtraction of IR singularities of multi-loop Feynman graphs.1 We need to set ϵIR < 0 to
regularize IR divergences.

A few remarks follows.

• Degree of divergences

Unlike Pauli-Villars regularization with a cut-off, the degree of divergences are ob-
scured in dimensional regularization. For example, both logarithm divergence and
quadratic divergence give simple pole 1

ϵ when expanded around D = 4.

However, the information is hidden but not disappear. Dimensional regularization
characterizes the degree to which integrals diverge at high energy through analytic
properties of regulated results, rather than through powers of a cutoff scale. For
example, logarithmically divergent integral contains a factor Γ(2 − D

2 ) which has a
simple pole at D = 4, while the quadratic divergence contains a factor Γ(1 − D

2 )
which contains a simple pole already start at D = 2. Dimensional regularization
translates the degree of divergence into the singularity structure of amplitudes in D
dimensions.

• Tadpole and scaleless integrals

Scaleless integrals are taken to be zero in the dimensional regularization scheme.
Typical examples include the massless bubble and massless tadpole integrals.

1The necessary (but not sufficient) conditions for an IR divergence are given by the Landau equations,
which, in parameter space, simply mean that the necessary condition F = 0 for an IR divergence can
only be fulfilled if some of the parameters xi go to zero, provided that all kinematic invariants sT are
negative.
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i=1 xi, and V =
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i<j xixj [−(pi + pi+1 + ..+ pj−1)2]. Note that
ci can be chosen as any value as long as one of them is non-zero. This is related to the
so-called Cheng-Wu theorem mentioned below.

Consider general higher loop integrals
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where ν =
∑N

i=1 νi. And U and F are the well-known Symanzik polynomial of degree
L and L+ 1, which depends only on the topology of the corresponding Feynman graph.
They are given as

U(x⃗) =
∑

T∈T1

∏

i/∈T1

xi , (13)

V (x⃗) =
∑

T∈T2

∏

i/∈T2

xi(−sT ) , (14)

F (x⃗) = V + U
n

∑

i=1

m2
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T1 is the connected tree obtained by cutting L propagators of a L-loop graph, thus U is
a homogeneous polynomial of degree L. T2 is obtained by cutting L-loop graph into two
trees, therefore L+ 1 propagators are cut and V is a homogeneous polynomial of degree
L+ 1. sT is the square of the momentum flow though the (L+ 1)-cut. Note that in the
one-loop case, one has U = 1 (when all ci = 1); while in the massless cases, F = V .

The case with numerators are more complicated but can be treated similarly. On the
other hand, a numerator can be taken as a inverse propagator thus put in the above form
as well. Furthermore, Any tensor integral can be expressed in terms of scalar integrals
in shifted dimensions, with some of the propagator powers different from unity. For
illustration purpose we will mostly focus on the case without numerators.

Later we will often take (12) as our starting point.

1.3 Divergence and Regularization

We will focus on the dimensional regularization introduced by ’t Hooft and Veltman.
D = 4 − 2ϵ. One advantage is that it preserves gauge invariance. Another advantage is
that it can regularization ultraviolet (UV) and infrared (IR) divergences at once.

3

Let us understand the origin of the divergences from the parametric form (12). In the
so-called Euclidean region where all sT are negative, F is a positive semi-definite function
of xi. U is also positive semi-definite. The parametric integral can only have divergence
when xi goes to zero.

Overall UV divergences, if present, will always be contained in the prefactor Γ(ν −
LD/2), therefore it is simply determined by the topology and power counting. The UV
sub-divergence would be related to the vanishing of U . It requires ϵUV > 0 to regularize
UV divergences.

On the other hand, IR divergences is related the polynomial F . The vanishing of F
does not necessarily lead to an IR singularity. Only if some of the invariants are zero, for
example if some of the external momenta are light-like or in the soft limit, the vanishing
of F may induce an IR divergence. Thus it depends on the kinematics and not only
on the topology (like in the UV case) whether a zero of F leads to a divergence or not.
This is also consistent with the well-known fact that IR divergences have two origin: soft
and collinear. This fact makes it much harder to formulate general theorems for the
subtraction of IR singularities of multi-loop Feynman graphs.1 We need to set ϵIR < 0 to
regularize IR divergences.

A few remarks follows.

• Degree of divergences

Unlike Pauli-Villars regularization with a cut-off, the degree of divergences are ob-
scured in dimensional regularization. For example, both logarithm divergence and
quadratic divergence give simple pole 1

ϵ when expanded around D = 4.

However, the information is hidden but not disappear. Dimensional regularization
characterizes the degree to which integrals diverge at high energy through analytic
properties of regulated results, rather than through powers of a cutoff scale. For
example, logarithmically divergent integral contains a factor Γ(2 − D

2 ) which has a
simple pole at D = 4, while the quadratic divergence contains a factor Γ(1 − D

2 )
which contains a simple pole already start at D = 2. Dimensional regularization
translates the degree of divergence into the singularity structure of amplitudes in D
dimensions.

• Tadpole and scaleless integrals

Scaleless integrals are taken to be zero in the dimensional regularization scheme.
Typical examples include the massless bubble and massless tadpole integrals.

1The necessary (but not sufficient) conditions for an IR divergence are given by the Landau equations,
which, in parameter space, simply mean that the necessary condition F = 0 for an IR divergence can
only be fulfilled if some of the parameters xi go to zero, provided that all kinematic invariants sT are
negative.
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ci can be chosen as any value as long as one of them is non-zero. This is related to the
so-called Cheng-Wu theorem mentioned below.

Consider general higher loop integrals
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where ν =
∑N

i=1 νi. And U and F are the well-known Symanzik polynomial of degree
L and L+ 1, which depends only on the topology of the corresponding Feynman graph.
They are given as

U(x⃗) =
∑

T∈T1

∏

i/∈T1

xi , (13)

V (x⃗) =
∑

T∈T2

∏

i/∈T2

xi(−sT ) , (14)

F (x⃗) = V + U
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T1 is the connected tree obtained by cutting L propagators of a L-loop graph, thus U is
a homogeneous polynomial of degree L. T2 is obtained by cutting L-loop graph into two
trees, therefore L+ 1 propagators are cut and V is a homogeneous polynomial of degree
L + 1. sT is the square of the momentum flow though the L + 1-cut. Note that in the
one-loop case, one has U = 1 (when all ci = 1); while in the massless cases, F = V .

The case with numerators are more complicated but can be treated similarly. On the
other hand, a numerator can be taken as a inverse propagator thus put in the above form
as well. Furthermore, Any tensor integral can be expressed in terms of scalar integrals
in shifted dimensions, with some of the propagator powers different from unity. For
illustration purpose we will mostly focus on the case without numerators.

Later we will often take (12) as our starting point.

1.3 Divergence and Regularization

We will focus on the dimensional regularization introduced by ’t Hooft and Veltman.
One advantage is that it preserves gauge invariance. Another advantage is that it can
regularization ultraviolet (UV) and infrared (IR) divergences at once.

3

Let us understand the origin of the divergences from the parametric form (12). In the
so-called Euclidean region where all sT are negative, F is a positive semi-definite function
of xi. U is also positive semi-definite. The parametric integral can only have divergence
when xi goes to zero.

Overall UV divergences, if present, will always be contained in the prefactor Γ(ν −
LD/2), therefore it is simply determined by the topology and power counting. The UV
sub-divergence would be related to the vanishing of U . It requires ϵUV > 0 to regularize
UV divergences.

On the other hand, IR divergences is related the polynomial F . The vanishing of F
does not necessarily lead to an IR singularity. Only if some of the invariants are zero, for
example if some of the external momenta are light-like or in the soft limit, the vanishing
of F may induce an IR divergence. Thus it depends on the kinematics and not only
on the topology (like in the UV case) whether a zero of F leads to a divergence or not.
This is also consistent with the well-known fact that IR divergences have two origin: soft
and collinear. This fact makes it much harder to formulate general theorems for the
subtraction of IR singularities of multi-loop Feynman graphs.1 We need to set ϵIR < 0 to
regularize IR divergences.

A few remarks follows.

• Degree of divergences

Unlike Pauli-Villars regularization with a cut-off, the degree of divergences are ob-
scured in dimensional regularization. For example, both logarithm divergence and
quadratic divergence give simple pole 1

ϵ when expanded around D = 4.

However, the information is hidden but not disappear. Dimensional regularization
characterizes the degree to which integrals diverge at high energy through analytic
properties of regulated results, rather than through powers of a cutoff scale. For
example, logarithmically divergent integral contains a factor Γ(2 − D

2 ) which has a
simple pole at D = 4, while the quadratic divergence contains a factor Γ(1 − D

2 )
which contains a simple pole already start at D = 2. Dimensional regularization
translates the degree of divergence into the singularity structure of amplitudes in D
dimensions.

• Tadpole and scaleless integrals

Scaleless integrals are taken to be zero in the dimensional regularization scheme.
Typical examples include the massless bubble and massless tadpole integrals.

1The necessary (but not sufficient) conditions for an IR divergence are given by the Landau equations,
which, in parameter space, simply mean that the necessary condition F = 0 for an IR divergence can
only be fulfilled if some of the parameters xi go to zero, provided that all kinematic invariants sT are
negative.
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where ν =
∑N

i=1 νi. And U and F are the well-known Symanzik polynomial of degree
L and L+ 1, which depends only on the topology of the corresponding Feynman graph.
They are given as

U(x⃗) =
∑

T∈T1

∏

i/∈T1

xi , (13)

V (x⃗) =
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xi(−sT ) , (14)

F (x⃗) = V + U
n

∑

i=1

m2
ixi . (15)

T1 is the connected tree obtained by cutting L propagators of a L-loop graph, thus U is
a homogeneous polynomial of degree L. T2 is obtained by cutting L-loop graph into two
trees, therefore L+ 1 propagators are cut and V is a homogeneous polynomial of degree
L+ 1. sT is the square of the momentum flow though the (L+ 1)-cut. Note that in the
one-loop case, one has U = 1 (when all ci = 1); while in the massless cases, F = V .

The case with numerators are more complicated but can be treated similarly. On the
other hand, a numerator can be taken as a inverse propagator thus put in the above form
as well. Furthermore, Any tensor integral can be expressed in terms of scalar integrals
in shifted dimensions, with some of the propagator powers different from unity. For
illustration purpose we will mostly focus on the case without numerators.

Later we will often take (12) as our starting point.

1.3 Divergence and Regularization

We will focus on the dimensional regularization introduced by ’t Hooft and Veltman.
D = 4 − 2ϵ. One advantage is that it preserves gauge invariance. Another advantage is
that it can regularization ultraviolet (UV) and infrared (IR) divergences at once.

3

Let us understand the origin of the divergences from the parametric form (12). In the
so-called Euclidean region where all sT are negative, F is a positive semi-definite function
of xi. U is also positive semi-definite. The parametric integral can only have divergence
when xi goes to zero.

Overall UV divergences, if present, will always be contained in the prefactor Γ(ν −
LD/2), therefore it is simply determined by the topology and power counting. The UV
sub-divergence would be related to the vanishing of U . It requires ϵUV > 0 to regularize
UV divergences.

On the other hand, IR divergences is related the polynomial F . The vanishing of F
does not necessarily lead to an IR singularity. Only if some of the invariants are zero, for
example if some of the external momenta are light-like or in the soft limit, the vanishing
of F may induce an IR divergence. Thus it depends on the kinematics and not only
on the topology (like in the UV case) whether a zero of F leads to a divergence or not.
This is also consistent with the well-known fact that IR divergences have two origin: soft
and collinear. This fact makes it much harder to formulate general theorems for the
subtraction of IR singularities of multi-loop Feynman graphs.1 We need to set ϵIR < 0 to
regularize IR divergences.

A few remarks follows.

• Degree of divergences

Unlike Pauli-Villars regularization with a cut-off, the degree of divergences are ob-
scured in dimensional regularization. For example, both logarithm divergence and
quadratic divergence give simple pole 1

ϵ when expanded around D = 4.

However, the information is hidden but not disappear. Dimensional regularization
characterizes the degree to which integrals diverge at high energy through analytic
properties of regulated results, rather than through powers of a cutoff scale. For
example, logarithmically divergent integral contains a factor Γ(2 − D

2 ) which has a
simple pole at D = 4, while the quadratic divergence contains a factor Γ(1 − D

2 )
which contains a simple pole already start at D = 2. Dimensional regularization
translates the degree of divergence into the singularity structure of amplitudes in D
dimensions.

• Tadpole and scaleless integrals

Scaleless integrals are taken to be zero in the dimensional regularization scheme.
Typical examples include the massless bubble and massless tadpole integrals.

1The necessary (but not sufficient) conditions for an IR divergence are given by the Landau equations,
which, in parameter space, simply mean that the necessary condition F = 0 for an IR divergence can
only be fulfilled if some of the parameters xi go to zero, provided that all kinematic invariants sT are
negative.
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Comment 1: degree of divergences

Both logarithm and quadratic UV divergences ~ 

Let us understand the origin of the divergences from the parametric form (12). In the
so-called Euclidean region where all sT are negative, F is a positive semi-definite function
of xi. U is also positive semi-definite. The parametric integral can only have divergence
when xi goes to zero.

Overall UV divergences, if present, will always be contained in the prefactor Γ(ν −
LD/2), therefore it is simply determined by the topology and power counting. The UV
sub-divergence would be related to the vanishing of U . It requires ϵUV > 0 to regularize
UV divergences.

On the other hand, IR divergences is related the polynomial F . The vanishing of F
does not necessarily lead to an IR singularity. Only if some of the invariants are zero, for
example if some of the external momenta are light-like or in the soft limit, the vanishing
of F may induce an IR divergence. Thus it depends on the kinematics and not only
on the topology (like in the UV case) whether a zero of F leads to a divergence or not.
This is also consistent with the well-known fact that IR divergences have two origin: soft
and collinear. This fact makes it much harder to formulate general theorems for the
subtraction of IR singularities of multi-loop Feynman graphs.1 We need to set ϵIR < 0 to
regularize IR divergences.

A few remarks follows.

• Degree of divergences

Unlike Pauli-Villars regularization with a cut-off, the degree of divergences are ob-
scured in dimensional regularization. For example, both logarithm divergence and
quadratic divergence give simple pole 1

ϵ when expanded around D = 4.

However, the information is hidden but not disappear. Dimensional regularization
characterizes the degree to which integrals diverge at high energy through analytic
properties of regulated results, rather than through powers of a cutoff scale. For
example, logarithmically divergent integral contains a factor Γ(4−D

2 ) which has a
simple pole at D = 4, while the quadratic divergence contains a factor Γ(2−D

2 )
which contains a simple pole already start at D = 2. Dimensional regularization
translates the degree of divergence into the singularity structure of amplitudes in D
dimensions.

• Tadpole and scaleless integrals

Scaleless integrals are taken to be zero in the dimensional regularization scheme.
Typical examples include the massless bubble and massless tadpole integrals.

1The necessary (but not sufficient) conditions for an IR divergence are given by the Landau equations,
which, in parameter space, simply mean that the necessary condition F = 0 for an IR divergence can
only be fulfilled if some of the parameters xi go to zero, provided that all kinematic invariants sT are
negative.
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Do we lose the information about degree of divergences?

Let us understand the origin of the divergences from the parametric form (12). In the
so-called Euclidean region where all sT are negative, F is a positive semi-definite function
of xi. U is also positive semi-definite. The parametric integral can only have divergence
when xi goes to zero.

Overall UV divergences, if present, will always be contained in the prefactor Γ(ν −
LD/2), therefore it is simply determined by the topology and power counting. The UV
sub-divergence would be related to the vanishing of U . It requires ϵUV > 0 to regularize
UV divergences.

On the other hand, IR divergences is related the polynomial F . The vanishing of F
does not necessarily lead to an IR singularity. Only if some of the invariants are zero, for
example if some of the external momenta are light-like or in the soft limit, the vanishing
of F may induce an IR divergence. Thus it depends on the kinematics and not only
on the topology (like in the UV case) whether a zero of F leads to a divergence or not.
This is also consistent with the well-known fact that IR divergences have two origin: soft
and collinear. This fact makes it much harder to formulate general theorems for the
subtraction of IR singularities of multi-loop Feynman graphs.1 We need to set ϵIR < 0 to
regularize IR divergences.

A few remarks follows.

• Degree of divergences

Unlike Pauli-Villars regularization with a cut-off, the degree of divergences are ob-
scured in dimensional regularization. For example, both logarithm divergence and
quadratic divergence give simple pole 1

ϵ when expanded around D = 4.

However, the information is hidden but not disappear. Dimensional regularization
characterizes the degree to which integrals diverge at high energy through analytic
properties of regulated results, rather than through powers of a cutoff scale. For
example, logarithmically divergent integral contains a factor Γ(2 − D

2 ) which has a
simple pole at D = 4, while the quadratic divergence contains a factor Γ(1 − D

2 )
which contains a simple pole already start at D = 2. Dimensional regularization
translates the degree of divergence into the singularity structure of amplitudes in D
dimensions.

• Tadpole and scaleless integrals

Scaleless integrals are taken to be zero in the dimensional regularization scheme.
Typical examples include the massless bubble and massless tadpole integrals.

1The necessary (but not sufficient) conditions for an IR divergence are given by the Landau equations,
which, in parameter space, simply mean that the necessary condition F = 0 for an IR divergence can
only be fulfilled if some of the parameters xi go to zero, provided that all kinematic invariants sT are
negative.

4

Let us understand the origin of the divergences from the parametric form (12). In the
so-called Euclidean region where all sT are negative, F is a positive semi-definite function
of xi. U is also positive semi-definite. The parametric integral can only have divergence
when xi goes to zero.

Overall UV divergences, if present, will always be contained in the prefactor Γ(ν −
LD/2), therefore it is simply determined by the topology and power counting. The UV
sub-divergence would be related to the vanishing of U . It requires ϵUV > 0 to regularize
UV divergences.

On the other hand, IR divergences is related the polynomial F . The vanishing of F
does not necessarily lead to an IR singularity. Only if some of the invariants are zero, for
example if some of the external momenta are light-like or in the soft limit, the vanishing
of F may induce an IR divergence. Thus it depends on the kinematics and not only
on the topology (like in the UV case) whether a zero of F leads to a divergence or not.
This is also consistent with the well-known fact that IR divergences have two origin: soft
and collinear. This fact makes it much harder to formulate general theorems for the
subtraction of IR singularities of multi-loop Feynman graphs.1 We need to set ϵIR < 0 to
regularize IR divergences.

A few remarks follows.

• Degree of divergences

Unlike Pauli-Villars regularization with a cut-off, the degree of divergences are ob-
scured in dimensional regularization. For example, both logarithm divergence and
quadratic divergence give simple pole 1

ϵ when expanded around D = 4.

However, the information is hidden but not disappear. Dimensional regularization
characterizes the degree to which integrals diverge at high energy through analytic
properties of regulated results, rather than through powers of a cutoff scale. For
example, logarithmically divergent integral contains a factor Γ(2 − D

2 ) which has a
simple pole at D = 4, while the quadratic divergence contains a factor Γ(1 − D

2 )
which contains a simple pole already start at D = 2. Dimensional regularization
translates the degree of divergence into the singularity structure of amplitudes in D
dimensions.

• Tadpole and scaleless integrals

Scaleless integrals are taken to be zero in the dimensional regularization scheme.
Typical examples include the massless bubble and massless tadpole integrals.

1The necessary (but not sufficient) conditions for an IR divergence are given by the Landau equations,
which, in parameter space, simply mean that the necessary condition F = 0 for an IR divergence can
only be fulfilled if some of the parameters xi go to zero, provided that all kinematic invariants sT are
negative.

4



Comment 1: degree of divergences

Both logarithm and quadratic UV divergences ~ 

Let us understand the origin of the divergences from the parametric form (12). In the
so-called Euclidean region where all sT are negative, F is a positive semi-definite function
of xi. U is also positive semi-definite. The parametric integral can only have divergence
when xi goes to zero.

Overall UV divergences, if present, will always be contained in the prefactor Γ(ν −
LD/2), therefore it is simply determined by the topology and power counting. The UV
sub-divergence would be related to the vanishing of U . It requires ϵUV > 0 to regularize
UV divergences.

On the other hand, IR divergences is related the polynomial F . The vanishing of F
does not necessarily lead to an IR singularity. Only if some of the invariants are zero, for
example if some of the external momenta are light-like or in the soft limit, the vanishing
of F may induce an IR divergence. Thus it depends on the kinematics and not only
on the topology (like in the UV case) whether a zero of F leads to a divergence or not.
This is also consistent with the well-known fact that IR divergences have two origin: soft
and collinear. This fact makes it much harder to formulate general theorems for the
subtraction of IR singularities of multi-loop Feynman graphs.1 We need to set ϵIR < 0 to
regularize IR divergences.

A few remarks follows.

• Degree of divergences

Unlike Pauli-Villars regularization with a cut-off, the degree of divergences are ob-
scured in dimensional regularization. For example, both logarithm divergence and
quadratic divergence give simple pole 1

ϵ when expanded around D = 4.

However, the information is hidden but not disappear. Dimensional regularization
characterizes the degree to which integrals diverge at high energy through analytic
properties of regulated results, rather than through powers of a cutoff scale. For
example, logarithmically divergent integral contains a factor Γ(4−D

2 ) which has a
simple pole at D = 4, while the quadratic divergence contains a factor Γ(2−D

2 )
which contains a simple pole already start at D = 2. Dimensional regularization
translates the degree of divergence into the singularity structure of amplitudes in D
dimensions.

• Tadpole and scaleless integrals

Scaleless integrals are taken to be zero in the dimensional regularization scheme.
Typical examples include the massless bubble and massless tadpole integrals.

1The necessary (but not sufficient) conditions for an IR divergence are given by the Landau equations,
which, in parameter space, simply mean that the necessary condition F = 0 for an IR divergence can
only be fulfilled if some of the parameters xi go to zero, provided that all kinematic invariants sT are
negative.

4

No. Dimensional regularization translates the degree of 
divergence into the analytic properties of regulated 
amplitudes in D dimensions. 

Do we lose the information about degree of divergences?

Let us understand the origin of the divergences from the parametric form (12). In the
so-called Euclidean region where all sT are negative, F is a positive semi-definite function
of xi. U is also positive semi-definite. The parametric integral can only have divergence
when xi goes to zero.

Overall UV divergences, if present, will always be contained in the prefactor Γ(ν −
LD/2), therefore it is simply determined by the topology and power counting. The UV
sub-divergence would be related to the vanishing of U . It requires ϵUV > 0 to regularize
UV divergences.

On the other hand, IR divergences is related the polynomial F . The vanishing of F
does not necessarily lead to an IR singularity. Only if some of the invariants are zero, for
example if some of the external momenta are light-like or in the soft limit, the vanishing
of F may induce an IR divergence. Thus it depends on the kinematics and not only
on the topology (like in the UV case) whether a zero of F leads to a divergence or not.
This is also consistent with the well-known fact that IR divergences have two origin: soft
and collinear. This fact makes it much harder to formulate general theorems for the
subtraction of IR singularities of multi-loop Feynman graphs.1 We need to set ϵIR < 0 to
regularize IR divergences.

A few remarks follows.

• Degree of divergences

Unlike Pauli-Villars regularization with a cut-off, the degree of divergences are ob-
scured in dimensional regularization. For example, both logarithm divergence and
quadratic divergence give simple pole 1

ϵ when expanded around D = 4.

However, the information is hidden but not disappear. Dimensional regularization
characterizes the degree to which integrals diverge at high energy through analytic
properties of regulated results, rather than through powers of a cutoff scale. For
example, logarithmically divergent integral contains a factor Γ(2 − D

2 ) which has a
simple pole at D = 4, while the quadratic divergence contains a factor Γ(1 − D

2 )
which contains a simple pole already start at D = 2. Dimensional regularization
translates the degree of divergence into the singularity structure of amplitudes in D
dimensions.

• Tadpole and scaleless integrals

Scaleless integrals are taken to be zero in the dimensional regularization scheme.
Typical examples include the massless bubble and massless tadpole integrals.

1The necessary (but not sufficient) conditions for an IR divergence are given by the Landau equations,
which, in parameter space, simply mean that the necessary condition F = 0 for an IR divergence can
only be fulfilled if some of the parameters xi go to zero, provided that all kinematic invariants sT are
negative.

4

Let us understand the origin of the divergences from the parametric form (12). In the
so-called Euclidean region where all sT are negative, F is a positive semi-definite function
of xi. U is also positive semi-definite. The parametric integral can only have divergence
when xi goes to zero.

Overall UV divergences, if present, will always be contained in the prefactor Γ(ν −
LD/2), therefore it is simply determined by the topology and power counting. The UV
sub-divergence would be related to the vanishing of U . It requires ϵUV > 0 to regularize
UV divergences.

On the other hand, IR divergences is related the polynomial F . The vanishing of F
does not necessarily lead to an IR singularity. Only if some of the invariants are zero, for
example if some of the external momenta are light-like or in the soft limit, the vanishing
of F may induce an IR divergence. Thus it depends on the kinematics and not only
on the topology (like in the UV case) whether a zero of F leads to a divergence or not.
This is also consistent with the well-known fact that IR divergences have two origin: soft
and collinear. This fact makes it much harder to formulate general theorems for the
subtraction of IR singularities of multi-loop Feynman graphs.1 We need to set ϵIR < 0 to
regularize IR divergences.

A few remarks follows.

• Degree of divergences

Unlike Pauli-Villars regularization with a cut-off, the degree of divergences are ob-
scured in dimensional regularization. For example, both logarithm divergence and
quadratic divergence give simple pole 1

ϵ when expanded around D = 4.

However, the information is hidden but not disappear. Dimensional regularization
characterizes the degree to which integrals diverge at high energy through analytic
properties of regulated results, rather than through powers of a cutoff scale. For
example, logarithmically divergent integral contains a factor Γ(2 − D

2 ) which has a
simple pole at D = 4, while the quadratic divergence contains a factor Γ(1 − D

2 )
which contains a simple pole already start at D = 2. Dimensional regularization
translates the degree of divergence into the singularity structure of amplitudes in D
dimensions.

• Tadpole and scaleless integrals

Scaleless integrals are taken to be zero in the dimensional regularization scheme.
Typical examples include the massless bubble and massless tadpole integrals.

1The necessary (but not sufficient) conditions for an IR divergence are given by the Landau equations,
which, in parameter space, simply mean that the necessary condition F = 0 for an IR divergence can
only be fulfilled if some of the parameters xi go to zero, provided that all kinematic invariants sT are
negative.

4



Comment 2:

Typical examples are scaleless integrals

integral containing both UV and IR divergences

For massless bubble integral, it is both UV and IR divergent. Taking it to be zero
can be understood that the UV and IR divergence cancel with each other. One may
ask the question that: how can be take ϵ to be ϵIR < 0 and ϵUV > 0 simultaneously
in a single integral and furthermore let them cancel?

One can introduce ϵIR and ϵUV and regularize the integrals in different regions sep-
arately.

∫ ∞

0

dx

x1+ϵ
=

∫ 1
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dx
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dx
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∣
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(17)

On the other hand, we know that finally ϵIR and ϵUV must vanish (separately) from
physical quantities. Therefore, we can just set ϵIR = ϵUV = ϵ without worrying
about they are positive or negative. And this explains why we are allowed to set
e.g. massless tadpole or bubble to be zero.

Another justification is that since there is no available quantity with non-zero mass
dimension, scaleless integrals must be zero according to above choice.

[Subtlety] Sometimes, one does need to know exactly the UV divergence. In such,
a massless bubble (if exists) should no longer be taken as zero, but does contribute
to UV divergences.

• Choices of schemes

1.4 A mathematica fact

A Feynman integral is meromorphic function of ϵ, namely, it has at most poles in
complex ϵ-plane, and no branch cuts! Therefore, it can be given in a Laurent expansion
around ϵ = 0 as

A(ϵ) =
∞
∑

m=m0

Akϵ
m. (18)

If m0 < 0, A is divergent in D = 4 dimension.

Often, one uses the so-called MS scheme for the coupling constant in which a factor

eγEϵ/(iπD/2) (19)

is included per loop, where γE = −Γ′(1) = 0.577216... is the Euler constant. The reason
to include this normalization factor is let γE and log π never appear in the final answer.
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We can do this, since we know that IR and UV divergences must 
vanish separately in physical observables.



IBP

2 Integrand and its reduction

2.1 Integral by part (IBP) reduction

Integrand =
∑

ci × Ii (19)

It is known that given any particular class of Feynman integrals can be written in
terms of a linear combination of a finite set of basis integrals [?].

ann integral family → a finite set of basis (20)

One key point in mind is that there is no unique choice of the basis, and a ‘good’ choice
of basis is sometimes very important, which may allow to solve the integrals automatically.
See later discussion of the differential equation method. Also, see the quasi-

Still given the basis, the reduction is also a challenge. An ‘good’ basis may be not
easy to the performance of the reduction.

2.2 Examples

2.3 Programs

FIRE - IBP

Reduze - IBP

LiteRed - IBP

Air - IBP

Mint - counting the number of basis

7

Can we know the number of master integrals 
without doing IBP?



Thus, we reduced the problem of counting master integrals to the one of computing the

critical points of a system of nonlinear polynomial equations given by equation (4.2), which is

usually highly nontrivial to solve. Fortunately, one can apply powerful algebraic approaches

to make this job simple, based on the so-called Gröbner basis technique. Readers who are

not familiar with the Gröbner basis and related concepts may consult [64] for a pedagogical

introduction. Here, only the basic procedure is outlined.

The solution space of a system of polynomial equations is called affine variety associated

with an ideal determined by the equations. For the system of equations (4.2), the ideal can

be defined as

I =

〈

∂G

∂α1
, . . . ,

∂G

∂αm
, α0G− 1

〉

, (4.4)

where, in the last term, one introduces an additional parameter α0 which forces the polynomial

G to be non-vanishing at the critical point. The solutions of the affine variety can be obtained

by computing the Gröbner basis of equation (4.4),

gb(I) = {g1, g2, . . . gk} . (4.5)

Once the Gröbner basis is obtained, it becomes relatively trivial to find the solutions. In

our problem, we only concern ourselves with the number of solutions. This, in practice, can

be conveniently obtained by counting the number of irreducible monomials in the Gröbner

basis.9

The above-described procedure is implemented in Mint [17] and applies straightforwardly

to many simple cases; for example, applying it to the three-loop form factor, we obtain the

result summarized in Table 2.

Table 2: Master integral counting for the six three-loop form factor topologies given in

Figure 5 of [12].

topology (1) (2) (3) (4) (5) (6)

# MIs via Mint 9 10 10 10 14 10

For the four-loop form factor, however, one encounters two problems when applying the

Mint package. The first problem is that the set of critical points can form an affine variety

of dimension ≥ 1. This corresponds to the non-isolated critical point case. Mint cannot deal

with such cases automatically in its present version, but denotes them as Indeterminate. The

number of such cases for the integral topologies at hand are summarized in Table 3. Although

the absolute number of these cases is low, they tend to occur in the more complicated sectors.

They require some further work as described in [17]. We employed a similar procedure and

present an explicit example in subsection 4.1.

9More precisely, one needs to compute the reduced Gröbner basis, which is unique for a given monomial

ordering, see e.g. [64]. The number of irreducible monomials also takes the multiplicity of critical points (i.e.

the Milnor number) into account.
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2 Counting number of MIs

It is possible to count the number of master integrals, without explicitly solving the
IBP relations. This method was proposed in [?], building on earlier work of Baikov in [?].
The algorithm has also been incorporated in a public code, the Mint package [?]. The
Mint package has some potential fault.

The basic idea is to count the number of master integrals by exploring only the
analytic structure of the integral topology. Loosely speaking, for a given topology of m
propagators, the number of master integrals can be obtained by counting the number of
proper critical points of the sum of first and second Symanzik polynomials

G(x⃗) = U(x⃗) + F (x⃗) , (21)

where the proper critical points are defined by

∂G

∂xi
= 0 (i = 1, . . . , m) and G ̸= 0. (22)

The proper critical points can be found efficiently by computing the Gröbner basis of the
corresponding ideal

I =

〈

∂G

∂x1
, . . . ,

∂G

∂xm
, x0G− 1

〉

, (23)

and then counting the number of irreducible monomials in the obtained Gröbner basis.

This procedure has been implemented in the Mathematica package Mint [?]. It works
smoothly for many simple examples, such as three-loop Sudakov form factors. However,
in the four-loop case, two further problems emerge. First, in many cases the computation
of the Gröbner basis turns out to be too hard to do in Mathematica, and we solve them
by using Macaulay2 [?] and Singular [?]. The second problem is that, in a few cases, the
critical points are non-isolated, in the sense that the set of critical points can form an
affine variety of dimension ≥ 1. Such cases cannot be handled by Mint, but can be solved
with some extra work. We refer the reader to [?,?] for more details.

Given the number of master integrals, one can then choose an explicit set of integrals,
as long as they are independent of each other.
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This can be counted using algebraic techniques:

For further technical point, see:





3 Sector decomposition method

Sector decomposition is an algorithmic method to isolate divergences from parameter
integrals.

The idea of sector decomposition is to decompose integrals into different integra-
tion regions such that there is no overlapping singular regions for different integration
parameters.

Consider a simple two-dimensional integral.

∫ 1

0

dx

∫ 1

0

dy(x+ y)−2+ϵ =

∫ 1

0

dxx−1+ϵ

∫ 1

0

dt(1 + t)−2+ϵ +

∫ 1

0

dt(1 + t)−2+ϵ

∫ 1

0

dyy−1+ϵ

(21)

3.1 Introduction

Primary sectors

The first step is to decompose the integration range into N sectors, in sector j, xi is
largest while other xj ̸= xi are not ordered,

∫ ∞

0

dNx =
N
∑

i=1

∫ ∞

0

dNx
N
∏

j ̸=i

θ(xi ≥ xj), (22)

where

θ(x ≥ y) =
{1 if x ≥ y
0 otherwise.

(23)

The G defined in (12) is decomposed into N primary sectors Gi in each domain as

G = Γ(ν − LD/2)
N
∑

i=1

Gi , (24)

Next, for each Gi, we make the following change of variables

xj =

{ xitj if j < i
xi if j = i

xitj−1 if j > i
. (25)

where tj ∈ [0, 1], j = 1, .., N − 1. Now recall that U and F are homogeneous polynomial
of degree L and L+ 1, we have

U(x⃗) → Ui(⃗t) x
L
i , F (x⃗) → Fi(⃗t) x

L+1
i , (26)
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Goal: to separate the divergences

can be trivially integrated out can be expanded in      at integrand level

divergent part finite partx

For massless bubble integral, it is both UV and IR divergent. Taking it to be zero
can be understood that the UV and IR divergence cancel with each other. One may
ask the question that: how can be take ϵ to be ϵIR < 0 and ϵUV > 0 simultaneously
in a single integral and furthermore let them cancel?

One can introduce ϵIR and ϵUV and regularize the integrals in different regions sep-
arately.

∫ ∞

0

dx

x1+ϵ
=

∫ 1

0

dx

x1+ϵ
+

∫ ∞

1

dx

x1+ϵ
= −

1

ϵ
+

1

ϵ
= 0 (16)

∫ ∞

0

dx

x1+ϵ
=

∫ 1

0

dx

x1+ϵ
+

∫ ∞

1

dx

x1+ϵ
= −

1

ϵIR

∣

∣

∣

∣

ϵIR<0

+
1

ϵUV

∣

∣

∣

∣

ϵUV>0

(17)

On the other hand, we know that finally ϵIR and ϵUV must vanish (separately) from
physical quantities. Therefore, we can just set ϵIR = ϵUV = ϵ without worrying
about they are positive or negative. And this explains why we are allowed to set
e.g. massless tadpole or bubble to be zero.

Another justification is that since there is no available quantity with non-zero mass
dimension, scaleless integrals must be zero according to above choice.

[Subtlety] Sometimes, one does need to know exactly the UV divergence. In such,
a massless bubble (if exists) should no longer be taken as zero, but does contribute
to UV divergences.

• Choices of schemes

1.4 A mathematica fact

A Feynman integral is meromorphic function of ϵ, namely, it has at most poles in
complex ϵ-plane, and no branch cuts! Therefore, it can be given in a Laurent expansion
around ϵ = 0 as

A(ϵ) =
∞
∑

m=m0

Akϵ
m. (18)

If m0 < 0, A is divergent in D = 4 dimension.

Often, one uses the so-called MS scheme for the coupling constant in which a factor

eγEϵ/(iπD/2) (19)

is included per loop, where γE = −Γ′(1) = 0.577216... is the Euler constant. The reason
to include this normalization factor is let γE and log π never appear in the final answer.
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U(x⃗) → Ui(⃗t) x
L
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and xi is almost all cancel except 1/xi factor which can be easily integrated out by the
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xi
= 1 , (26)
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one is left with a nice form of Gi as

Gi =
1

Γ(νi)

∫ 1

0

[

N−1
∏

j=1

dtjt
νj−1
j

] Ui(⃗t)ν−(L+1)D/2

Fi(⃗t)ν−LD/2
, i = 1, ..., N. (27)

Note that the 1/ϵ singularities are generated from the region where tj → 0.

Sub-sectors

Starting from (27), one performs further decompose until a complete separation of
overlapping regions is achieved, by repeating the following steps.

1. Determine a minimal set of parameters, say S = {tα1 , ..., tαr}, such that Ui or Fi

vanish if the parameters of S are set to zero. In other words, tαk
, k = 1, .., r must

factorise from at least one the functions Ui or Fi.

2. Decompose the corresponding r-cube into r sub-sectors as
r
∏

j=1

θ(1 ≥ tαj ≥ 0) =
r

∑

k=1

r
∏

j ̸=k

θ(tαk
≥ tαj ≥ 0). (28)

3. In each new sub-sector, make change of variables as

tαj =

{

tαk
tαj if j < k

tαk
if j = k

. (29)

4. The result sub-sector is given as

Gik =

∫ 1

0

[

N−1
∏

j=1

dtj t
aj−bjϵ
j

] Uik (⃗t)ν−(L+1)D/2

Fik(⃗t)ν−LD/2
, k = 1, ..., r, (30)

where aj , bj is some number. The key point is that by construction, tαk
, k = 1, .., r

must factorise from at least one the functions Ui or Fi, it could then be possible
that there is no longer any set S can be find that such that Ui or Fi vanish if the
parameters of S are set to zero, which corresponds to the case that

Uik = 1 + u(⃗t) , (31)

Fik = −s0 +
∑

β

(−sβ)fβ (⃗t) , (32)

where u(⃗t), fβ (⃗t) are polynomials of t without constant, and sβ are kinematic invari-
ants defined by the 2-tree cuts or internal squared masses. Therefore, the singular
behaviour of the integral can now be read off simply from the exponent aj, bj for a
given sub-sector!

If not, one can always repeat the above procedure again and again, until (31) becomes
true.
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Also on a more formal level, it is outlined in [67] that sector decomposition can be
used to automate the renormalisation of quantum field theories, by mapping to the so-
called Henge decomposition [68], which served to provide a simple proof of the BPHZ
theorem [69]. This mapping also allowed to establish a direct correspondence between
overlapping divergences in Feynman parameter space and in momentum space [67]. In
this context, one should also mention the formulation of renormalisation using Hopf
algebras [70], which provide a framework to describe the disentanglement of divergent
subgraphs of Feynman diagrams.

1.2 Phase space integrals

After the results for various two-loop box diagrams had become available, the bottleneck
to make progress in the calculation of differential NNLO cross sections for 1 → 3 or 2 → 2
processes was the complicated infrared singularity structure of phase space integrals over
matrix elements for the real radiation of (doubly) unresolved massless particles. As these
phase space integrals can be written as dimensionally regularised parameter integrals,
sector decomposition can serve to factorise entangled singularity structures in the case
of real radiation as well. This idea has first been presented in [71] and subsequently
has been applied to calculate all master four-particle phase space integrals where up
to two particles in the final state can become soft and/or collinear [21]. Shortly after,
this approach has been extended to be applicable to exclusive final states as well by
expressing the functions produced by sector decomposition in terms of distributions [22].
A rapid development [23, 24] lead to the calculation of e+e− → 2 jets at O(α2

s) [24].
Further elaboration on this approach resulted in the first fully differential program to
calculate an NNLO cross section [26,28] and has lead to differential NNLO results for a
number of processes meanwhile [29, 31, 38, 41].

2 Basic concepts

To introduce the subject, let us look at the simple example of a two-dimensional param-
eter integral of the following form:

I =

∫ 1

0
dx

∫ 1

0
dy x−1−aϵ y−bϵ

(

x + (1 − x) y
)−1

. (1)

The integral contains a singular region where x and y vanish simultaneously, i.e. the
singularities in x and y are overlapping. Our aim is to factorise the singularities for
x → 0 and y → 0. Therefore we divide the integration range into two sectors where x
and y are ordered (see Fig. 1)

I =

∫ 1

0
dx

∫ 1

0
dy x−1−aϵ y−bϵ

(

x + (1 − x) y
)−1

[Θ(x − y)
︸ ︷︷ ︸

(1)

+ Θ(y − x)
︸ ︷︷ ︸

(2)

] .

Now we substitute y = x t in sector (1) and x = y t in sector (2) to remap the integration
range to the unit square and obtain

I =

∫ 1

0
dxx−1−(a+b)ϵ

∫ 1

0
dt t−bϵ

(

1 + (1 − x) t
)−1
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Basic idea:

3 Sector decomposition method

Sector decomposition is an algorithmic method to isolate divergences from parameter
integrals.

The idea of sector decomposition is to decompose integrals into different integra-
tion regions such that there is no overlapping singular regions for different integration
parameters.

Consider a simple two-dimensional integral.

3.1 Introduction

Primary sectors

The first step is to decompose the integration range into N sectors, in sector j, xi is
largest while other xj ̸= xi are not ordered,

∫ ∞

0

dNx =
N
∑

i=1

∫ ∞

0

dNx
N
∏

j ̸=i

θ(xi ≥ xj), (21)

where

θ(x ≥ y) =
{1 if x ≥ y
0 otherwise.

(22)

The G defined in (12) is decomposed into N primary sectors Gi in each domain as

G = Γ(ν − LD/2)
N
∑

i=1

Gi , (23)

Next, for each Gi, we make the following change of variables

xj =

{ xitj if j < i
xi if j = i

xitj−1 if j > i
. (24)

where tj ∈ [0, 1], j = 1, .., N − 1. Now recall that U and F are homogeneous polynomial
of degree L and L+ 1, we have

U(x⃗) → Ui(⃗t) x
L
i , F (x⃗) → Fi(⃗t) x

L+1
i , (25)

and xi is almost all cancel except 1/xi factor which can be easily integrated out by the
delta function

∫

dxi

δ(1− xi(1 +
∑N−1

j=1 tj))

xi
= 1 , (26)
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one is left with a nice form of Gi as

Gi =
1

Γ(νi)

∫ 1

0

[

N−1
∏

j=1

dtjt
νj−1
j

] Ui(⃗t)ν−(L+1)D/2

Fi(⃗t)ν−LD/2
, i = 1, ..., N. (27)

Note that the 1/ϵ singularities are generated from the region where tj → 0.

Sub-sectors

Starting from (27), one performs further decompose until a complete separation of
overlapping regions is achieved, by repeating the following steps.

1. Determine a minimal set of parameters, say S = {tα1 , ..., tαr}, such that Ui or Fi

vanish if the parameters of S are set to zero. In other words, tαk
, k = 1, .., r must

factorise from at least one the functions Ui or Fi.

2. Decompose the corresponding r-cube into r sub-sectors as
r
∏

j=1

θ(1 ≥ tαj ≥ 0) =
r

∑

k=1

r
∏

j ̸=k

θ(tαk
≥ tαj ≥ 0). (28)

3. In each new sub-sector, make change of variables as

tαj =

{

tαk
tαj if j < k

tαk
if j = k

. (29)

4. The result sub-sector is given as

Gik =

∫ 1

0

[

N−1
∏

j=1

dtj t
aj−bjϵ
j

] Uik (⃗t)ν−(L+1)D/2

Fik(⃗t)ν−LD/2
, k = 1, ..., r, (30)

where aj , bj is some number. The key point is that by construction, tαk
, k = 1, .., r

must factorise from at least one the functions Ui or Fi, it could then be possible
that there is no longer any set S can be find that such that Ui or Fi vanish if the
parameters of S are set to zero, which corresponds to the case that

Uik = 1 + u(⃗t) , (31)

Fik = −s0 +
∑

β

(−sβ)fβ (⃗t) , (32)

where u(⃗t), fβ (⃗t) are polynomials of t without constant, and sβ are kinematic invari-
ants defined by the 2-tree cuts or internal squared masses. Therefore, the singular
behaviour of the integral can now be read off simply from the exponent aj, bj for a
given sub-sector!

If not, one can always repeat the above procedure again and again, until (31) becomes
true.
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integrals.
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tion regions such that there is no overlapping singular regions for different integration
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dy(x+ y)−2+ϵ =

∫ 1

0

dxx−1+ϵ

∫ 1

0

dt(1 + t)−2+ϵ +

∫ 1

0

dt(1 + t)−2+ϵ

∫ 1

0

dyy−1+ϵ

(21)

3.1 Introduction

Primary sectors
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G = Γ(ν − LD/2)
N
∑

i=1
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Next, for each Gi, we make the following change of variables

xj =

{ xitj if j < i
xi if j = i

xitj−1 if j > i
. (25)

where tj ∈ [0, 1], j = 1, .., N − 1. Now recall that U and F are homogeneous polynomial
of degree L and L+ 1, we have

U(x⃗) → Ui(⃗t) x
L
i , F (x⃗) → Fi(⃗t) x

L+1
i , (26)
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• 2007 C. Bogner, S. Weinzierl -> sector_decomposition 
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• Primary sectors 
• Subsectors 
• Epsilon expansion

Basic procedure: [T. Binoth, G. Heinrich 2000]

See talks of Jianxiong Wang and Renyou Zhang for further details

5. Apply the above steps for a parameters and extract all poles, the result is given as
a Laurent expansion in ϵ,

Gik =
2L
∑

m=−r

Cik,m

ϵm
+O(ϵr+1) . (39)

where Cik,m is finite integrals over parameters tj, which can be straightforwardly
integrated out numerically, sometimes analytically.

6. Finally, summing over all subsectors,

G = Γ(ν − LD/2)
N
∑

i=1

1

Γ(νi)

α(i)
∑

k=1

Gik . (40)

Strategies of choosing sectors

Example of infinite recursions

f(x1, x2, x3) = x2
1 + x2

2x3 . (41)

3.2 Example

3.3 Programs

– FIESTA

– SecDec
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choice of strategies: S, X, KU,…

Final form: finite integrals

Reference: G. Heinrich 0803.4177



Can arbitrary kind of number / function appear in 
analytic expressions for Feynman integrals?



Theorem [Bogner, Weinzierl 2009]:

In the case where all scalar product           are negative or zero, 
all internal masses positive, and all ratios of invariants algebraic, 
the coefficients of the Laurent expansion of a Feynman integral 
are periods. 

Theorem (Bogner, Weinzierl [?]). In the case where all scalar product pi · pj are
negative or zero, all internal masses positive, and all ratios of invariants algebraic, the
coefficients of the Laurent expansion of a Feynman integral are periods.

Definition. A complex number is a period if both its real and imaginary parts can
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the inclusion

Q ⊂ Q ⊂ P ⊂ C . (16)

Example 3.

(i) Every algebraic number q is a period, because q =
∫ q
0 dx.

(ii) The logarithm of an algebraic number q is a period, because log q =
∫ q
1

dt
t .

(iii) π =
∫

x2+y2≤1 dx dy is a period.
(iv) The dilogarithm (and similarly all polylogarithms and all zeta values)

are periods for algebraic arguments, because

Li2(z) =

∫

0≤t2≤t1≤z

dt1 dt2
t1 (1 − t2)

. (17)

In fact, it turns out that most of the numbers ‘we know’ are periods, and
it is rather difficult to prove that a number is not a period! Numbers that
are conjectured not to be periods are e, γE , 1/π, log π,. . . .

We can now state the main result of this section, which will give the
answers to all the questions at the beginning of this section:

Theorem 2 (Bogner, Weinzierl [3]). In the case where all scalar prod-
uct pi ·pj are negative or zero, all internal masses positive, and all ratios of
invariants algebraic, the coefficients of the Laurent expansion of a Feynman
integral are periods.

The proof of the theorem is presented in ref. [3]. The idea of the proof is,
loosely speaking, that every Feynman integral admits a Feynman parameter
representation,

I = eLγEϵ (−1)ν Γ

(

ν − L
D

2

)

(18)

×
∫ 1

0

N
∏

j=1

(

dx′
j

x
νj−1
j

Γ(νj)

)

δ

⎛

⎝1−
∑

j∈S

xj

⎞

⎠
Uν−(L+1)D/2

(−F)ν−LD/2
,

with ν =
∑N

i=1 νi and S is any non-empty subset of {1, . . . , n}, and U
and F are homogenous polynomials in the Feynman parameters that are
completely determined by the topology of the Feynman graph. The main
observation is that after expansion in ϵ (by means of sector decomposition
in the case of divergent integrals) Eq. (18) indeed defines order-by-order
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For massless bubble integral, it is both UV and IR divergent. Taking it to be zero
can be understood that the UV and IR divergence cancel with each other. One may
ask the question that: how can be take ϵ to be ϵIR < 0 and ϵUV > 0 simultaneously
in a single integral and furthermore let them cancel?

One can introduce ϵIR and ϵUV and regularize the integrals in different regions sep-
arately.

On the other hand, we know that finally ϵIR and ϵUV must vanish (separately) from
physical quantities. Therefore, we can just set ϵIR = ϵUV = ϵ without worrying
about they are positive or negative. And this explains why we are allowed to set
e.g. massless tadpole or bubble to be zero.

Another justification is that since there is no available quantity with non-zero mass
dimension, scaleless integrals must be zero according to above choice.

[Subtlety] Sometimes, one does need to know exactly the UV divergence. In such,
a massless bubble (if exists) should no longer be taken as zero, but does contribute
to UV divergences.

• Choices of schemes

1.4 A mathematica fact

A Feynman integral is meromorphic function of ϵ, namely, it has at most poles in
complex ϵ-plane, and no branch cuts! Therefore, it can be given in a Laurent expansion
around ϵ = 0 as

A(ϵ) =
∞
∑

m=m0

Akϵ
m. (16)

If m0 < 0, A is divergent in D = 4 dimension.

Often, one uses the so-called MS scheme for the coupling constant in which a factor

eγEϵ/(iπD/2) (17)

is included per loop, where γE = −Γ′(1) = 0.577216... is the Euler constant. The reason
to include this normalization factor is let γE and log π never appear in the final answer.
This can be understood as the eγEϵ will cancel with the factor in the gamma function
generated by Feynman parametrization

Γ(1 + Lϵ) = exp
(

− LγEϵ+
∞
∑

k=2

(−L)k

k
ϵkζk

)

. (18)

This is closely related to the following theorem.

5

such that

p2 → −p20 − p⃗ · q⃗ = −p2E , (3)

where pE is the Euclidean momentum.

Once Wick-rotated, the integrals are evaluated in a straightforward way. Note that
the Wick rotation is just a trick for evaluating integrals. There is nothing physical about
it. Also, the Wick rotation can be justified only if there are no new poles that invalidate
the contour rotation. [This caveat is relevant for 2-loop and higher integrals.]

1.2 Feynman parametrization

Schwinger parametrization:

1

Aa
=

1

Γ(a)

∫ ∞

0

dxxa−1 e−xA. (4)

Feynman parametrization:

1

AaBb
=

Γ(a + b)

Γ(a)Γ(b)

∫ 1

0

dx1dx2
δ(1− x1 − x2) x

a−1
1 xb−1

2

(x1A+ x2B)a+b
. (5)

By mathematica induction, one can easily get that

1
∏n

i=1A
ai
i

=
Γ(a1 + · · ·+ an)

∏n
i=1 Γ(ai)

∫ 1

0

[

n
∏

i=1

dxix
ai−1
i

] δ(1−
∑n

i=1 xi)

(
∑n

i=1 xiAi)a1+···+an
. (6)

Let us consider the one-loop case.

G(1)
n =

∫

dDk

iπD/2

1

(−k2 +m2
1)

a1 [−(k + p1)2 +m2
2]
a2 · · · [−(k + p1 + . . .+ pn−1)2 +m2

n]
an

.

(7)

Using the Feynman parametrization, performing a change of variables, and integrating
over the loop momentum k, one gets

G(1)
n =

Γ(a)
∏n

i=1 Γ(ai)

∫ ∞

0

[

n
∏

i=1

dxix
ai−1
i

]

δ(1−
n

∑

i=1

cixi)
Ua−D

(V + U
∑n

i=1m
2
ixi)a−D/2

, (8)

where a =
∑n

i=1 ai, U =
∑n

i=1 xi, and V =
∑

i<j xixj [−(pi + pi+1 + ..+ pj−1)2]. Note that
ci can be chosen as any value as long as one of them is non-zero. This is related to the
so-called Cheng-Wu theorem mentioned below.

Consider general higher loop integrals

G(L) =

∫

[

L
∏

i=1

dDki
iπD/2

] 1

(−q21 +m2
1)

ν1 [−q22 +m2
2]
ν2 · · · [−q2N +m2

N ]
νN

. (9)
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ν2 · · · [−q2N +m2

N ]
νN
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one has

G(L) =
Γ(ν − LD/2)
∏N

i=1 Γ(νi)

∫ ∞

0

[

N
∏

i=1

dxix
νi−1
i

]

δ(1−
N
∑

i=1

xi)
Uν−(L+1)D/2

F ν−LD/2
, (12)

where ν =
∑N

i=1 νi. And U and F are the well-known Symanzik polynomial of degree
L and L+ 1, which depends only on the topology of the corresponding Feynman graph.
They are given as

U(x⃗) =
∑

T∈T1

∏

i/∈T1

xi , (13)

V (x⃗) =
∑

T∈T2

∏

i/∈T2

xi(−sT ) , (14)

F (x⃗) = V + U
n

∑

i=1

m2
ixi . (15)

T1 is the connected tree obtained by cutting L propagators of a L-loop graph, thus U is
a homogeneous polynomial of degree L. T2 is obtained by cutting L-loop graph into two
trees, therefore L+ 1 propagators are cut and V is a homogeneous polynomial of degree
L + 1. sT is the square of the momentum flow though the L + 1-cut. Note that in the
one-loop case, one has U = 1 (when all ci = 1); while in the massless cases, F = V .

The case with numerators are more complicated but can be treated similarly. On the
other hand, a numerator can be taken as a inverse propagator thus put in the above form
as well. Furthermore, Any tensor integral can be expressed in terms of scalar integrals
in shifted dimensions, with some of the propagator powers different from unity. For
illustration purpose we will mostly focus on the case without numerators.

Later we will often take (12) as our starting point.

1.3 Divergence and Regularization

We will focus on the dimensional regularization introduced by ’t Hooft and Veltman.
One advantage is that it preserves gauge invariance. Another advantage is that it can
regularization ultraviolet (UV) and infrared (IR) divergences at once.

3
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This can be understood as the eγEϵ will cancel with the factor in the gamma function
generated by Feynman parametrization

Γ(1 + Lϵ) = exp
(

− LγEϵ+
∞
∑

k=2

(−L)k

k
ϵkζk

)

. (20)

This is closely related to the following theorem.

eLϵγE g2YM → g2YMe
ϵγE

Theorem (Bogner, Weinzierl [?]). In the case where all scalar product pi · pj are
negative or zero, all internal masses positive, and all ratios of invariants algebraic, the
coefficients of the Laurent expansion of a Feynman integral are periods.

Definition. A complex number is a period if both its real and imaginary parts can
be written as integrals of an algebraic function with algebraic coefficients over a domain
defined by polynomial inequalities with algebraic coefficients.

Examples of periods include: algebraic number, π, log z, Li2(z), . . . Numbers that
are (conjectured) not periods are e, γE, 1/π, log π, . . .

This can be proved by starting with the Feynman parametrization form of the integral
and apply sector decomposition (will be introduced below) to expand in the series of ϵ.
Each coefficient of the series is an integral of a rational function over some domain defined
by rational inequalities, and thus a period.

Since periods are a special class of numbers and functions, this gives a lot of constrains
on the final form of Feynman integrals. For example, trigonometric and exponential
functions cannot appear in results for Feynman integrals, because e is (expected) not (to
be) a period. Also, functions such as log(log p2) cannot appear since it would not be a
period for algebraic values of p2.
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Definition. A complex number is a period if both its real and imaginary parts can
be written as integrals of an algebraic function with algebraic coefficients over a domain
defined by polynomial inequalities with algebraic coefficients.

Examples of periods include: algebraic number, π, log z, Li2(z), . . . Numbers that
are (conjectured) not periods are e, γE, 1/π, log π, . . .

This can be proved by starting with the Feynman parametrization form of the integral
and apply sector decomposition (will be introduced below) to expand in the series of ϵ.
Each coefficient of the series is an integral of a rational function over some domain defined
by rational inequalities, and thus a period.

Since periods are a special class of numbers and functions, this gives a lot of constrains
on the final form of Feynman integrals. For example, trigonometric and exponential
functions cannot appear in results for Feynman integrals, because e is (expected) not (to
be) a period. Also, functions such as log(log p2) cannot appear since it would not be a
period for algebraic values of p2.
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a similar result written through the same class of functions depending on the inverse ratio, srt. Furthermore, we
obtain, as a by-product, an explicit result for the backward scattering value, i.e. at tsys, of the double box
diagram.

2. From momentum space to MB representation

The massless on-shell double box Feynman integral can be written as

ddkddlHH 2 22 2 2 2 2k q2 p k k y2 p k k ky l l q2 p l l y2 p l lyp ypŽ . Ž .Ž . Ž . Ž . Ž .1 2 1 2 1 3

2dr2 yg eEip eŽ .
s K trs,e , 1Ž . Ž .2q2 eys ytŽ . Ž .
Ž .2 Ž .2where ss p qp , ts p qp , and k and l are respectively loop momenta of the left and the right box.1 2 1 3

Usual prescriptions, k 2sk 2q i0,yssysy i0, etc are implied. We have pulled out not only standard factors
that arise when integrating in the loop momenta but also a factor that makes the resulting function K depend on
the dimensionless variable, xs trs.
The alpha representation of the double box is straightforwardly obtained:

` ` y3y2 e1q3eK x ,e syG 3q2e da PPP da d a y1 D Aqxa a a , 2Ž . Ž . Ž . Ž .Ž .ÝH H1 7 i 5 6 7
0 0

where
Ds a qa qa a qa qa qa a qa qa qa qa qa , 3Ž . Ž . Ž . Ž .1 2 7 3 4 5 6 1 2 3 4 5 7

Asa a a qa qa qa a a qa qa qa a qa a qa . 4Ž . Ž . Ž . Ž . Ž .1 2 3 4 5 3 4 1 2 7 6 1 3 2 4

As it is well-known, one can choose a sum of an arbitrary subset of a ,is1, . . . ,7 in the argument of the deltai
Ž .function in 2 . We choose it as d Ý a y1 and change variables by turning from alpha to FeynmanŽ .i/ 6 i

parameters
a sa j , a sa 1yj , a sa j , a sa 1yj ,Ž . Ž .3 35 1 5 35 1 1 17 3 7 17 3

a sj j , a sj 1yj , a s 1yj j , a s 1yj 1yj . 5Ž . Ž . Ž . Ž . Ž .35 5 2 4 5 2 17 5 4 2 5 4

to obtain the following parametric integral:
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0 0 0
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( )J.B. TauskrPhysics Letters B 469 1999 225–234226

Fig. 1. Non-planar two-loop four-point diagrams with seven and six propagators

singular contributions. The main purpose of this paper is to calculate the non-planar seven propagator diagram
Ž .Fig. 1, left ,

1
NP d dB s d k d l , 1Ž .HH7 2 2 2 2 22 2kq lqp qp kq lqp kq l kyp k lyp lŽ . Ž . Ž . Ž . Ž .1 2 2 3 4

Ž 2 .using a similar Mellin-Barnes approach. The external momenta p PPP p are lightlike p s0 and we use1 4 i
Ž .2 Ž .2 Ž .2Mandelstam variables defined by ss p qp , ts p qp and us p qp .1 2 1 3 1 4

Starting from a Mellin-Barnes representation, which we derive in Section 2, we obtain analytical formulas in
terms of logarithms and polylogarithms for the seven propagator diagram BNP, which we present in Section 5,7
by a series of steps that are explained in Sections 3 and 4. Then, in Section 6, we briefly discuss the non-planar

Ž .diagram with six propagators Fig. 1, right . Some final comments are made in Section 7.

2. A Mellin-Barnes representation

Our main tool will be the Mellin-Barnes representation of a power of a sum as a contour integral,

1 G ys G nqsŽ . Ž .i`yn s ynysA qA s ds A A , 2Ž . Ž .H1 2 1 22p i G nŽ .yi`

Ž . Ž .where the integration contour separates the poles of G ys from those of G nqs , and A are complex1,2
< Ž . Ž . <numbers such that arg A yarg A -p . The Mellin-Barnes representation of a sum of several terms,1 2

Ž .yn Ž .A q . . .qA , is obtained easily by iteration of the basic formula 2 . Another formula that we will need is1 n
Ž w x.Barnes’s first lemma see, e.g. 7 :

1 i`
ds G s qs G s qs G s ys G s ysŽ . Ž . Ž . Ž .H 1 2 3 42p i yi`

G s qs G s qs G s qs G s qsŽ . Ž . Ž . Ž .1 3 1 4 2 3 2 4s . 3Ž .
G s qs qs qsŽ .1 2 3 4

Ž Ž .. ŽAgain, the contour should separate the increasing series of poles of G s ys from the decreasing ones of3,4
Ž ..G s qs .1,2
Introducing Feynman parameters in the standard way, the non-planar double box diagram can be written as

w x6
3d`27NP dr2 7y dy7B s y1 ip G 7yd d x PPP d x d 1yx PPPyx D C , 4Ž . Ž . Ž . Ž . Ž .2H7 1 7 1 7

0

Ds x qx qx x qx qx qx q x qx x qx , 5Ž . Ž . Ž . Ž . Ž .1 2 3 4 5 6 7 4 5 6 7

Csyt x x x yu x x x ys x x x ys x x x ys x x x qx qx qx . 6Ž . Ž .2 5 6 2 4 7 1 5 7 3 4 6 1 3 4 5 6 7

According to the causal ie-prescription, a small imaginary part should be added to C. We do this by giving s, t
and u positive imaginary parts. At this stage, we consider s, t and u to be three independent variables. At the



4 Mellin-Barnes method

4.1 Introduction

MB representation

The starting point is the following relation:

1

(A +B)λ
=

1

Γ(λ)

1

2πi

∫ +i∞

−i∞

dzΓ(λ + z)Γ(−z)
Bz

Aλ+z
, (38)

where the contour is chosen in such a way, that the poles of the Γ function with +z are
separated from the poles of the Γ function with −z.

More precisely, the contour is chosen such that the poles from Γ(λ + z) i.e. ({−λ−
n}, n = 0, 1, ..) are to the left of the contour and the poles from Γ(−z) i.e. ({n}, n = 0, 1, ..)
are to the right of the contour. Note that depending on the sign of λ, it is not always
possible to choose the contour as straight line parallel to the imaginary axis.

Let us prove the above relation. First, we Taylor expand the LHS as

1

(A+B)λ
=

1

Aλ

1

(1 + B̃)λ
=

1

Aλ

∞
∑

n=0

(−1)n
λ(λ+ 1) . . . (λ+ n− 1)

n!
B̃n , B̃ =

B

A
. (39)

Next, by Cauchy theorem and summing the series of residues at poles z = 0, 1, ..., one has

1

Γ(λ)

1

2πi

∫ +i∞

−i∞

dzΓ(λ+ z)Γ(−z)B̃z =
1

Γ(λ)

1

2πi
2πi

∞
∑

n=0

Γ(λ+ n)

(−1)nn!
B̃n . (40)

Using the relation

Γ(λ+ n) = λ(λ+ 1) . . . (λ+ n− 1)Γ(λ) , (41)

this exactly reproduces the Taylor series.

It is straightforward to generalize the above relation by induction and get

1

(A1 + A2 + · · ·An)λ
=

1

Γ(λ)

1

(2πi)n−1

∫ +i∞

−i∞

dz1 · · ·

∫ +i∞

−i∞

dzn−1

n−1
∏

i=1

Azi
i

×A
−λ−

∑n−1
i=1 zi

n Γ(λ+
n−1
∑

i=1

zi)
n−1
∏

i=1

Γ(−zi) . (42)

The dimension depends on how many terms in the sum of the denominators.

Let us recall the parametric form of one-loop integral

G(1)
n =

Γ(ν)
∏n

i=1 Γ(νi)

∫ 1

0

[

n
∏

i=1

dxix
νi−1
i

]

δ(1−
n

∑

i=1

xi)
1

(V + U
∑n

i=1m
2
ixi)ν−D/2

, (43)

12

Basic equation:

analytic structure of Gamma function

What is the contour?

Gamma function has simple poles at 
value of non-positive integer numbers.
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Contour is chosen such that

Basic equation:

84 5 Evaluating by MB Representation

5.1 A One-Loop Example

Our basic tool is the following simple formula:

1
(X + Y )λ

= 1
Γ (λ)

1
2πi

∫ +i∞

−i∞
dz Γ (λ+ z)Γ (−z)

Y z

Xλ+z . (5.1)

Here the contour of integration is chosen in the standard way: the poles with a
Γ (· · · + z) dependence (let us call them left poles, for brevity) are to the left of the
contour and the poles with a Γ (· · ·− z) dependence (right poles) are to the right of it.
See Fig. 5.1, where a possible contour C is shown in the case of λ = −1/4 − i/2.
(This terminology is useful and, although it often happens that the first right pole is
to the left of the first left pole of a given integrand, this, hopefully, will not cause
misunderstanding.)

We will use decompositions X +Y of various functions in integrals over Feynman
and alpha parameters. But the simplest way2 to apply this representation is to write
down a massive propagator as a continuous superposition of massless ones: Mellin–
Barnes (MB) representation

1
(m2 − k2)λ

= 1
Γ (λ)

1
2πi

∫ +i∞

−i∞
dz

(m2)z

(−k2)λ+z Γ (λ+ z)Γ (−z). (5.2)

Fig. 5.1 A possible integration contour in (5.1) for λ = −1/4 − i/2

2 Historically, it was first advocated and applied in [16].
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poles of                 are to the left of it

6 1 Introduction

We see that we have achieved our goal because the first term is just a simple pole
in ε while the second term can be expanded in ε. In Chap. 4, such procedure will be
extended to general Feynman integrals and various methods of sector decompositions
[2–4, 10, 19] will be described.

A powerful method of evaluating Feynman integrals is based on the Mellin–Barnes
(MB) representation [20, 22]. The underlying idea is to replace a sum of terms raised
to some power by the product of these terms raised to certain powers, at the cost of
introducing an auxiliary integration that goes from −i∞ to +i∞ in the complex
plane. The most obvious way to apply this representation is to write down a massive
propagator in terms of massless ones. For F(2, 1; 4), we obtain

1
(m2 − k2)2 = 1

2πi

∫ +i∞

−i∞
dz

(m2)z

(−k2)2+z Γ (2 + z)Γ (−z). (1.14)

Applying (1.14) to the first propagator in (1.2), changing the order of integration
over k and z and evaluating the internal integral over k by means of the one-loop
formula (10.7) (which we will derive in Chap. 3) we arrive at the following onefold
MB integral representation:

F(2, 1; d) = − iπd/2Γ (1 − ε)

(−q2)1+ε

1
2πi

∫ +i∞

−i∞
dz

(
m2

−q2

)z

× Γ (1 + ε + z)Γ (−ε − z)Γ (−z)
Γ (1 − 2ε − z)

. (1.15)

The contour of integration is chosen in the standard way: the poles with a Γ (· · ·+ z)
dependence are to the left of the contour and the poles with a Γ (· · ·− z) dependence
are to the right of it. If |ε| is small enough we can choose this contour as a straight
line parallel to the imaginary axis with −1 < Rez < 0. For d = 4, we obtain

F(2, 1; 4) = − iπ2

q2

1
2πi

∫ +i∞

−i∞
dz

(
m2

−q2

)z

Γ (z)Γ (−z). (1.16)

By closing the integration contour to the right and taking a series of residues at the
points z = 0, 1, . . ., we reproduce (1.5). Using the same technique, any integral from
the given family can similarly be evaluated.

We will study the method of MB representation in Chap. 5. This method provides
the possibility to resolve singularities in ε in an easy way. We will see, through
various examples, how one can analytically evaluate rather complicated Feynman
integrals. Moreover, this method can be applied almost in an automatic way because
various public computer codes for the application of this method are available.

Let us, however, think about a more economical strategy based on IBP relations
which would enable us to evaluate any integral (1.2) as a linear combination of some
master integrals. Putting to zero dimensionally regularized integrals of ∂

∂k ·k f (a1, a2)

and q · ∂
∂k f (a1, a2), where f (a1, a2) is the integrand in (1.2), and writing down
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dzΓ(λ + z)Γ(−z)
Bz

Aλ+z
, (38)

where the contour is chosen in such a way, that the poles of the Γ function with +z are
separated from the poles of the Γ function with −z.

More precisely, the contour is chosen such that the poles from Γ(λ + z) i.e. ({−λ−
n}, n = 0, 1, ..) are to the left of the contour and the poles from Γ(−z) i.e. ({n}, n = 0, 1, ..)
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possible to choose the contour as straight line parallel to the imaginary axis.

Let us prove the above relation. First, we Taylor expand the LHS as

1

(A+B)λ
=

1

Aλ

1

(1 + B̃)λ
=

1

Aλ

∞
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n=0

(−1)n
λ(λ+ 1) . . . (λ+ n− 1)
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B̃n , B̃ =

B

A
. (39)
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1

Γ(λ)

1

2πi

∫ +i∞

−i∞

dzΓ(λ+ z)Γ(−z)B̃z =
1

Γ(λ)

1

2πi
2πi

∞
∑

n=0

Γ(λ+ n)

(−1)nn!
B̃n . (40)
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∏
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are to the right of the contour. Note that depending on the sign of λ, it is not always
possible to choose the contour as straight line parallel to the imaginary axis.

Let us prove the above relation. First, we Taylor expand the LHS as

1

(A+B)λ
=

1

Aλ

1

(1 + B̃)λ
=

1

Aλ

∞
∑

n=0

(−1)n
λ(λ+ 1) . . . (λ+ n− 1)

n!
B̃n , B̃ =

B

A
. (39)

Next, by Cauchy theorem and summing the series of residues at poles z = 0, 1, ..., one has

1
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1

Γ(λ)

1
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∑

n=0

Γ(λ+ n)

(−1)nn!
B̃n . (40)

Using the relation

Γ(λ+ n) = λ(λ+ 1) . . . (λ+ n− 1)Γ(λ) , (41)

this exactly reproduces the Taylor series.

It is straightforward to generalize the above relation by induction and get

1
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1

(2πi)n−1
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−i∞
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n−1
∏

i=1

Azi
i
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−λ−

∑n−1
i=1 zi

n Γ(λ+
n−1
∑

i=1

zi)
n−1
∏

i=1

Γ(−zi) . (42)

The dimension depends on how many terms in the sum of the denominators.

Let us recall the parametric form of one-loop integral

G(1)
n =

Γ(ν)
∏n

i=1 Γ(νi)

∫ 1

0

[

n
∏

i=1

dxix
νi−1
i

]

δ(1−
n

∑

i=1

xi)
1

(V + U
∑n

i=1m
2
ixi)ν−D/2

, (43)
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The dimension depends on how many terms in the sum of the denominators.

Let us recall the parametric form of one-loop integral
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Taylor expansion of LHS:

Compute RHS by residue theorem:

5 Mellin-Barnes method

5.1 Introduction

MB representation

The starting point is the following relation:

1

(A +B)λ
=

1

Γ(λ)

1

2πi

∫ +i∞

−i∞

dzΓ(λ + z)Γ(−z)
Bz

Aλ+z
, (47)

where the contour is chosen in such a way, that the poles of the Γ function with +z are
separated from the poles of the Γ function with −z.

More precisely, the contour is chosen such that the poles from Γ(λ + z) i.e. ({−λ−
n}, n = 0, 1, ..) are to the left of the contour and the poles from Γ(−z) i.e. ({n}, n = 0, 1, ..)
are to the right of the contour. Note that depending on the sign of λ, it is not always
possible to choose the contour as straight line parallel to the imaginary axis.

Let us prove the above relation. First, we Taylor expand the LHS as

1

(A+B)λ
=

1
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1

(1 + B̃)λ
=

1
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∑
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(−1)n
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Next, by Cauchy theorem and summing the series of residues at poles z = 0, 1, ..., one has
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Using the relation

Γ(λ+ n) = λ(λ+ 1) . . . (λ+ n− 1)Γ(λ) , (50)

this exactly reproduces the Taylor series.

It is straightforward to generalize the above relation by induction and get
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1
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The dimension depends on how many terms in the sum of the denominators.

Let us recall the parametric form of one-loop integral

G(1)
n =

Γ(ν)
∏n

i=1 Γ(νi)

∫ 1

0

[

n
∏
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i
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ixi)ν−D/2

, (52)
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The dimension depends on how many terms in the sum of the denominators.
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G(1)
n =

Γ(ν)
∏n

i=1 Γ(νi)

∫ 1

0

[

n
∏

i=1

dxix
νi−1
i

]

δ(1−
n

∑

i=1

xi)
1

(V + U
∑n

i=1m
2
ixi)ν−D/2

, (43)

12

4 Mellin-Barnes method

4.1 Introduction

MB representation

The starting point is the following relation:

1

(A +B)λ
=

1

Γ(λ)

1

2πi

∫ +i∞

−i∞

dzΓ(λ + z)Γ(−z)
Bz

Aλ+z
, (38)

where the contour is chosen in such a way, that the poles of the Γ function with +z are
separated from the poles of the Γ function with −z.

More precisely, the contour is chosen such that the poles from Γ(λ + z) i.e. ({−λ−
n}, n = 0, 1, ..) are to the left of the contour and the poles from Γ(−z) i.e. ({n}, n = 0, 1, ..)
are to the right of the contour. Note that depending on the sign of λ, it is not always
possible to choose the contour as straight line parallel to the imaginary axis.

Let us prove the above relation. First, we Taylor expand the LHS as

1

(A+B)λ
=

1

Aλ

1

(1 + B̃)λ
=

1

Aλ

∞
∑

n=0

(−1)n
λ(λ+ 1) . . . (λ+ n− 1)

n!
B̃n , B̃ =

B

A
. (39)

Next, by Cauchy theorem and summing the series of residues at poles z = 0, 1, ..., one has

1

Γ(λ)

1

2πi

∫ +i∞

−i∞

dzΓ(λ+ z)Γ(−z)B̃z =
1

Γ(λ)

1

2πi
2πi

∞
∑

n=0

Γ(λ+ n)

(−1)nn!
B̃n . (40)

Using the relation

Γ(λ+ n) = λ(λ+ 1) . . . (λ+ n− 1)Γ(λ) , (41)

this exactly reproduces the Taylor series.

It is straightforward to generalize the above relation by induction and get

1

(A1 + A2 + · · ·An)λ
=

1

Γ(λ)

1

(2πi)n−1

∫ +i∞

−i∞

dz1 · · ·

∫ +i∞

−i∞

dzn−1

n−1
∏

i=1

Azi
i

×A
−λ−

∑n−1
i=1 zi

n Γ(λ+
n−1
∑

i=1

zi)
n−1
∏

i=1

Γ(−zi) . (42)

The dimension depends on how many terms in the sum of the denominators.

Let us recall the parametric form of one-loop integral

G(1)
n =

Γ(ν)
∏n

i=1 Γ(νi)

∫ 1

0

[

n
∏

i=1

dxix
νi−1
i

]

δ(1−
n

∑

i=1

xi)
1

(V + U
∑n

i=1m
2
ixi)ν−D/2

, (43)

12



4 Mellin-Barnes method

4.1 Introduction

MB representation

The starting point is the following relation:

1

(A +B)λ
=

1

Γ(λ)

1

2πi

∫ +i∞

−i∞

dzΓ(λ + z)Γ(−z)
Bz

Aλ+z
, (38)
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The dimension depends on how many terms in the sum of the denominators.
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Apply to massive propagator:

corresponding massless integrals, and the entire gain from the reduction of the massive
integrals to the massless ones is almost lost. One of the ways out of the resulting situation
is to use the procedure proposed in [20, 21, 22]. It is as follows. Suppose we use for
denominators of the form (1) the expansion (2) and compensate the “incorrectness” of
this expansion in the region |k2| < m2 by appropriately chosen counterterms (a general
prescription for the construction of such counterterms is given). This makes it possible to
obtain correct asymptotic expansions of the corresponding integrals in powers of m2/p2.
We propose a different method for calculating massive Feynman integrals. The idea

of the method is to use the Mellin–Barnes representation for the function 1F0,

1F0(β|z) ≡
1

(1− z)β =
1

Γ(β)

1

2πi

i∞∫

−i∞

ds (−z)s Γ(−s) Γ(β + s) , (4)

where the contour in the complex plane of s separates the “left” series of poles of Γ
functions in the integrand from the “right” poles (in what follows, all such integrals
will be understood in this sense). To calculate the integral (4), we can use the residue
theorem, closing the contour at infinity in the right or left half-plane in order to make the
integrand decrease (depending on the value of |z|). For example, for |z| < 1 we must close
the contour in (4) on the right, and for |z| > 1 on the left (and the obtained expression
is equal to the sum over the residues of Γ(−s) or Γ(β + s), respectively). In this manner,
we obtain the well-known expressions for the analytic continuation of the hypergeometric
functions (see, for example, [23]). Thus, the main formula of the method is

1

(k2 −m2)β =
1

(k2)β
1

Γ(β)

1

2πi

i∞∫

−i∞

ds

(

−m
2

k2

)s
Γ(−s) Γ(β + s) (5)

(we repeat that all squares of momenta contain infinitesimally small imaginary additions:
k2 ↔ k2+i0). The advantage of this method is that formula (5) contains both (2) and (3):
for |k2| > m2, we obtain (summing over the residues of Γ(−s)) the expansion (2), and for
|k2| < m2 (summing over the residues of Γ(β + s)) the expansion (3). At the same time,
we can use the ordinary expressions for the massless integrals, replacing the corresponding
index β by (β+ s). The use of this method also has a number of other helpful properties,
which will be noted below in the calculation of definite classes of integrals.
It should be noted that the appropriateness of using the Mellin–Barnes representation

for the hypergeometric functions (and also the Mellin transform) in the calculation of one-
dimensional integrals has already been noted (see, for example, [24, 25]). In particular, it
was used in [26, 19, 13] to study parametric integrals that arise when the α-representation
is used to calculate certain Feynman integrals. In particular, the Mellin transform was
used in [27] to analyze α-parametrized integrals in the investigation of singularities and
the asymptotic behaviour of massive Feynman amplitudes. Note also that in [28] a study
was made of some aspects of the calculation of massive integrals of propagator type by
using a single Mellin transformation with respect to the square of the external momentum
and considering the Mellin transforms of such integrals. Our proposed technique of the
Mellin–Barnes representation directly for the massive denominators differs from these
approaches, and from our point of view is more convenient for calculating definite classes
of massive Feynman integrals.
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Parametric form:

5 Mellin-Barnes method

5.1 Introduction

MB representation

The starting point is the following relation:

1
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1
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1

2πi
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−i∞

dzΓ(λ + z)Γ(−z)
Bz

Aλ+z
, (47)

where the contour is chosen in such a way, that the poles of the Γ function with +z are
separated from the poles of the Γ function with −z.

More precisely, the contour is chosen such that the poles from Γ(λ + z) i.e. ({−λ−
n}, n = 0, 1, ..) are to the left of the contour and the poles from Γ(−z) i.e. ({n}, n = 0, 1, ..)
are to the right of the contour. Note that depending on the sign of λ, it is not always
possible to choose the contour as straight line parallel to the imaginary axis.

Let us prove the above relation. First, we Taylor expand the LHS as

1

(A+B)λ
=

1

Aλ

1

(1 + B̃)λ
=

1

Aλ

∞
∑

n=0

(−1)n
λ(λ+ 1) . . . (λ+ n− 1)

n!
B̃n , B̃ =

B

A
. (48)

Next, by Cauchy theorem and summing the series of residues at poles z = 0, 1, ..., one has

1

Γ(λ)

1

2πi

∫ +i∞

−i∞

dzΓ(λ+ z)Γ(−z)B̃z =
1

Γ(λ)

1

2πi
2πi

∞
∑

n=0

Γ(λ+ n)

(−1)nn!
B̃n . (49)

Using the relation

Γ(λ+ n) = λ(λ+ 1) . . . (λ+ n− 1)Γ(λ) , (50)

this exactly reproduces the Taylor series.

It is straightforward to generalize the above relation by induction and get

1

(A1 + A2 + · · ·An)λ
=

1

Γ(λ)

1

(2πi)n−1

∫ +i∞

−i∞

dz1 · · ·

∫ +i∞

−i∞

dzn−1

n−1
∏

i=1

Azi
i

×A
−λ−

∑n−1
i=1 zi

n Γ(λ+
n−1
∑

i=1

zi)
n−1
∏

i=1

Γ(−zi) . (51)

The dimension depends on how many terms in the sum of the denominators.

Let us recall the parametric form of one-loop integral

G(1)
n =

Γ(ν)
∏n

i=1 Γ(νi)

∫ 1

0

[

n
∏

i=1

dxix
νi−1
i

]

δ(1−
n

∑

i=1

xi)
1

(V + U
∑n

i=1m
2
ixi)ν−D/2

, (52)
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where ν = ν1 + . . . + νn. We can first use (51) to rewrite the denominator. Afterwards,
the integration of xi parameters are straightforward to perform using

∫ 1

0

[

n
∏

i=1

dxix
νi−1
i

]

δ(1−
n

∑

i=1

xi) =
Γ(ν1) . . .Γ(νn)

Γ(ν1 + . . .+ νn)
. (53)

And one is left with a multi-dimensional integral with respect to zi variables, which
is sometimes called MB representation. The most general MB representation is in the
following form

1

(2πi)n

∫ +i∞

−i∞

n
∏

l=1

dzl
∏

k

ydkk ×

∑

i Γ(ai + biϵ+
∑

j cijzj)
∑

i′ Γ(a
′
i′ + b′i′ϵ+

∑

j′ c
′
i′j′zj′)

, (54)

where a are linear combination of νi, b, c’s are rational numbers, yk are ratio of kinematic
invariants and/or masses, the exponent dk are linear combination of ϵ and z variables.
Typically, cij = ±1.

Resolve singularities

The key advantage is that given the MB representation integral, one can expand
integrands in Laurent series in ϵ after resolving the singularities. Besides, the MB repre-
sentation can be obtained for general power of propagators νi.

Equation (54) is well defined and corresponds to the original Feynman integral, if the
real parts of all of the Γ functions have positive arguments. If these conditions cannot be
satisfied with ϵ = 0, then the integral may develop divergences and analytic continuation
to 0 is necessary to make an expansion in ϵ.

There are two strategies to resolve the singular structure.

Strategy A consists in deforming the integration contours and then shifting them
past the poles of the Γ functions, which results in residue integrals.

Strategy B assumes fixed contours parallel to the imaginary axis, and the analytic
continuation consists in accounting for pole crossings past the contours. More precisely,
one chooses an initial value of ϵ and values of the real parts of the integration variables,
zi’s, in such a way that the real parts of all the arguments of the gamma functions in
the numerator are positive and one can integrate over straight lines. Then one tends ϵ to
zero and whenever the real part of the argument of some gamma function vanishes one
crosses this pole and adds a corresponding residue which has one integration less and is
treated as the initial integral within the same procedure. Strategy B is algorithmic in its
character.

In the case ’no rules are fount’, further deformation is required: e.g. an extra param-
eter for the power of propagator.

Evaluate the integral

The third step of the method is to evaluate integrals expanded in ϵ.
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Parameters xi can be integrated out trivially after MB transformation:

General MB form:
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∫ 1

0

[

n
∏

i=1

dxix
νi−1
i

]

δ(1−
n

∑

i=1

xi) =
Γ(ν1) . . .Γ(νn)

Γ(ν1 + . . .+ νn)
. (53)

And one is left with a multi-dimensional integral with respect to zi variables, which
is sometimes called MB representation. The most general MB representation is in the
following form

1

(2πi)n
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−i∞

n
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dzl
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k

ydkk ×
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i Γ(ai + biϵ+
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i′ Γ(a
′
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j′ c
′
i′j′zj′)

, (54)

where a are linear combination of νi, b, c’s are rational numbers, yk are ratio of kinematic
invariants and/or masses, the exponent dk are linear combination of ϵ and z variables.
Typically, cij = ±1.

Resolve singularities

The key advantage is that given the MB representation integral, one can expand
integrands in Laurent series in ϵ after resolving the singularities. Besides, the MB repre-
sentation can be obtained for general power of propagators νi.

Equation (54) is well defined and corresponds to the original Feynman integral, if the
real parts of all of the Γ functions have positive arguments. If these conditions cannot be
satisfied with ϵ = 0, then the integral may develop divergences and analytic continuation
to 0 is necessary to make an expansion in ϵ.

There are two strategies to resolve the singular structure.

Strategy A consists in deforming the integration contours and then shifting them
past the poles of the Γ functions, which results in residue integrals.

Strategy B assumes fixed contours parallel to the imaginary axis, and the analytic
continuation consists in accounting for pole crossings past the contours. More precisely,
one chooses an initial value of ϵ and values of the real parts of the integration variables,
zi’s, in such a way that the real parts of all the arguments of the gamma functions in
the numerator are positive and one can integrate over straight lines. Then one tends ϵ to
zero and whenever the real part of the argument of some gamma function vanishes one
crosses this pole and adds a corresponding residue which has one integration less and is
treated as the initial integral within the same procedure. Strategy B is algorithmic in its
character.

In the case ’no rules are fount’, further deformation is required: e.g. an extra param-
eter for the power of propagator.

Evaluate the integral

The third step of the method is to evaluate integrals expanded in ϵ.
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As in sector decomposition method, we want to separate 
the divergences:

can be expanded in      at integrand level

divergent part finite partx

For massless bubble integral, it is both UV and IR divergent. Taking it to be zero
can be understood that the UV and IR divergence cancel with each other. One may
ask the question that: how can be take ϵ to be ϵIR < 0 and ϵUV > 0 simultaneously
in a single integral and furthermore let them cancel?

One can introduce ϵIR and ϵUV and regularize the integrals in different regions sep-
arately.

∫ ∞

0

dx

x1+ϵ
=

∫ 1

0

dx

x1+ϵ
+

∫ ∞

1

dx

x1+ϵ
= −

1

ϵ
+

1

ϵ
= 0 (16)

∫ ∞

0

dx

x1+ϵ
=

∫ 1

0

dx

x1+ϵ
+

∫ ∞

1

dx

x1+ϵ
= −

1

ϵIR

∣

∣

∣

∣

ϵIR<0

+
1

ϵUV

∣

∣

∣

∣

ϵUV>0

(17)

On the other hand, we know that finally ϵIR and ϵUV must vanish (separately) from
physical quantities. Therefore, we can just set ϵIR = ϵUV = ϵ without worrying
about they are positive or negative. And this explains why we are allowed to set
e.g. massless tadpole or bubble to be zero.

Another justification is that since there is no available quantity with non-zero mass
dimension, scaleless integrals must be zero according to above choice.

[Subtlety] Sometimes, one does need to know exactly the UV divergence. In such,
a massless bubble (if exists) should no longer be taken as zero, but does contribute
to UV divergences.

• Choices of schemes

1.4 A mathematica fact

A Feynman integral is meromorphic function of ϵ, namely, it has at most poles in
complex ϵ-plane, and no branch cuts! Therefore, it can be given in a Laurent expansion
around ϵ = 0 as

A(ϵ) =
∞
∑

m=m0

Akϵ
m. (18)

If m0 < 0, A is divergent in D = 4 dimension.

Often, one uses the so-called MS scheme for the coupling constant in which a factor

eγEϵ/(iπD/2) (19)

is included per loop, where γE = −Γ′(1) = 0.577216... is the Euler constant. The reason
to include this normalization factor is let γE and log π never appear in the final answer.

5

obtained by resolving 
the singularities 
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As a result, we reproduce (1.5).
In the case of the indices equal to one we use (5.3) to obtain

F(q2, m2; 1, 1; d) = iπ2Γ (1 − ε)

(−q2)ε
1

2πi

∫

C
dz f (z, ε), (5.5)

with

f (z, ε) =
(

m2

−q2

)z
Γ (ε+ z)Γ (−z)Γ (1 − ε− z)

Γ (2 − 2ε− z)
. (5.6)

Our goal is to evaluate (5.5) in a Laurent expansion in ε. Possible integration
contours C in (5.5) in the cases Re ε > 0 and Re ε < 0 are shown in Figs. 5.2
and 5.3, respectively. In the former case, a contour can be chosen as a straight line
parallel to the imaginary axis, while in the latter case, there is no such choice.

Let us now introduce two basic strategies for resolving singularities in ε in MB
integrals. We will call them Strategy A and Strategy B. They both have computer
implementations as described in the next section. Strategy A [51] is a modified variant
of the strategy suggested in [53] (which will be described in Sect. 5.6) and Strategy B
was suggested in [64].

We know in advance that the given integral has a pole in ε because the diagram is
UV-divergent. There are no explicit functions with singularities in ε so that the pole
is generated by the MB integration. So, if we just set ε = 0 (or take more terms of

Fig. 5.2 A possible integration contour in (5.5) in the case Re ε > 0
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Fig. 5.3 A possible integration contour in (5.5) in the case Re ε < 0

the ε-expansion) we will obtain a wrong result which does not have a pole at ε = 0.
Moreover, it is clear that we cannot do this because the integration contour in (5.5)
should go between the point z = 0 and z = −ε so that, at ε = 0, there is no place
for the contour. Still it is clear that such a ‘naive part’ of the ε-expansion has to be
present in the right result which is, presumably, obtained from it by some extra terms.

Let us fix this naive part by choosing some straight contour for it. If we set ε = 0
we obtain the product of three gamma functions

Γ (z)Γ (−z)Γ (1 − z).

For any straight contour, the real part of the argument of at least one of these gamma
function turns out to be negative so that the standard prescription of the positivity of
the argument of any gamma function when crossing the real axis has to be violated.
It is not reasonable to choose a contour at 1 < Re z < 2 or 2 < Re z < 3 etc. because
we would violate this prescription for two gamma function. So, we are left with the
choices 0 < Re z < 1, −1 < Re z < 0 etc. For example, let us fix it at Re z = −1/4
so that we spoil the gamma function Γ (ε + z), in the sense that we violate our
prescription for it. Let us formally denote this transition by Γ (ε+ z) → Γ (1)(ε+ z)
where Γ (1)(ε+ z) means that the rule Re(ε+ z) > 0 when crossing the real axis is
changed to −1 < Re(ε+ z) < 0.

It is natural to violate the prescriptions in a minimal way, i.e. we do not need to
spoil this gamma function more, e.g., by switching to Γ (2)(ε+z) with the prescription
−2 < Re(ε+ z) < −1. We can write down (5.6) as

1 Introduction 3

Fig. 1.1 One-loop self-
energy graph. The dashed
line denotes a massless propa-
gator

FΓ (q2, m2; d) =
∫

ddk
(k2 − m2)(q − k)2 , (1.1)

where the usual +i0 is implied in the propagators.
The same picture Fig. 1.1 can also denote the Feynman integral with general

powers of the two propagators,

FΓ (q2, m2; a1, a2; d) =
∫

ddk
(k2 − m2)a1[(q − k)2]a2

. (1.2)

Suppose, one needs to evaluate the Feynman integral FΓ (q2, m2; 2, 1; d) ≡
F(2, 1; d) which is finite in four dimensions, d = 4. (It can also be depicted by
Fig. 1.1 with a dot on the massive line.) There is a lot of ways to evaluate it. For
example, a straightforward way is to take into account the fact that the given func-
tion of q is Lorentz-invariant so that it depends on the external momentum through
its square, q2. One can choose a frame q = (q0, 0), introduce spherical coordinates
for k, integrate over angles, then over the radial component and, finally, over k0. This
strategy can be, however, hardly generalized to multi-loop2 Feynman integrals.

Another way is to use a dispersion relation that expresses Feynman integrals in
terms of a one-dimensional integral of the imaginary part of the given Feynman
integral, from the value of the lowest threshold to infinity. This dispersion integral
can be expressed by means of the well-known Cutkosky rules. We will not apply this
method, which was, however, very popular in the early days of perturbative quantum
field theory, and only briefly comment on it in Appendix E.

Let us now turn to the methods that will be indeed actively used in this book.
To illustrate them all let me use this very example of Feynman integrals (1.2) and
present main ideas of these methods, with the obligation to present the methods in
great details in the rest of the book.

First, we will exploit the well-known technique of alpha or Feynman parame-
ters. In the case of F(2, 1; d), one writes down the following Feynman-parametric
formula:

1
(k2 − m2)2(q − k)2 = 2

∫ 1

0

ξdξ

[(k2 − m2)ξ + (1 − ξ)(q − k)2 + i0]3 . (1.3)

2 Since the Feynman integrals are rather complicated objects the word ‘multi-loop’ means the
number of loops greater than one ;-)

1 Introduction 3

Fig. 1.1 One-loop self-
energy graph. The dashed
line denotes a massless propa-
gator

FΓ (q2, m2; d) =
∫

ddk
(k2 − m2)(q − k)2 , (1.1)

where the usual +i0 is implied in the propagators.
The same picture Fig. 1.1 can also denote the Feynman integral with general

powers of the two propagators,

FΓ (q2, m2; a1, a2; d) =
∫

ddk
(k2 − m2)a1[(q − k)2]a2

. (1.2)

Suppose, one needs to evaluate the Feynman integral FΓ (q2, m2; 2, 1; d) ≡
F(2, 1; d) which is finite in four dimensions, d = 4. (It can also be depicted by
Fig. 1.1 with a dot on the massive line.) There is a lot of ways to evaluate it. For
example, a straightforward way is to take into account the fact that the given func-
tion of q is Lorentz-invariant so that it depends on the external momentum through
its square, q2. One can choose a frame q = (q0, 0), introduce spherical coordinates
for k, integrate over angles, then over the radial component and, finally, over k0. This
strategy can be, however, hardly generalized to multi-loop2 Feynman integrals.

Another way is to use a dispersion relation that expresses Feynman integrals in
terms of a one-dimensional integral of the imaginary part of the given Feynman
integral, from the value of the lowest threshold to infinity. This dispersion integral
can be expressed by means of the well-known Cutkosky rules. We will not apply this
method, which was, however, very popular in the early days of perturbative quantum
field theory, and only briefly comment on it in Appendix E.

Let us now turn to the methods that will be indeed actively used in this book.
To illustrate them all let me use this very example of Feynman integrals (1.2) and
present main ideas of these methods, with the obligation to present the methods in
great details in the rest of the book.

First, we will exploit the well-known technique of alpha or Feynman parame-
ters. In the case of F(2, 1; d), one writes down the following Feynman-parametric
formula:

1
(k2 − m2)2(q − k)2 = 2

∫ 1

0

ξdξ

[(k2 − m2)ξ + (1 − ξ)(q − k)2 + i0]3 . (1.3)

2 Since the Feynman integrals are rather complicated objects the word ‘multi-loop’ means the
number of loops greater than one ;-)

Example:

There is no contour can be chosen such that all argument of 
Gamma functions are positive in the limit of           .
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Fig. 5.3 A possible integration contour in (5.5) in the case Re ε < 0

the ε-expansion) we will obtain a wrong result which does not have a pole at ε = 0.
Moreover, it is clear that we cannot do this because the integration contour in (5.5)
should go between the point z = 0 and z = −ε so that, at ε = 0, there is no place
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For any straight contour, the real part of the argument of at least one of these gamma
function turns out to be negative so that the standard prescription of the positivity of
the argument of any gamma function when crossing the real axis has to be violated.
It is not reasonable to choose a contour at 1 < Re z < 2 or 2 < Re z < 3 etc. because
we would violate this prescription for two gamma function. So, we are left with the
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Evidence of divergence.
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1
2πi

∫

C
f (z, ε)dz = 1

2πi

∫

C0

f (z, ε)dz

+
(

1
2πi

∫

C
f (z, ε)dz − 1

2πi

∫

C0

f (z, ε)dz
)

= 1
2πi

∫

C0

f (z, ε)dz + resz=ε f (z, ε)

= 1
2πi

∫

C0

f (z, ε)dz +
(

m2

−q2

)−ε
Γ (ε)

Γ (2 − ε)
,

where C0 is the straight contour with Re z = −1/4, and we consider εwith |ε| < 1/4.
The way how the singularity in ε was resolved corresponds to Strategy A which

will be described in the next section in the general situation. The crucial point is that
we can safely expand the integrand in a Laurent series in ε in the integral over C0.
(In this particular example, this is just a Taylor series.) Its value at ε = 0 gives the
following contribution to (5.5):

iπ2 1
2πi

∫

C ′
dz

(
m2

−q2

)z
Γ (z)Γ (−z)

1 − z
.

This MB integral can be evaluated by closing the integration contour to the right
in the complex z-plane, as in the previous example. Combining the corresponding
result with the residue calculated above we arrive at (1.7).

Fig. 5.4 A choice of ε and an integration contour within Strategy B
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As a result, we reproduce (1.5).
In the case of the indices equal to one we use (5.3) to obtain

F(q2, m2; 1, 1; d) = iπ2Γ (1 − ε)

(−q2)ε
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2πi

∫

C
dz f (z, ε), (5.5)

with

f (z, ε) =
(

m2

−q2

)z
Γ (ε+ z)Γ (−z)Γ (1 − ε− z)

Γ (2 − 2ε− z)
. (5.6)

Our goal is to evaluate (5.5) in a Laurent expansion in ε. Possible integration
contours C in (5.5) in the cases Re ε > 0 and Re ε < 0 are shown in Figs. 5.2
and 5.3, respectively. In the former case, a contour can be chosen as a straight line
parallel to the imaginary axis, while in the latter case, there is no such choice.

Let us now introduce two basic strategies for resolving singularities in ε in MB
integrals. We will call them Strategy A and Strategy B. They both have computer
implementations as described in the next section. Strategy A [51] is a modified variant
of the strategy suggested in [53] (which will be described in Sect. 5.6) and Strategy B
was suggested in [64].

We know in advance that the given integral has a pole in ε because the diagram is
UV-divergent. There are no explicit functions with singularities in ε so that the pole
is generated by the MB integration. So, if we just set ε = 0 (or take more terms of

Fig. 5.2 A possible integration contour in (5.5) in the case Re ε > 0
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Let us turn to Strategy B [64]. Without loss of generality, we may consider ε real.
Let us choose ε and a straight contour such that the arguments of all the gamma
functions in the numerator of (5.6) will be positive when crossing the real axis. For
example, we can take ε = 1/2, Rez = −1/4—see Fig. 5.4. Let us then keep the
contour fixed and tend ε to zero. When the first pole of Γ (ε+ z) is crossed we add a
residue and tend ε to zero. As a result we arrive at the same intermediate result (5.7).

5.2 Evaluating Multiple MB Integrals

The first step of the method is to derive an appropriate MB representation. Of course,
it is advantageous to have a minimal number of MB integrations. In every case, we
will derive MB representations for general powers of the propagators. This is useful
and important for several reasons. First, if we obtain a MB representation for general
indices which we might imagine as complex we will certainly have unambiguous
prescriptions for choosing integration contours. Second, such general formulae can
be checked using various partial simple cases. Finally, starting from a general formula
we can derive a lot of formulae by setting some indices to zero and thereby turning
to graphs where the corresponding lines are contracted to a point. We will illustrate
all these features through multiple examples in Sect. 5.3.

Multiple MB integrals which arise in the evaluation of Feynman integrals have
the following general form:

1
(2πi)n

∫ +i∞

−i∞
. . .

∫ +i∞

−i∞

∏
i Γ

(
ai + biε+ ∑

j ci j z j

)

∏
i ′ Γ

(
a′

i ′ + b′
i ′ε+ ∑

j c′
i ′ j z j

)
∏

k

xdk
k

n∏

l=1

dzl , (5.7)

where ai , . . . , c′
i ′ j are rational numbers, xk are ratios of kinematic invariants and/or

masses, and their exponents, dk , are linear combinations of ε and z-variables.
Typically, ci j = ±1.

In the second step, one resolves the singularity structure of integrals (5.7) in ε,
taking residues and shifting contours, with the goal to obtain a sum of integrals where
one can expand integrands in Laurent series in ε. For this, we will apply Strategy A
and Strategy B introduced in the previous section in the one-loop case. They were
suggested in [51] and [64], respectively, and they both have public computer imple-
mentations described in [51] and [17]. In the next section, we will describe these
strategies as well as the ‘the old Strategy A’ [53] which we call in such a way
because the strategy of [51] was motivated by it. For completeness, we present in
Sect. 5.6 two examples considered with the old Strategy A.

The third step of the method is to evaluate integrals expanded in ε after the second
step. Here one can use corollaries of the first and the second Barnes lemmas (13.1)
and (13.47). A table of these formulae is presented in Appendix D. If Barnes lemmas
do not work at this point one can shift contours to the right (or left), replace a given

Deform the integration contours, and then shift them past the poles of the 
Gamma functions, which results in residue integrals. 

Choose an initial value of     and values of 
the real parts of the integration variables   's, 
such that the real parts of all the arguments 
of the gamma functions in the numerator are 
positive.  
Then one tends      to zero and whenever 
the real part of the argument of some 
gamma function vanishes one crosses this 
pole and adds a corresponding residue 
which has one integration less.
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• Obtain MB representation 

• Resolve eps singularities 

• Perform epsilon expansion 

• Evaluate the finite integrals numerically

AMBRE.m [J. Gluza, K. Kajda T. Riemann]

MB.m [M. Czakon]

MB.m [M. Czakon]

MBresolve.m [A. Smirnov, V. Smirnov]

http://mbtools.hepforge.org/
Various codes are collected at webpage:

MB.m [M. Czakon]
Reference: V. Smirnov’s books



Advantages:
• sometimes possible to get analytic results  
• in many cases are much faster and with better precision than 

sector decomposition method

Disadvantages:
• so far not work for general non-planar integral, 

at least not in a systematic way
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Differential equation method can solve it 
analytically !
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6 Differential equation method

6.1 Introduction

A set of master integrals f⃗(x; ϵ). The differential equations in general take the fol-
lowing form:

∂xf⃗(x, ϵ) = A(x, ϵ) f⃗(x, ϵ) , (55)

where A(x, ϵ) is an N ×N matrix, and is rational in x and ϵ.

Conjecture of canonical form:

∂xf⃗(x, ϵ) = ϵA(x) f⃗(x, ϵ) . (56)

by an appropriate basis for master intergrals.

We further normalize the basis such that fi are finite when ϵ → 0. The solution can
be found easily in this form:

f⃗(x, ϵ) =
∑

k≥0

ϵk f⃗ (k)(x) . (57)

Or in another more formal way:

f⃗(x, ϵ) = P exp
[

ϵ

∫

γ

A(x)
]

f⃗0(ϵ) , (58)

where f⃗0(ϵ) is a boundary value.

Differential operator

Constraints of kinematics for massless box integral:

p21 = 0 , p22 = 0 , (p1 + p2 + p3)
2 = 0 , (59)

Ansatz:

Ds =
∂

∂s
= (αpµ1 + βpµ2 + γpµ3)

∂

∂pµ1
(60)

Constraints on the derivative:

Dsp
2
1 = 0 , (61)

Ds(p1 + p2 + p3)
2 = 0 , (62)

Ds(p1 + p2)
2 = 1 . (63)

We get that

Ds =
1

2

[

2s+ t

s(s+ t)
pµ1 +

1

s
pµ2 +

1

s+ t
pµ3

]

∂

∂pµ1
(64)

16

Differentiation + IBP guarantee us a system of first 
order differential equations for master integrals:

           are the set of master integrals, and x’s are 
the Mandelstam variables or masses.
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Example:

5 Differential equation method

5.1 Introduction

5.2 Example

Take the example in the recent book of Henn and Plefka “Scattering Amplitudes in
Gauge Theories”, section 3.8.3.

Consider the one-loop triangle with massive propagators

G(a1, a2, a3) :=

∫

dDk

iπD/2

1

(−k2 +m2)a1 [−(k + p1)2 +m2]a2 [−(k + p2)2 +m2]a3
, (46)

where p21 = p22 = 0.

A traditional choice of bases

Using IBP reduction, one finds three master integrals. A canonical choice would be
the simplest ones

g := {G(0, 1, 0), G(0, 1, 1), G(1, 1, 1)} . (47)

We can get a set of differential equation by differentiating the bases with respect to the
variable s := −2p1 · p2, which gives

∂sg(s,m
2; ϵ) = A(s,m2; ϵ) g(s,m2; ϵ) , (48)

where

A(s,m2; ϵ) =

⎛

⎜

⎝

0 0 0
2(ϵ−1)

s(4m2−s) − 2m2−sϵ
s(4m2−s) 0

ϵ−1
sm2(4m2−s)

2ϵ−1
s(4m2−s) −1

s

⎞

⎟

⎠
. (49)

Note that
∂

∂s
=

pµ1
s

∂

∂pµ1
=

pµ2
s

∂

∂pµ2
. (50)

A “better” choice of bases

The above equation is non-trivial to solve. On the other hand, the following form of
differential equation is almost trivial to solve order by order in ϵ:

∂sf(s,m
2; ϵ) = ϵA(s,m2) f(s,m2; ϵ) . (51)

More explicitly, we require:

• The matrix A(s,m2) is independent of ϵ.
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3.8 Integration by Parts and Differential Equations 139

The solution is

F3,m(D = 4) = −1
2

1
s

log2
(√

1 + 4y − 1√
1 + 4y + 1

)
, (3.235)

where y = −m2/s and s = (p1 − p2)
2.

(c) Triangle identity:
Consider the massless two-loop propagators integral

Q(a1, a2, a3, a4, a5;D)

:=
∫

dDk1dDk2

(iπD/2)2
1

(−k2
1)a1 (−(k1 + p)2)a2

1

(−(k1 − k2)2)a3(−(k2 + p)2)a4(−k2
2)a5

,

(3.236)

and write down the integration by parts identities for one of the triangle sub
integrals. Use the latter to express Q(1,1,1,1,1;D) in terms of one-loop bub-
ble integrals. Use the general formula for one-loop bubble integrals in order to
express Q(1,1,1,1,1,D) in terms of Γ functions. Show that

Q(1,1,1,1,1;4 − 2ε) = 1
(−q2)

6ζ3 + O(ε). (3.237)

3.8.3 Simplified Approach to Differential Equations

Let us consider a family of one-loop triangle integrals with internal mass that already
appeared in Exercise 3.3,

G(a1, a2, a3)

:=
∫

dDk

iπD/2

1
(−k2 + m2)a1(−(k + p1)2 + m2))a2(−(k + p2)2 + m2)a3

.

(3.238)

Such integrals appear for example in the process gg −→ H via a top quark loop, as
was discussed in Sect. 3.5.4.

We have seen above how the integration by parts reduction to master inte-
grals works. Following the same ideas, one finds that the family of one-loop
triangle integrals (with arbitrary integer powers of the propagators) can be de-
scribed by a basis of three integrals, which could be canonically chosen to be
G(0,1,0),G(0,1,1),G(1,1,1). Computing them is equivalent to knowing any tri-
angle integral within the family, thanks to the integration by parts relations.

It turns out that solving the system of differential equations becomes drastically
simpler when a different basis choice is made. As we will see, this will completely

Master integrals:



6 Differential equation method

6.1 Introduction

A set of master integrals f⃗(x; ϵ). The differential equations in general take the fol-
lowing form:

∂xf⃗(x, ϵ) = A(x, ϵ) f⃗(x, ϵ) , (55)

where A(x, ϵ) is an N ×N matrix, and is rational in x and ϵ.

Conjecture of canonical form:

∂xf⃗(x, ϵ) = ϵA(x) f⃗(x, ϵ) . (56)

by an appropriate basis for master intergrals.

We further normalize the basis such that fi are finite when ϵ → 0. The solution can
be found easily in this form:

f⃗(x, ϵ) =
∑

k≥0

ϵk f⃗ (k)(x) . (57)

Or in another more formal way:

f⃗(x, ϵ) = P exp
[

ϵ

∫

γ

A(x)
]

f⃗0(ϵ) , (58)

where f⃗0(ϵ) is a boundary value.

Differential operator

Constraints of kinematics for massless box integral:

p21 = 0 , p22 = 0 , (p1 + p2 + p3)
2 = 0 , (59)

Ansatz:

Ds =
∂

∂s
= (αpµ1 + βpµ2 + γpµ3)

∂

∂pµ1
(60)

Constraints on the derivative:

Dsp
2
1 = 0 , (61)

Ds(p1 + p2 + p3)
2 = 0 , (62)

Ds(p1 + p2)
2 = 1 . (63)

We get that

Ds =
1

2

[

2s+ t

s(s+ t)
pµ1 +

1

s
pµ2 +

1

s+ t
pµ3

]

∂

∂pµ1
(64)
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choose an optimal basis of integrals that would lead to a 
system of differential equations in a canonical form.

[Henn, 2013]Key new idea:

canonical form
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or

Once the canonical form is obtained, it is almost trivial to 
solve the basis integrals iteratively:

[Henn, 2013]Key new idea:

canonical form



Choose a different basis:

• The bases f starts with ϵ0 order in the Laurent expansion of small ϵ, namely

f(x, ϵ) =
∑

k≥0

ϵk f (k)(x) . (52)

This can be achieved by choosing a different set of basis (by some guess work, hard
part)

f = {f1, f2, f3} , (53)

f1 =
ϵ

Γ(1 + ϵ)
m2ϵ G(0, 2, 0) , (54)

f2 =
ϵ

Γ(1 + ϵ)
m2ϵs

√

1−
4m2

s
G(0, 1, 2) , (55)

f3 =
ϵ2

Γ(1 + ϵ)
m2ϵsG(1, 1, 1) , (56)

A =

⎛

⎜

⎜

⎝

0 0 0
√

1− 4m2

s

4m2−s
1

4m2−s 0

0 −

√

1− 4m2

s

4m2−s 0

⎞

⎟

⎟

⎠

. (57)

Note that the normalization factors are chosen so that the fi’s are dimensionless and start
at ϵ0 order.

Simplification by a change of variable

By changing of variable

−
m2

s
=

x

(1− x)2
, (58)

the differential equation is simplify as (assuming 0 < x < 1)

∂xf(x; ϵ) = ϵ

(

a

x
+

b

1 + x

)

f(x; ϵ) , (59)

where

a =

⎛

⎝

0 0 0
1 1 0
0 −1 0

⎞

⎠ , b =

⎛

⎝

0 0 0
0 −2 0
0 0 0

⎞

⎠ . (60)

Boundary condition

The boundary condition can be given by taking the soft limit s → 0, i.e. x → 1. One
has

f(x = 1, ϵ) = {1, 0, 0} . (61)

(It depends on the normalization factors. How would we know it in advance?)
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• The bases f starts with ϵ0 order in the Laurent expansion of small ϵ, namely

f(x, ϵ) =
∑

k≥0

ϵk f (k)(x) . (71)

This can be achieved by choosing a different set of basis (by some guess work, hard
part)

f⃗ = {f1, f2, f3} , (72)

f1 =
ϵ

Γ(1 + ϵ)
m2ϵ G(0, 2, 0) , (73)

f2 =
ϵ

Γ(1 + ϵ)
m2ϵs

√

1−
4m2

s
G(0, 1, 2) , (74)

f3 =
ϵ2

Γ(1 + ϵ)
m2ϵsG(1, 1, 1) , (75)

A =

⎛

⎜

⎜

⎝

0 0 0
√

1− 4m2

s

4m2−s
1

4m2−s 0

0 −

√

1− 4m2

s

4m2−s 0

⎞

⎟

⎟

⎠

. (76)

Note that the normalization factors are chosen so that the fi’s are dimensionless and start
at ϵ0 order.

Simplification by a change of variable

By changing of variable

−
m2

s
=

x

(1− x)2
, (77)

the differential equation is simplify as (assuming 0 < x < 1)

∂xf⃗(x, ϵ) = ϵ

(

a

x
+

b

1 + x

)

f⃗(x, ϵ) , (78)

where

a =

⎛

⎝

0 0 0
1 1 0
0 −1 0

⎞

⎠ , b =

⎛

⎝

0 0 0
0 −2 0
0 0 0

⎞

⎠ . (79)

Boundary condition

The boundary condition can be given by taking the soft limit s → 0, i.e. x → 1. One
has

f⃗(x = 1, ϵ) = {1, 0, 0} . (80)

(It depends on the normalization factors. How would we know it in advance?)
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Solution in the small ϵ expansion

Expand f as (71) in the differential equation and using the boundary condition (80),
it is easy to get the solution order by order. For example, up to third order one has

f⃗ (0) = {1, 0 0} , (81)

f⃗ (1) = {0, log x, 0} , (82)

f⃗ (2) = {0,
log2 x− 4 log x log(1 + x)− 4Li2(−x)

2
−

π2

6
, −

log2 x

2
} , (83)

f⃗ (3) = {0,
(1

6
log x− log(1 + x)

)

(

log2 x− π2
)

+ 2 log2(1 + x)
[

log x− log(−x)
]

−2Li3(−x)− 4Li3(1 + x) + 2ζ3,

−
1

6
log x

[

log2 x+ 12Li2(−x)− π2
]

+ 4Li3(−x) + 3ζ3} . (84)

6.3 How to find the ’right’ basis

There are two ways.

6.3.1 Method I

The first is starting from the differential equation with a general matrix A(x, ϵ), then
try to simplify it in two steps. First, put it into a form with only simple poles, by certain
gauge transformation. Then, try to write it further into the canonical form by eliminating
the ϵ0 term in the matrix.

Singularity structure

Functions coming from Feynman integrals have regular singularities as kinematic
variables approach a given singular point. At the level of the differential equations, the
canonical form should make the behavior of the Feynman integrals near singular points
manifest, namely, in the matrix A(x, ϵ).

f⃗ have singularities at kinematic positions:

{xi} . (85)

Look at singularity at x → 0. Consider the single equation:

∂xg(x, ϵ) =
a

xN
g(x, ϵ) (86)

N = 1 : g(x, ϵ) ∼ xa , (87)

N = 2 : g(x, ϵ) ∼ e−a/x , (88)
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Boundary condition:



For example for massless box:
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γ

A(x)
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f⃗0(ϵ) , (58)

where f⃗0(ϵ) is a boundary value.

Differential operator

Constraints of kinematics for massless box integral:

p2i = 0 ,
4

∑

i=1

pi = 0 , (59)

p21 = 0 , p22 = 0 , (p1 + p2 + p3)
2 = 0 , (60)

Ansatz:
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We want to operate at integrand level:



For example for massless box:

5 Differential equation method

5.1 Introduction

Differential operator

Constraints of kinematics:

p21 = 0 , p22 = 0 , (p1 + p2 + p3)
2 = 0 , (46)

Ansatz:

Ds =
∂

∂s
= (αpµ1 + βpµ2 + γpµ3)

∂

∂pµ1
(47)

Constraints on the derivative:

Dsp
2
1 = 0 , (48)

Ds(p1 + p2 + p3)
2 = 0 , (49)

Ds(p1 + p2)
2 = 1 . (50)

We get that

Ds =
1

2

[

2s+ t

s(s+ t)
pµ1 +

1

s
pµ2 +

1

s+ t
pµ3

]

∂

∂pµ1
(51)

Boundary conditions

5.2 Example

Take the example in the recent book of Henn and Plefka “Scattering Amplitudes in
Gauge Theories”, section 3.8.3.

Consider the one-loop triangle with massive propagators

G(a1, a2, a3) :=

∫

dDk

iπD/2

1

(−k2 +m2)a1 [−(k + p1)2 +m2]a2 [−(k + p2)2 +m2]a3
, (52)

where p21 = p22 = 0.

A traditional choice of bases

Using IBP reduction, one finds three master integrals. A canonical choice would be
the simplest ones

g := {G(0, 1, 0), G(0, 1, 1), G(1, 1, 1)} . (53)
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Ansatz:



How to find the canonical form? 
Or in other words, how to find the canonical basis?

Once the canonical form is found, the solution 
is obtained for free.



Singularity structure

Functions coming from Feynman integrals have regular singularities as kinematic
variables approach a given singular point. At the level of the differential equations, the
canonical form should make the behavior of the Feynman integrals near singular points
manifest, namely, in the matrix A(x, ϵ).

f⃗ have singularities at kinematic positions:

{xi} . (88)

Look at singularity at x → 0. Consider the single equation:

∂xg(x, ϵ) =
a

xN
g(x, ϵ) (89)

N = 1 : g(x, ϵ) ∼ xa , (90)

N = 2 : g(x, ϵ) ∼ e−a/x , (91)

In QFT, we expect only the first kind of singularity is allowed (the second is a essential
singularity), therefore, we expect there is only simple poles in the matrix A(x, ϵ). This
does not work in a naive choice: in general there are higher order poles (and they must
be spurious pole).

The reason is that there is a freedom of choosing basis, this corresponds to a gauge
transformation of the matrix A(x, ϵ). The physical requirement is that around each sin-
gular point, one can find a gauge transformation T such that the gauge equivalent system
has a matrix which has the leading behavior

A(x, ϵ) =
1

x
A0(ϵ) +O(x0) (92)

Starting from

∂xf⃗(x, ϵ) = A(x, ϵ) f⃗(x, ϵ) , (93)

by the physical requirement of the singularities, it can be reduced to the following form
(Fuchsian system of differential equations):

∂xf⃗(x, ϵ) =

[

∑

k

ak(ϵ)

x− xk
+ p(x, ϵ)

]

f⃗(x, ϵ) , (94)

where p(x, ϵ) is polynomial in x. None-zero p(x, ϵ) means there is an undesired spurious
singularity at infinity. It can be removed further (related to the Riemann-Hilbert problem,
or introducing another singular point to balance the transformation at infinity), which
results in the ’Fuchsian’ form:

∂xf⃗(x, ϵ) =

[

∑

k

ak(ϵ)

x− xk

]

f⃗(x, ϵ) , (95)
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Finally, ak(ϵ) may be further simplified, in the sense that ak = O(ϵ), which results in the
final form (this is at least understood in the single-variable case):

∂xf⃗(x, ϵ) = ϵ

[

∑

k

p̃k(ϵ)

x− xk

]

f⃗(x, ϵ) , (96)

where p̃k(ϵ) is polynomial in ϵ. Usually, p̃k(ϵ) is just constant matrices,

∂xf⃗(x, ϵ) = ϵ

[

∑

k

Ak

x− xk

]

f⃗(x, ϵ) , (97)

this is called the canonical form.

6.3.2 Method II: UT basis via unitarity cut

The second way is try to find the ’good’ basis in the first place. The important obser-
vation is that the solution integrals of the canonical form have uniform transcendentality
property. This provides the guiding principle of constructing the proper basis.

This implies that the integrals can be written in terms of a ’d-log’ form in certain
parametrization. Such d-log form integrals can be constructed by unitarity cut method.

Still, there is no available automatized program to perform the computation. Most
of the cases solved so far are by try and error.

7 Outlook
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These procedure is relatively well-understood for single scale integrals.

subtlety of choosing 
proper ‘letters’ 
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essential singularity, not allowed 
in physical amplitudes

Consider a simple case:

Fuchsian system of differential equations



One of the most efficient strategies is to find the 
basis by doing unitarity cuts!

How to find the canonical form? 
Or in other words, how to find the canonical basis?



The solution of canonical form has uniform 
transcendentality (UT).

The basis are UT basis, which take d-log form, and 
are related to leading singularity via unitarity cuts.

N=4 SYM can play important role in constructing canonical 
basis which apply to general theories including QCD!

6 Differential equation method

6.1 Introduction

A set of master integrals f⃗(x; ϵ). The differential equations in general take the fol-
lowing form:

∂xf⃗(x, ϵ) = A(x, ϵ) f⃗(x, ϵ) , (55)

where A(x, ϵ) is an N ×N matrix, and is rational in x and ϵ.

Conjecture of canonical form:

∂xf⃗(x, ϵ) = ϵA(x) f⃗(x, ϵ) . (56)

by an appropriate basis for master intergrals.

We further normalize the basis such that fi are finite when ϵ → 0. The solution can
be found easily in this form:

f⃗(x, ϵ) =
∑

k≥0

ϵk f⃗ (k)(x) . (57)

Or in another more formal way:

f⃗(x, ϵ) = P exp
[

ϵ

∫

γ

A(x)
]

f⃗0(ϵ) , (58)

where f⃗0(ϵ) is a boundary value.

Differential operator

Constraints of kinematics for massless box integral:

p21 = 0 , p22 = 0 , (p1 + p2 + p3)
2 = 0 , (59)

Ansatz:

Ds =
∂

∂s
= (αpµ1 + βpµ2 + γpµ3)

∂

∂pµ1
(60)

Constraints on the derivative:

Dsp
2
1 = 0 , (61)

Ds(p1 + p2 + p3)
2 = 0 , (62)

Ds(p1 + p2)
2 = 1 . (63)

We get that

Ds =
1

2

[

2s+ t

s(s+ t)
pµ1 +

1

s
pµ2 +

1

s+ t
pµ3

]

∂

∂pµ1
(64)
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• Massless three-loop four-point integrals 
• Two-loop four-point with two off-shell legs 
• Massless two-loop five-point 
• Sudakov form factor at four-loop




