Lectures on Evaluating Feynman Integrals

Gang Yang

ITP，CAS

第二届中国高精度高能物理学术研讨会 CFHEP，June 13－17， 2016

Plan

- Introduction
- Sector decomposition
- Mellin-Barnes method
- Differential equation method

Introduction

Physical quantities in QFT

Scattering amplitudes

Correlation functions

Wilson loops

Scattering amplitudes

$\mathcal{A}=\sum$ Feynman diagrams

$$
\begin{gathered}
\text { Integrand } \\
\downarrow
\end{gathered}
$$

PV, IBP
Unitarity

Comment on Unitarity method

Obtain integrand based on physical singularities, without using Feynman diagrams

$$
\text { Integrand }=\sum c_{i} \times I_{i}
$$

Advantages (compared to Feynman diagram method):

- more compact expression
- better UV behaviour
- structure and symmetries made obvious
- way to find 'nice' basis

Scattering amplitudes

$$
\begin{gathered}
\text { Integrand }=\sum c_{i} \times I_{i}=\text { functions } \\
\downarrow \\
\text { computing integrals }
\end{gathered}
$$

Feynman parameters

Parametric representation

Schwinger parametrization

$$
\frac{1}{A^{a}}=\frac{1}{\Gamma(a)} \int_{0}^{\infty} d x x^{a-1} e^{-x A}
$$

Feynman parametrization

$$
\frac{1}{A^{a} B^{b}}=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \int_{0}^{1} d x_{1} d x_{2} \frac{\delta\left(1-x_{1}-x_{2}\right) x_{1}^{a-1} x_{2}^{b-1}}{\left(x_{1} A+x_{2} B\right)^{a+b}}
$$

One-loop case

$$
G_{n}^{(1)}=\int \frac{d^{D} k}{i \pi^{D / 2}} \frac{1}{\left(-k^{2}+m_{1}^{2}\right)^{a_{1}}\left[-\left(k+p_{1}\right)^{2}+m_{2}^{2}\right]^{a_{2}} \cdots\left[-\left(k+p_{1}+\ldots+p_{n-1}\right)^{2}+m_{n}^{2}\right]^{a_{n}}}
$$

Feynman/Schwinger parametrization

+ Wick rotation to Euclidean space
+ Gaussian integral over the loop momentum k

$$
\begin{aligned}
G_{n}^{(1)} & =\frac{\Gamma(a-D / 2)}{\prod_{i=1}^{n} \Gamma\left(a_{i}\right)} \int_{0}^{\infty}\left[\prod_{i=1}^{n} d x_{i} x_{i}^{a_{i}-1}\right] \delta\left(1-\sum_{i=1}^{n} c_{i} x_{i}\right) \frac{U^{a-D}}{\left(V+U \sum_{i=1}^{n} m_{i}^{2} x_{i}\right)^{a-D / 2}} \\
\quad a & =\sum_{i=1}^{n} a_{i}, U=\sum_{i=1}^{n} x_{i} \\
V & =\sum_{i<\underline{j}} x_{i} x_{j}\left[-\left(p_{i}+p_{i+1}+. .+p_{j-1}\right)^{2}\right]
\end{aligned}
$$

Higher loop cases

$$
G^{(L)}=\int\left[\prod_{i=1}^{L} \frac{d^{D} k_{i}}{i \pi^{D / 2}}\right] \frac{1}{\left(-q_{1}^{2}+m_{1}^{2}\right)^{\nu_{1}}\left[-q_{2}^{2}+m_{2}^{2}\right]^{\nu_{2}} \cdots\left[-q_{N}^{2}+m_{N}^{2}\right]^{\nu_{N}}}
$$

similar procedure

$$
G^{(L)}=\frac{\Gamma(\nu-L D / 2)}{\prod_{i=1}^{N} \Gamma\left(\nu_{i}\right)} \int_{0}^{\infty}\left[\prod_{i=1}^{N} d x_{i} x_{i}^{\nu_{i}-1}\right] \delta\left(1-\sum_{i=1}^{N} x_{i}\right) \frac{U^{\nu-(L+1) D / 2}}{F^{\nu-L D / 2}}
$$

$$
\begin{aligned}
& U(\vec{x})=\sum_{T \in T_{1}} \prod_{i \notin T_{1}} x_{i} \\
& V(\vec{x})=\sum_{T \in T_{2}} \prod_{i \notin T_{2}} x_{i}\left(-s_{T}\right) \\
& F(\vec{x})=V+U \sum_{i=1}^{n} m_{i}^{2} x_{i} \\
& \nu=\sum_{i=1}^{N} \nu_{i}
\end{aligned}
$$

U, F are homogeneous polynomial in x , with degree L and $L+1$ respectively.

$$
F(\vec{r})=V+U \nu^{n} m^{2} x . \quad \text { At one-loop, one can set } \mathrm{U}=1 .
$$

$$
F(\vec{x})=V+U \sum_{i=1} m_{i}^{2} x_{i} . \quad \text { In massless case, } \mathrm{F}=\mathrm{V}
$$

Divergences and regularization

Dimensional regularization: $\quad D=4-2 \epsilon$

UV divergences $\epsilon_{\mathrm{UV}}>0 \quad$ IR divergences $\quad \epsilon_{\mathrm{IR}}<0$

$$
G^{(L)}=\frac{\Gamma(\nu-L D / 2)}{\prod_{i=1}^{N} \Gamma\left(\nu_{i}\right)} \int_{0}^{\infty}\left[\prod_{i=1}^{N} d x_{i} x_{i}^{\nu_{i}-1}\right] \delta\left(1-\sum_{i=1}^{N} x_{i}\right) \frac{U^{\nu-(L+1) D / 2}}{F^{\nu-L D / 2}}
$$

Divergences and regularization

Dimensional regularization: $\quad D=4-2 \epsilon$

UV divergences $\epsilon_{\mathrm{UV}}>0 \quad$ IR divergences $\quad \epsilon_{\mathrm{IR}}<0$

$$
\begin{aligned}
& \text { overall UV div. } \\
& G^{(L)}=\frac{\Gamma(\nu-L D / 2)}{\prod_{i=1}^{N} \Gamma\left(\nu_{i}\right)} \int_{0}^{\infty}\left[\prod_{i=1}^{N} d x_{i} x_{i}^{\nu_{i}-1}\right] \delta\left(1-\sum_{i=1}^{N} x_{i}\right) \frac{U^{\nu-(L+1) D / 2}}{F^{\nu-L D / 2}}
\end{aligned}
$$

Divergences and regularization

Dimensional regularization: $\quad D=4-2 \epsilon$

UV divergences $\epsilon_{\mathrm{UV}}>0 \quad$ IR divergences $\quad \epsilon_{\mathrm{IR}}<0$

UV sub-div.

$$
G^{(L)}=\frac{\Gamma(\nu-L D / 2)}{\prod_{i=1}^{N} \Gamma\left(\nu_{i}\right)} \int_{0}^{\infty}\left[\prod_{i=1}^{N} d x_{i} x_{i}^{\nu_{i}-1}\right] \delta\left(1-\sum_{i=1}^{N} x_{i} \frac{U^{\nu-(L+1) D / 2}}{F^{\nu-L D / 2}}\right.
$$

Divergences and regularization

Dimensional regularization: $\quad D=4-2 \epsilon$

UV divergences $\epsilon_{\mathrm{UV}}>0 \quad$ IR divergences $\quad \epsilon_{\mathrm{IR}}<0$

$$
G^{(L)}=\frac{\Gamma(\nu-L D / 2)}{\prod_{i=1}^{N} \Gamma\left(\nu_{i}\right)} \int_{0}^{\infty}\left[\prod_{i=1}^{N} d x_{i} x_{i}^{\nu_{i}-1}\right] \delta\left(1-\sum_{i=1}^{N} x_{i}\right) F^{U^{\nu-(L+1) D / 2}}
$$

Divergences and regularization

Comment 1: degree of divergences
Both logarithm and quadratic UV divergences $\sim \frac{1}{\epsilon}$

$$
\Gamma\left(2-\frac{D}{2}\right) \quad \Gamma\left(1-\frac{D}{2}\right)
$$

Do we lose the information about degree of divergences?

Divergences and regularization

Comment 1: degree of divergences
Both logarithm and quadratic UV divergences $\sim \frac{1}{\epsilon}$

$$
\Gamma\left(2-\frac{D}{2}\right) \quad \Gamma\left(1-\frac{D}{2}\right)
$$

Do we lose the information about degree of divergences?

No. Dimensional regularization translates the degree of divergence into the analytic properties of regulated amplitudes in D dimensions.

Divergences and regularization

Comment 2: integral containing both UV and IR divergences
Typical examples are scaleless integrals

$$
\int_{0}^{\infty} \frac{d x}{x^{1+\epsilon}}=\int_{0}^{1} \frac{d x}{x^{1+\epsilon}}+\int_{1}^{\infty} \frac{d x}{x^{1+\epsilon}}=-\frac{1}{\epsilon}+\frac{1}{\epsilon}=0
$$

Divergences and regularization

Comment 2: integral containing both UV and IR divergences
Typical examples are scaleless integrals

$$
\begin{aligned}
\int_{0}^{\infty} \frac{d x}{x^{1+\epsilon}} & =\int_{0}^{1} \frac{d x}{x^{1+\epsilon}}+\int_{1}^{\infty} \frac{d x}{x^{1+\epsilon}}=-\frac{1}{\epsilon}+\frac{1}{\epsilon}=0 \\
& =-\left.\frac{1}{\epsilon_{\mathrm{IR}}}\right|_{\epsilon_{\mathrm{IR}}<0}+\left.\frac{1}{\epsilon_{\mathrm{UV}}}\right|_{\epsilon_{\mathrm{UV}}>0} \stackrel{?}{=} 0
\end{aligned}
$$

Divergences and regularization

Comment 2: integral containing both UV and IR divergences
Typical examples are scaleless integrals

$$
\begin{aligned}
\int_{0}^{\infty} \frac{d x}{x^{1+\epsilon}} & =\int_{0}^{1} \frac{d x}{x^{1+\epsilon}}+\int_{1}^{\infty} \frac{d x}{x^{1+\epsilon}}=-\frac{1}{\epsilon}+\frac{1}{\epsilon}=0 \\
& =-\left.\frac{1}{\epsilon_{\mathrm{IR}}}\right|_{\epsilon_{\mathrm{IR}}<0}+\left.\frac{1}{\epsilon_{\mathrm{UV}}}\right|_{\epsilon_{\mathrm{UV}}>0}=0
\end{aligned}
$$

In practice, we set: $\quad \epsilon_{\mathrm{IR}}=\epsilon_{\mathrm{UV}}=\epsilon$
We can do this, since we know that IR and UV divergences must vanish separately in physical observables.

Counting master integrals

Integrand $=\sum c_{i} \times I_{i}$ \downarrow
 IBP

Can we know the number of master integrals without doing IBP?

counting master integrals

[Lee, Pomeransky 2013]
see also [Baikov 2005]
\# of basis integrals
\# of proper critical points

$$
\frac{\partial G}{\partial x_{i}}=0 \quad(i=1, \ldots, m) \quad \text { and } \quad G \neq 0
$$

$$
G(\vec{x})=U(\vec{x})+F(\vec{x})
$$

This can be counted using algebraic techniques:

$$
I=\left\langle\frac{\partial G}{\partial \alpha_{1}}, \ldots, \frac{\partial G}{\partial \alpha_{m}}, \alpha_{0} G-1\right\rangle \rightarrow \begin{gathered}
\text { Gröbner } \\
\text { basis }
\end{gathered} \rightarrow \begin{aligned}
& \text { number of irreducible } \\
& \text { monomials }
\end{aligned}
$$

Sector decomposition method

General picture

$$
\int_{0}^{1} d x \int_{0}^{1} d y(x+y)^{-2+\epsilon}
$$

Goal: to separate the divergences

General picture

$$
\int_{0}^{1} d x \int_{0}^{1} d y(x+y)^{-2+\epsilon}
$$

Goal: to separate the divergences

Sector decomposition

Basic idea:

Sector decomposition

Basic idea:

Sector decomposition

Basic idea:

History

- 1966 K. Hepp (BPHZ)
"Proof of the Bogoliubov-Parasiuk Theorem on Renormalization"
- 2000 T. Binoth, G. Heinrich
"An automatized algorithm to compute infrared divergent multi-loop integrals"
- 2007 C. Bogner, S. Weinzierl -> sector_decomposition
"Resolution of singularities for multi-loop integrals"
- 2008 A. Smirnov, M.N. Tentyukov, et.al -> FIESTA
"Feynman Integral Evaluation by a Sector decomposiTion Approach (FIESTA)"
- 2010 J. Carter, G. Heinrich, et.al -> SecDec
"SecDec: A general program for sector decomposition"

Sector decomposition

Basic procedure:

[T. Binoth, G. Heinrich 2000]

- Primary sectors
- Subsectors \longrightarrow choice of strategies: $\mathrm{s}, \mathrm{X}, \mathrm{KU}, \ldots$
- Epsilon expansion

Final form:

Reference: G. Heinrich 0803.4177
See talks of Jianxiong Wang and Renyou Zhang for further details

Mathematical facts

Can arbitrary kind of number / function appear in analytic expressions for Feynman integrals?

Mathematical facts

Theorem [Bogner, Weinzierl 2009]:

In the case where all scalar product $p_{i} \cdot p_{j}$ are negative or zero, all internal masses positive, and all ratios of invariants algebraic, the coefficients of the Laurent expansion of a Feynman integral are periods.

A number is a period if it can be written as integrals of an algebraic function with algebraic coefficients over a domain defined by polynomial inequalities with algebraic coefficients.

```
periods:
```

not periods:
algebraic number, $\pi, \log z, \operatorname{Li}_{2}(z), \ldots$
$e, \gamma_{E}, 1 / \pi, \log \pi, \ldots$

Mathematical facts

Theorem [Bogner, Weinzierl 2009]:

In the case where all scalar product $p_{i} \cdot p_{j}$ are negative or zero, all internal masses positive, and all ratios of invariants algebraic, the coefficients of the Laurent expansion of a Feynman integral are periods.

$$
\begin{aligned}
G^{(L)}= & \int\left[\prod_{i=1}^{L} \frac{d^{D} k_{i}}{i \pi^{D / 2}}\right] \frac{1}{\left(-q_{1}^{2}+m_{1}^{2}\right)^{\nu_{1}}\left[-q_{2}^{2}+m_{2}^{2}\right]^{\nu_{2}} \cdots\left[-q_{N}^{2}+m_{N}^{2}\right]^{\nu_{N}}} \\
= & \frac{\Gamma(\nu-L D / 2)}{\prod_{i=1}^{N} \Gamma\left(\nu_{i}\right)} \int_{0}^{\infty}\left[\prod_{i=1}^{N} d x_{i} x_{i}^{\nu_{i}-1}\right] \delta\left(1-\sum_{i=1}^{N} x_{i}\right) \frac{U^{\nu-(L+1) D / 2}}{F^{\nu-L D / 2}} \\
& \Gamma(1+L \epsilon)=\exp \left(-L \gamma_{E} \epsilon+\sum_{k=2}^{\infty} \frac{(-L)^{k}}{k} \epsilon^{k} \zeta_{k}\right)
\end{aligned}
$$

Mathematical facts

Theorem [Bogner, Weinzierl 2009]:

In the case where all scalar product $p_{i} \cdot p_{j}$ are negative or zero, all internal masses positive, and all ratios of invariants algebraic, the coefficients of the Laurent expansion of a Feynman integral are periods.

$$
\begin{aligned}
G^{(L)}= & \int\left[\prod_{i=1}^{L} \frac{d^{D} k_{i}}{i \pi^{D / 2}}\right] \frac{1}{\left(-q_{1}^{2}+m_{1}^{2}\right)^{\nu_{1}}\left[-q_{2}^{2}+m_{2}^{2}\right]^{\nu_{2}} \cdots\left[-q_{N}^{2}+m_{N}^{2}\right]^{\nu_{N}}} \times \mathbf{x} e^{L \epsilon \gamma_{E}} \\
= & \frac{\Gamma(\nu-L D / 2)}{\prod_{i=1}^{N} \Gamma\left(\nu_{i}\right)} \int_{0}^{\infty}\left[\prod_{i=1}^{N} d x_{i} x_{i}^{\nu_{i}-1}\right] \delta\left(1-\sum_{i=1}^{N} x_{i}\right) \frac{U^{\nu-(L+1) D / 2}}{F^{\nu-L D / 2}} \times e^{L \epsilon \gamma_{E}} \\
& \Gamma(1+L \epsilon)=\exp \left(-L \gamma_{E} \epsilon+\sum_{k=2}^{\infty} \frac{(-L)^{k}}{k} \epsilon^{k} \zeta_{k}\right) \quad \text { or } \quad g_{\mathrm{YM}}^{2} \rightarrow g_{\mathrm{YM}}^{2} e^{\epsilon \gamma_{E}}
\end{aligned}
$$

Mellin-Barnes method

Mellin-Barnes integral

Robert Hjalmar Mellin
(1854-1933)

Ernest William Barnes
(1874-1953)

History

- 1974 M. Bergère, Y-M. Lam
"Asymptotic expansion of Feynman amplitudes"
- 1975 N. Usyukina
"On a representation for the three-point function"
- 1991 E. Boos, A. Davydychev
"A method of evaluating massive Feynman integrals"
- 1999 V. Smirnov

"Analytical result for dimensionally regularized massless on-shell double box"
- 1999 B. Tausk

"Non-planar massless two-loop Feynman diagrams with four on-shell legs"
- 2005 M. Czakon -> MB.m
"Automatized analytic continuation of Mellin-Barnes integrals"
- 2007 J. Gluza, K. Kajda T. Riemann -> AMBRE.m
"AMBRE - a Mathematica package for the construction of Mellin-Barnes representations for Feynman integrals"

Mellin-Barnes integral

Basic equation:

$$
\frac{1}{(A+B)^{\lambda}}=\frac{1}{\Gamma(\lambda)} \frac{1}{2 \pi i} \int_{-i \infty}^{+i \infty} d z \Gamma(\lambda+z) \Gamma(-z) \frac{B^{z}}{A^{\lambda+z}}
$$

What is the contour?
analytic structure of Gamma function

Gamma function has simple poles at value of non-positive integer numbers.

Mellin-Barnes integral

Basic equation:

$$
\frac{1}{(A+B)^{\lambda}}=\frac{1}{\Gamma(\lambda)} \frac{1}{2 \pi i} \int_{-i \infty}^{+i \infty} d z \Gamma(\lambda+z) \Gamma(-z) \frac{B^{z}}{A^{\lambda+z}}
$$

Contour is chosen such that

poles of $\Gamma(\cdots+z)$ are to the left of it
poles of $\Gamma(\cdots-z)$ are to the right of it

A simple proof

$$
\frac{1}{(A+B)^{\lambda}}=\frac{1}{\Gamma(\lambda)} \frac{1}{2 \pi i} \int_{-i \infty}^{+i \infty} d z \Gamma(\lambda+z) \Gamma(-z) \frac{B^{z}}{A^{\lambda+z}}
$$

Taylor expansion of LHS:

$$
\frac{1}{(A+B)^{\lambda}}=\frac{1}{A^{\lambda}} \frac{1}{(1+\tilde{B})^{\lambda}}=\frac{1}{A^{\lambda}} \sum_{n=0}^{\infty}(-1)^{n} \frac{\lambda(\lambda+1) \ldots(\lambda+n-1)}{n!} \tilde{B}^{n}, \quad \tilde{B}=\frac{B}{A}
$$

Compute RHS by residue theorem:

$$
\frac{1}{\Gamma(\lambda)} \frac{1}{2 \pi i} \int_{-i \infty}^{+i \infty} d z \Gamma(\lambda+z) \Gamma(-z) \tilde{B}^{z}=\frac{1}{\Gamma(\lambda)} \frac{1}{2 \pi i} 2 \pi i \sum_{n=0}^{\infty} \frac{\Gamma(\lambda+n)}{(-1)^{n} n!} \tilde{B}^{n}
$$

note also: $\quad \Gamma(\lambda+n)=\lambda(\lambda+1) \ldots(\lambda+n-1) \Gamma(\lambda)$

Generalization

$$
\begin{gathered}
\frac{1}{(A+B)^{\lambda}}=\frac{1}{\Gamma(\lambda)} \frac{1}{2 \pi i} \int_{-i \infty}^{+i \infty} d z \Gamma(\lambda+z) \Gamma(-z) \frac{B^{z}}{A^{\lambda+z}} \\
\frac{\downarrow}{\left(A_{1}+A_{2}+\cdots A_{n}\right)^{\lambda}}=\frac{1}{\Gamma(\lambda)} \frac{1}{(2 \pi i)^{n-1}} \int_{-i \infty}^{+i \infty} d z_{1} \cdots \int_{-i \infty}^{+i \infty} d z_{n-1} \prod_{i=1}^{n-1} A_{i}^{z_{i}} \\
\quad \times A_{n}^{-\lambda-\sum_{i=1}^{n-1} z_{i}} \Gamma\left(\lambda+\sum_{i=1}^{n-1} z_{i}\right) \prod_{i=1}^{n-1} \Gamma\left(-z_{i}\right) .
\end{gathered}
$$

Massive propagator

$$
\frac{1}{(A+B)^{\lambda}}=\frac{1}{\Gamma(\lambda)} \frac{1}{2 \pi i} \int_{-i \infty}^{+i \infty} d z \Gamma(\lambda+z) \Gamma(-z) \frac{B^{z}}{A^{\lambda+z}}
$$

Apply to massive propagator:

$$
\frac{1}{\left(k^{2}-m^{2}\right)^{\beta}}=\frac{1}{\left(k^{2}\right)^{\beta}} \frac{1}{\Gamma(\beta)} \frac{1}{2 \pi \mathrm{i}} \int_{-\mathrm{i} \infty}^{\mathrm{i} \infty} \mathrm{~d} s\left(-\frac{m^{2}}{k^{2}}\right)^{s} \Gamma(-s) \Gamma(\beta+s)
$$

MB representation

Parametric form:

$$
\begin{gathered}
G_{n}^{(1)}=\frac{\Gamma(\nu)}{\prod_{i=1}^{n} \Gamma\left(\nu_{i}\right)} \int_{0}^{1}\left[\prod_{i=1}^{n} d x_{i} x_{i}^{\nu_{i}-1}\right] \delta\left(1-\sum_{i=1}^{n} x_{i}\right) \frac{1}{\left(V+U \sum_{i=1}^{n} m_{i}^{2} x_{i}\right)^{\mu-D / 2}} \\
\downarrow
\end{gathered}
$$

Parameters x_{i} can be integrated out trivially after MB transformation:

$$
\int_{0}^{1}\left[\prod_{i=1}^{n} d x_{i} x_{i}^{\nu_{i}-1}\right] \delta\left(1-\sum_{i=1}^{n} x_{i}\right)=\frac{\Gamma\left(\nu_{1}\right) \ldots \Gamma\left(\nu_{n}\right)}{\Gamma\left(\nu_{1}+\ldots+\nu_{n}\right)}
$$

General MB form:

$$
\frac{1}{(2 \pi i)^{n}} \int_{-i \infty}^{+i \infty} \prod_{l=1}^{n} d z_{l} \prod_{k} y_{k}^{d_{k}} \times \frac{\sum_{i} \Gamma\left(a_{i}+b_{i} \epsilon+\sum_{j} c_{i j} z_{j}\right)}{\sum_{i^{\prime}} \Gamma\left(a_{i^{\prime}}^{\prime}+b_{i^{\prime}}^{\prime} \epsilon+\sum_{j^{\prime}} c_{i^{\prime} j^{\prime}}^{\prime} z_{j^{\prime}}\right)}
$$

Resolve singularities

As in sector decomposition method, we want to separate the divergences:

divergent part X finite part

Resolve singularities

Example:

$$
\int \frac{\mathrm{d}^{d} k}{\left(k^{2}-m^{2}\right)(q-k)^{2}}
$$

$$
\Gamma(\varepsilon+z) \Gamma(-z) \Gamma(1-\varepsilon-z) \quad \stackrel{\varepsilon=0}{\longrightarrow} \quad \Gamma(z) \Gamma(-z) \Gamma(1-z)
$$

There is no contour can be chosen such that all argument of Gamma functions are positive in the limit of $\varepsilon=0$.

Evidence of divergence.

Resolve singularities

Strategy A: MBresolve.m [A. Smirnov, V. Smirnov]

Deform the integration contours, and then shift them past the poles of the Gamma functions, which results in residue integrals.

Strategy B: MB.m [M. Czakon] $\quad \Gamma(\varepsilon+z) \Gamma(-z) \Gamma(1-\varepsilon-z)$

Choose an initial value of ε and values of the real parts of the integration variables z 's, such that the real parts of all the arguments of the gamma functions in the numerator are positive.
Then one tends ε to zero and whenever the real part of the argument of some gamma function vanishes one crosses this pole and adds a corresponding residue which has one integration less.

Practical strategy

- Obtain MB representation AMBRE.m [J. Gluza, K. Kajda T. Riemann]
- Resolve eps singularities

MB.m [M. Czakon] MBresolve.m [A. Smirnov, V. Smirnov]

- Perform epsilon expansion

MB.m [M. Czakon]

- Evaluate the finite integrals numerically

MB.m [M. Czakon]
Reference: V. Smirnov's books
Various codes are collected at webpage:
http://mbtools.hepforge.org/

Mellin-Barnes method

Advantages:

- sometimes possible to get analytic results
- in many cases are much faster and with better precision than sector decomposition method

MB: ~ 200 s
FIESTA: > 10 h

$\mathrm{MB}:<10 \mathrm{~h}$
11-dim MB rep.
FIESTA: ?

Disadvantages:

- so far not work for general non-planar integral, at least not in a systematic way

Mellin-Barnes method

MB: < 10 h
11-dim MB rep.
FIESTA: ?

Differential equation method can solve it analytically !

Differential equation method

History

- 1991 A. Kotikov
"Differential equations method: New technique for massive Feynman diagrams calculation"
- 1997 E. Remiddi
"Differential equations for Feynman graph amplitudes"
- 1999 T. Gehrmann, E. Remiddi
"Differential Equations for Two-Loop Four-Point Functions"
- 2013 J. Henn
"Multiloop integrals in dimensional regularization made simple"

Differential equation

Differentiation + IBP guarantee us a system of first order differential equations for master integrals:

$$
\partial_{x} \vec{f}(x, \epsilon)=A(x, \epsilon) \vec{f}(x, \epsilon)
$$

$\vec{f}(x, \epsilon)$ are the set of master integrals, and x's are the Mandelstam variables or masses.
$A(x, \epsilon)$ is an $N \times N$ matrix, and is rational in x and ϵ

Example

Example: $G_{\left(a a_{1}, a_{2}, a_{3}\right)}$

$$
:=\int \frac{d^{D} k}{i \pi^{D / 2}} \frac{1}{\left.\left(-k^{2}+m^{2}\right)^{a_{1}}\left(-\left(k+p_{1}\right)^{2}+m^{2}\right)\right)^{a_{2}}\left(-\left(k+p_{2}\right)^{2}+m^{2}\right)^{a_{3}}}
$$

Master integrals: $\mathbf{g}:=\{G(0,1,0), G(0,1,1), G(1,1,1)\}$

$$
\begin{aligned}
& \partial_{s} \mathbf{g}\left(s, m^{2} ; \epsilon\right)=\mathcal{A}\left(s, m^{2} ; \epsilon\right) \mathbf{g}\left(s, m^{2} ; \epsilon\right) \\
& \mathcal{A}\left(s, m^{2} ; \epsilon\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
\frac{2(\epsilon-1)}{s\left(4 m^{2}-s\right)} & -\frac{2 m^{2}-s \epsilon}{s\left(4 m^{2}-s\right)} & 0 \\
\frac{\epsilon-1}{s m^{2}\left(4 m^{2}-s\right)} & \frac{2 \epsilon-1}{s\left(4 m^{2}-s\right)} & -\frac{1}{s}
\end{array}\right)
\end{aligned}
$$

Differential equation

Key new idea: [Henn, 2013] Reference: Henn 1412.2296
choose an optimal basis of integrals that would lead to a system of differential equations in a canonical form.

$$
\begin{aligned}
& \partial_{x} \vec{f}(x, \epsilon)=A(x, \epsilon) \vec{f}(x, \epsilon) \\
& \downarrow \\
& \partial_{x} \vec{f}(x, \epsilon)=\epsilon A(x) \vec{f}(x, \epsilon)
\end{aligned}
$$

Differential equation

Key new idea: [Henn, 2013]

```
canonical form
```

$$
\partial_{x} \vec{f}(x, \epsilon)=\epsilon A(x) \vec{f}(x, \epsilon)
$$

Once the canonical form is obtained, it is almost trivial to solve the basis integrals iteratively:

$$
\vec{f}(x, \epsilon)=\sum_{k \geq 0} \epsilon^{k} \vec{f}^{(k)}(x) \quad \text { or } \quad \vec{f}(x, \epsilon)=\mathbb{P} \exp \left[\epsilon \int_{\gamma} A(x)\right] \vec{f}_{0}(\epsilon)
$$

Example (continued)

Choose a different basis:

$$
\begin{aligned}
\vec{f}= & \left\{f_{1}, f_{2}, f_{3}\right\} \\
f_{1}= & \frac{\epsilon}{\Gamma(1+\epsilon)} m^{2 \epsilon} G(0,2,0) \\
f_{2}= & \frac{\epsilon}{\Gamma(1+\epsilon)} m^{2 \epsilon} s \sqrt{1-\frac{4 m^{2}}{s}} G(0,1,2) \\
f_{3}= & \frac{\epsilon^{2}}{\Gamma(1+\epsilon)} m^{2 \epsilon} s G(1,1,1) \\
\longrightarrow & \partial_{x} \vec{f}(x, \epsilon)=\epsilon\left(\frac{a}{x}+\frac{b}{1+x}\right) \vec{f}(x, \epsilon) \\
& -\frac{m^{2}}{s}=\frac{x}{(1-x)^{2}} \quad a=\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & 1 & 0 \\
0 & -1 & 0
\end{array}\right), \quad b=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Example (continued)

Boundary condition: $\vec{f}(x=1, \epsilon)=\{1,0,0\}$

Solution: $\quad f(x, t)=\sum_{k=0}^{t} f^{f h(x)}$

$$
\begin{aligned}
\vec{f}^{(0)}= & \{1,00\} \\
\vec{f}^{(1)}= & \{0, \log x, 0\} \\
\vec{f}^{(2)}= & \left\{0, \frac{\log ^{2} x-4 \log x \log (1+x)-4 \operatorname{Li}_{2}(-x)}{2}-\frac{\pi^{2}}{6},-\frac{\log ^{2} x}{2}\right\} \\
\vec{f}^{(3)}= & \left\{0,\left(\frac{1}{6} \log x-\log (1+x)\right)\left(\log ^{2} x-\pi^{2}\right)+2 \log ^{2}(1+x)[\log x-\log (-x)]\right. \\
& \quad-2 \operatorname{Li}_{3}(-x)-4 \operatorname{Li}_{3}(1+x)+2 \zeta_{3} \\
& \left.-\frac{1}{6} \log x\left[\log ^{2} x+12 \operatorname{Li}_{2}(-x)-\pi^{2}\right]+4 \operatorname{Li}_{3}(-x)+3 \zeta_{3}\right\}
\end{aligned}
$$

Differential operator

For example for massless box:

$$
\begin{aligned}
& p_{i}^{2}=0, \quad \sum_{i=1}^{4} p_{i}=0 \\
& s=\left(p_{1}+p_{2}\right)^{2}, \quad t=\left(p_{2}+p_{3}\right)^{2}
\end{aligned}
$$

We want to operate at integrand level:

$$
\frac{\partial}{\partial s} \mathcal{I}\left(p_{1}, p_{2}, p_{3}, k, m\right)=?
$$

Differential operator

For example for massless box:

$$
p_{i}^{2}=0, \sum_{i=1}^{4} p_{i}=0
$$

Ansatz:

$$
\begin{array}{cl}
D_{s}=\frac{\partial}{\partial s}=\left(\alpha p_{1}^{\mu}+\beta p_{2}^{\mu}+\gamma p_{3}^{\mu}\right) \frac{\partial}{\partial p_{1}^{\mu}} & \begin{array}{l}
D_{s} p_{1}^{2}=0 \\
D_{s}\left(p_{1}+p_{2}+p_{3}\right)^{2}=0 \\
D_{s}\left(p_{1}+p_{2}\right)^{2}=1
\end{array} \\
\longrightarrow \quad D_{s}=\frac{1}{2}\left[\frac{2 s+t}{s(s+t)} p_{1}^{\mu}+\frac{1}{s} p_{2}^{\mu}+\frac{1}{s+t} p_{3}^{\mu}\right] \frac{\partial}{\partial p_{1}^{\mu}}
\end{array}
$$

Major question

Once the canonical form is found, the solution is obtained for free.

How to find the canonical form?

Or in other words, how to find the canonical basis?

Finding canonical form

$$
\partial_{x} \vec{f}(x, \epsilon)=A(x, \epsilon) \vec{f}(x, \epsilon)
$$

\downarrow remove higher order poles

$$
\begin{aligned}
& \partial_{x} \vec{f}(x, \epsilon)=\left[\sum_{k} \frac{a_{k}(\epsilon)}{x-x_{k}}+p(x, \epsilon)\right] \vec{f}(x, \epsilon) \\
& \\
& \downarrow \text { remove } p(x, \epsilon)
\end{aligned}
$$

subtlety of choosing proper 'letters' x_{k}.
$\partial_{x} \vec{f}(x, \epsilon)=\left[\sum_{k} \frac{a_{k}(\epsilon)}{x-x_{k}}\right] \vec{f}(x, \epsilon)$
\downarrow let $a_{k}=\mathcal{O}(\epsilon)$
$\partial_{x} \vec{f}(x, \epsilon)=\epsilon\left[\sum_{k} \frac{\tilde{p}_{k}(\epsilon)}{x-x_{k}}\right] \vec{f}(x, \epsilon) \quad$ or $\quad \partial_{x} \vec{f}(x, \epsilon)=\epsilon\left[\sum_{k} \frac{A_{k}}{x-x_{k}}\right] \vec{f}(x, \epsilon)$
These procedure is relatively well-understood for single scale integrals.

Why only simple poles

$$
\begin{array}{ll}
\partial_{x} \vec{f}(x, \epsilon)=A(x, \epsilon) \vec{f}(x, \epsilon) \quad & \partial_{x} \vec{f}(x, \epsilon)=\left[\sum_{k} \frac{a_{k}(\epsilon)}{x-x_{k}}+p(x, \epsilon)\right] \vec{f}(x, \epsilon) \\
& \text { Fuchsian system of differential equations }
\end{array}
$$

Consider a simple case:

$$
\begin{aligned}
& \partial_{x} g(x, \epsilon)=\frac{a}{x^{N}} g(x, \epsilon) \\
& N=1: \quad g(x, \epsilon) \sim x^{a}, \\
& N=2: \quad g(x, \epsilon) \sim e^{-a / x} \longrightarrow \begin{array}{l}
\text { essential singularity, not allowed } \\
\text { in physical amplitudes }
\end{array}
\end{aligned}
$$

Major question

How to find the canonical form?
Or in other words, how to find the canonical basis?

One of the most efficient strategies is to find the basis by doing unitarity cuts!

Finding canonical basis

The solution of canonical form has uniform transcendentality (UT). $\vec{f}(x, \epsilon)=\mathbb{P} \exp \left[\epsilon \int_{\gamma} A(x)\right] \vec{f}_{0}(\epsilon)$ \downarrow

The basis are UT basis, which take d-log form, and are related to leading singularity via unitarity cuts.

N=4 SYM can play important role in constructing canonical basis which apply to general theories including QCD!

Applications

- Massless three-loop four-point integrals
- Two-loop four-point with two off-shell legs
- Massless two-loop five-point
- Sudakov form factor at four-loop

Thank you!

