High order calculation for quarkonium production

Yan-Qing Ma

Peking University

第二届中国高精度高能物理学术研讨会 IHEP, Beijing, June 16th, 2016

Outline

I. Introduction

II. Momentum expansion

III. Loop integration reduction

IV. Summary

Discovery of the J/ψ : J particle

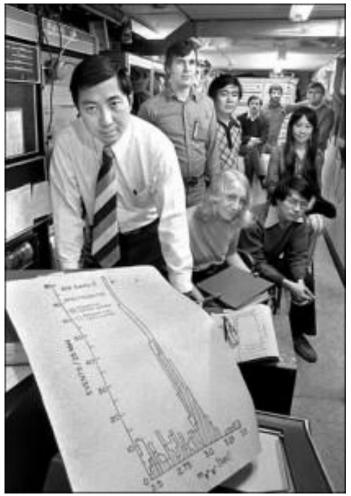
> GIM mechanism and charm quark

To suppress FCNC process, Glashow– Iliopoulos–Maiani mechanism required the existence of a fourth quark

J particle discovered at BNL

- $\ln p + Be \to e^+ + e^- + X$
- 3.1 GeV, about three times heavier than the proton
- With $J^{PC} = 1^{--}$

IHEP, June 16th, 2016

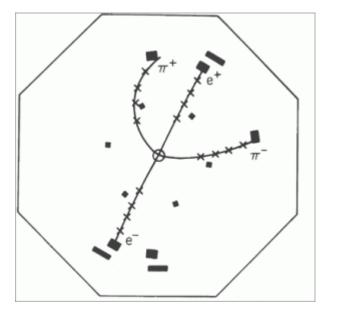


Samuel Ting and his BNL team. Nobel Prize in 1976

Discovery of the J/ψ : ψ particle

$ightarrow \psi$ particle discovered at SLAC

$\ln e^+ + e^- \rightarrow \pi^+ + \pi^-$

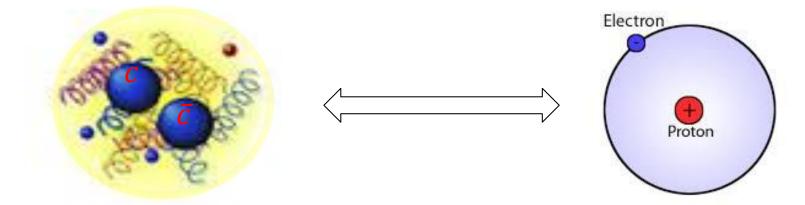


Burton Richter following the announcement of co-winning the 1976 Nobel Prize.

> Bound state of $Q\overline{Q}$ pair under strong interaction

Heavy quarkonium

Eg: $J/\psi \ \psi', \chi_{cJ}, \Upsilon(nS), \chi_{bJ}(nP) \cdots$



- ✓ The simplest system in QCD: two-body problem
- ✓ "Hydrogen atom in QCD", "an ideal laboratory in QCD"

- > Coulomb potential between color singlet heavy quark pair: $V(r) = -C_F \frac{\alpha_s(1/r)}{r}$
- > Virial theorem: $mv^2 \sim V(r) \sim \frac{\alpha_s(1/r)}{r}$
- > Uncertainty principle: $r \sim \frac{1}{mv}$
- > Velocity is determined by quark mass

$$\alpha_s(mv) \sim mv^2 \, r \sim v$$

Property

> A non-relativistic QCD system: $v^2 \ll 1$

Charmonium: m~1.3GeV, $v^2 \approx 0.3$

Bottomonium: $m \sim 4.5 GeV$, $v^2 \approx 0.1$

> Multiple well-separated scales :

IHEP, June 16th, 2016

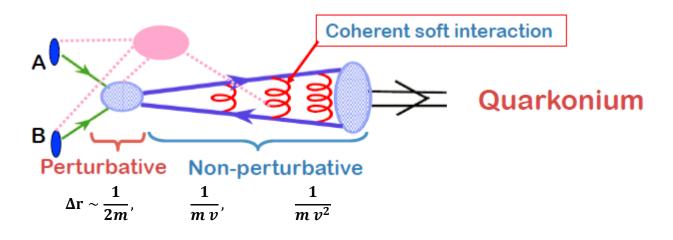
Quark mass:MMomentum:MvMvMv >> Mv >> Mv^2 $\sim \Lambda_{QCD}$ Energy:Mv²

Involving both perturbative and nonperturbative physics

> Production: ideal to understand hadronization, to study QGP

Space-time picture for production

Hadronization followed by production of an offshell heavy quark pair



- Time scale for producing heavy quark pair: $\frac{1}{2m}$
- Time scale for expansion: $\frac{1}{m v}$

IHEP, June 16th, 2016

• Time scale for forming bound state: $\frac{1}{mv^2}$

Approximation

> On-shell pair + hadronization

$$\sigma_{AB\to H+X} = \sum_{n} \int_{n} d\Gamma_{(Q\bar{Q})_{n}} \left[\frac{d\hat{\sigma}(Q^{2})}{d\Gamma_{(Q\bar{Q})_{n}}} \right] F_{(Q\bar{Q})_{n}\to H} \left(p_{Q}, p_{\bar{Q}}, P_{H} \right)$$

- Corrections are at higher order in *v*
- Different assumptions/treatments on how the heavy quark pair becomes a heavy quarkonium: different factorization models

Historical theories for quarkonium production

1. 1974 - Discovery of J/ψ , CSM and CEM

CSM: IR divergence, ψ' surplus

Einhorn, Ellis (1975), Chang (1980), Berger, Jone (1981), ...

CEM: wrong for ratio Fritzsch (1977), Halzen (1977), ...

2. 1994 - NRQCD Bodwin, Braaten, Lepage, 9407339, ...

No divergence up to now, solving many puzzles

Plain NRQCD fails when $p_T \gg M$ or $p_T \ll M$, leak all order proof

3. 2014 -

High p_T : collinear factorization

Kang, Qiu, Sterman, 1109.1520 Fleming, Leibovich, Mehen, Rothstein 1207.2578 Kang, YQM, Qiu, Sterman, 1401.0923, ...

Low p_T : **CGC+NRQCD** Kang, YQM, Venugopalan, 1309.7337 Qiu, Sun, Xiao, Yuan, 1310.2230, ...

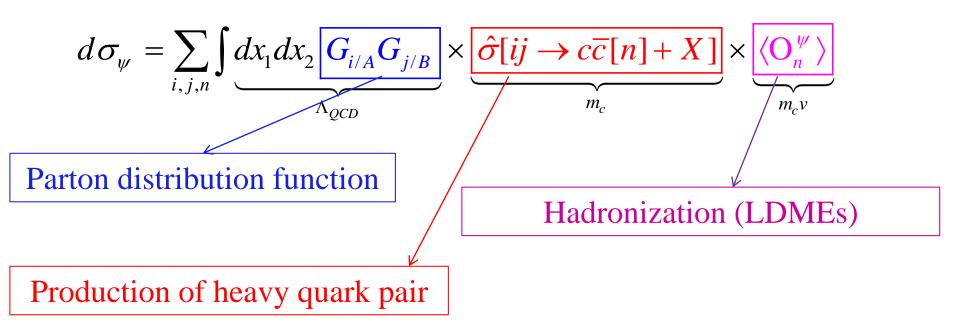
.....: ?????

IHEP, June 16th, 2016

NRQCD Factorization

Factorization formula

Bodwin, Braaten, Lepage, 9407339



- *n*: quantum numbers of the pair, spectroscopic notation ${}^{2S+1}L_{I}^{[c]}$.
- Color, spin, orbital angular momentum, total angular momentum

Definition of hard part

- $\widehat{\sigma}(c\overline{c}[n])$: production of $c\overline{c}$ with quantum number n
- Expansion of relative momentum at origin

Momenta of the pair: $p_c = p + q$, $p_{\bar{c}} = p - q$

$$\begin{split} M^{\kappa,J_z,(1,8c)}(p) &= \sqrt{\frac{1}{m}} \sum_{L_z,S_z} \sum_{s,\bar{s}} \sum_{i,\bar{i}} \left\langle LL_z; SS_z | JJ_z \right\rangle \left\langle \frac{1}{2}s; \frac{1}{2}\bar{s} | SS_z \right\rangle \left\langle 3i; \bar{3}\bar{i} | (1,8c) \right\rangle \\ &\times \begin{cases} M^F_{s\bar{s};i\bar{i}}(p,0), & \text{if } \kappa \text{ is } S\text{-wave,} \\ \epsilon^*_{\beta}(L_z) M^{F,\beta}_{s\bar{s};i\bar{i}}(p,0), & \text{if } \kappa \text{ is } P\text{-wave,} \end{cases} \end{split}$$

$$M^{F,\beta}_{s\bar{s};i\bar{i}}(p,0) = \left. \frac{\partial}{\partial q^{\beta}} M^F_{s\bar{s};i\bar{i}}(p,q) \right|_{q=0}$$

IHEP, June 16th, 2016

Subtraction of IR divergence based factorization is needed (no discussed in the following)

Differences between traditional LI

Complicated pole structure

- Dependence of external momentum
- High power of propagator denominators
- Coulomb singularies: linear divergence
- Light cone singularities for fragmentation functions

>No efficient numerical method available

Momentum expansion VS loop integration

> Loop integration:

$$\frac{d}{dq^{\alpha}} \int d^4l \frac{1}{l^2 [(l+p+q)^2 - m^2][(l-p+q)^2 - m^2]}$$

- Expansion after loop integration: correct, but complicated
- Expansion before loop integration: correct only for $l \gg q$

Beneke, Smirnov, 9711391

Find out all relevant regions of loop integration

- Doing allowed expansion in each region
 - Dimensional regularization is crucial!

Ma, Qiu, Zhang, 1401.0524

• With $\beta \ll 1$

To perform the *y* integration, we introduce a parameter $\Lambda \gg \beta$ and rewrite the *y* integration as

Example

$$\int_{-1}^{1} \frac{y^{2k} \mathrm{d}y}{(y^2 - \beta^2 - i\varepsilon)^{1+\epsilon}} = \left(\int_{-1}^{-\Lambda} + \int_{\Lambda}^{1}\right) \frac{y^{2k} \mathrm{d}y}{(y^2 - \beta^2 - i\varepsilon)^{1+\epsilon}} + \int_{-\Lambda}^{\Lambda} \frac{y^{2k} \mathrm{d}y}{(y^2 - \beta^2 - i\varepsilon)^{1+\epsilon}}.$$
 (A13)

Since $y^2 \ge \Lambda^2 \gg \beta^2$ in the first term above, we can expand β^2 before performing the *y* integration and obtain

$$\frac{y^{2k}}{(y^2 - \beta^2 - i\varepsilon)^{1+\epsilon}} = \frac{y^{2k}}{y^{2-2\epsilon}} + (1+\epsilon)\frac{y^{2k}}{y^{4+2\epsilon}}\beta^2 + \dots \equiv E_k(y^2)$$

IHEP, June 16th, 2016

Example cont.

Ma, Qiu, Zhang, 1401.0524

$$\int_{-1}^{1} \frac{y^{2k} \mathrm{d}y}{(y^2 - \beta^2 - i\varepsilon)^{1+\epsilon}} = \left(\int_{-1}^{-\Lambda} + \int_{\Lambda}^{1}\right) E_k(y^2) \mathrm{d}y$$
$$+ \int_{-\Lambda}^{\Lambda} \frac{y^{2k} \mathrm{d}y}{(y^2 - \beta^2 - i\varepsilon)^{1+\epsilon}}.$$

This identity can also be written as

$$\int_{-1}^{1} \frac{y^{2k} dy}{(y^2 - \beta^2 - i\varepsilon)^{1+\epsilon}} - \int_{-1}^{1} E_k(y^2) dy$$
$$= \int_{-\Lambda}^{\Lambda} \frac{y^{2k} dy}{(y^2 - \beta^2 - i\varepsilon)^{1+\epsilon}} - \int_{-\Lambda}^{\Lambda} E_k(y^2) dy.$$

IHEP, June 16th, 2016

Example cont.

$$\int_{-1}^{1} \frac{y^{2k} dy}{(y^2 - \beta^2 - i\varepsilon)^{1+\epsilon}} - \int_{-1}^{1} E_k(y^2) dy \qquad \text{Ma, Qiu, Zhang, 1401.0524} \\ = \int_{-\infty}^{+\infty} \frac{y^{2k} dy}{(y^2 - \beta^2 - i\varepsilon)^{1+\epsilon}} \\ = \beta^{2k-1-2\epsilon} \int_{-\infty}^{+\infty} \frac{y^{2k} dy}{(y^2 - 1 - i\varepsilon)^{1+\epsilon}} \qquad (A17) \\ \text{Soft region: } |y| \sim \beta$$

In deriving the above simplified identify, we used

$$\int_{-\infty}^{+\infty} E_k(y^2) dy = \int_{-\infty}^{+\infty} \left[\frac{y^{2k}}{y^{2+2\epsilon}} + (1+\epsilon) \frac{y^{2k}}{y^{4+2\epsilon}} \beta^2 + \cdots \right] dy = 0.$$
(A18)

- Hard region, soft region, potential region, usoft region
- Only hard region is needed. All other regions can be

subtracted by factorization

IHEP, June 16th, 2016

Tensor integral to scalar integral

Integrate by part

Duplancic, Nizic, 0303184

 $S_{N} \begin{pmatrix} 0 & 1 & 1 & \cdots & 1 \\ 1 & 0 & r_{12} & \cdots & r_{1N} \\ 1 & r_{12} & 0 & \cdots & r_{2N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & r_{1N} & r_{2N} & \cdots & 0 \end{pmatrix}$

$$0 \equiv \int \frac{\mathrm{d}^D l}{(2\pi)^D} \frac{\partial}{\partial l^\mu} \left(\frac{z_0 l^\mu + \sum_{i=1}^N z_i r_i^\mu}{A_1^{\nu_1} \cdots A_N^{\nu_N}} \right)$$

- 1. $\det(S_N) \neq 0$, $\det(R_N) \neq 0$
- 2. $\det(S_N) \neq 0$, $\det(R_N) = 0$
- 3. $\det(S_N) = 0$, $\det(R_N) \neq 0$

4.
$$\det(S_N) = 0, \, \det(R_N) = 0$$

$$4. \ \det(S_N) = 0, \ \det(R_N) = 0$$

$$E.g. \ for \ case 1:$$

$$I_0^N(D; \{\nu_k\}) = \frac{1}{4\pi\mu^2(D-1-\sum_{j=1}^N \nu_j)} \left[C I_0^N(D-2; \{\nu_k\}) R_N \begin{pmatrix} 0 & r_{12} & \cdots & r_{1N} \\ r_{12} & 0 & \cdots & r_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ r_{1N} & r_{2N} & \cdots & 0 \end{pmatrix} - \sum_{i=1}^N z_i I_0^N(D-2; \{\nu_k - \delta_{ki}\}) \right].$$

IHEP, June 16th, 2016

Further reading

Dealing with IR divergence in real corrections

Phase space slicing, dipole subtraction, SecDec, ...

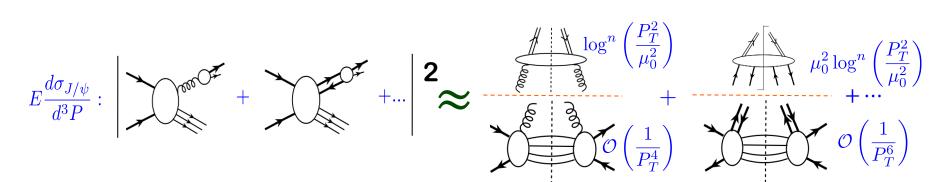
Generate Feynman amplitudes

Offshell recursion, onshell recursion, ...

> Numerical power expansion

Recursively construct derivative of current

> High $p_T \gg$ m: QCD factorization up to NLP



Further reading cont.

Factorization correct to all order

Kang, YQM, Qiu, Sterman, 1401.0923

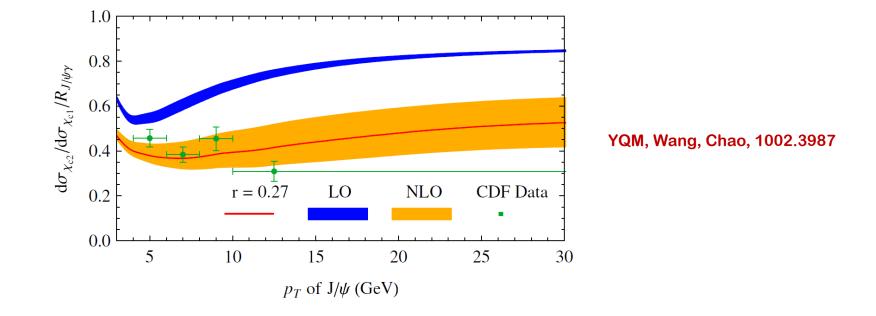
\succ Calculate hard part to high order in α_s

To be done.

IHEP, June 16th, 2016

χ_{cI} @hadron colliders

- $\succ \chi_{cJ} \text{ production: } d\sigma_{\chi_{cJ}} \approx d\hat{\sigma}_{_{3P_{I}^{[1]}}} \langle O\left({}^{_{3}P_{0}^{[1]}} \right) \rangle + (2J+1)d\hat{\sigma}_{_{3S_{1}^{[8]}}} \langle O\left({}^{_{3}S_{1}^{[8]}} \right) \rangle$
 - $\langle O\left({}^{3}P_{0}^{[1]} \right) \rangle$: can be determined by potential model
 - $\langle O\left({}^{3}S_{1}^{[8]}\right) \rangle$: a number, the only free parameter, fit $d\sigma_{\chi_{c2}}/d\sigma_{\chi_{c1}}$ data

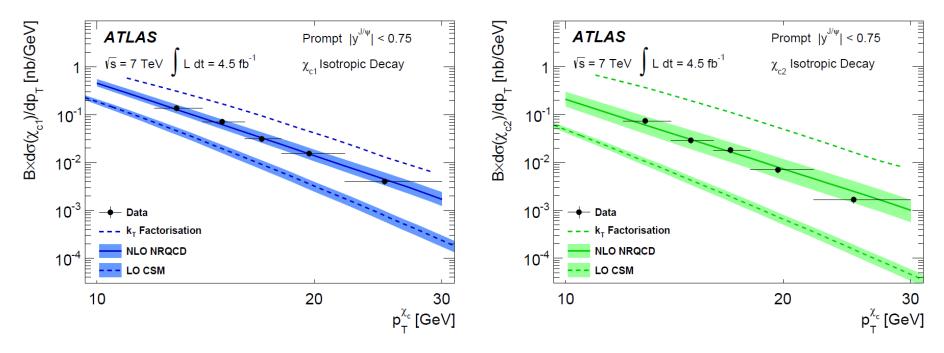


IHEP, June 16th, 2016

Prediction

Comparison with new data

ATLAS, 1404.7035



History of high order calculation: pp collision

• 0703113: Campbell, Maltoni, Tramontano

NLO, cross section, S-wave

• 0802.3727: Gong, Wang

NLO, polarization, S-wave

• 0806.3282: Artoisenet, Campbell, Lansberg, Maltoni, Tramontano

NNLO*, S-wave

- 1002.3987: YQM, Wang, Chao
- 1009.3655: YQM, Wang, Chao
- 1009.5662: Butenschöen, Kniehl

NOT fully comprehensive!!!

Complete NLO (S- and P-wave), cross section

- 1201.1872: Butenschöen, Kniehl
- 1201.2675: Chao,YQM,Shao,Wang,Zhang
- 1205.6682: Gong,Wan,Wang,Zhang

Complete NLO (S- and P-wave), with polarization

- > High order contributions are crucial for quarkonium production
- Methods discussed here can also be used for other cases
 - Twist three/four contribution
 - Exclusive processes using light cone wave function

