Physics Simulation, Analysis and MCtools at CEPC

Manqi RUAN

1

CEPC-SPPC

- Electron-positron collision phase
 - Higgs factory: collision at ~240 250 GeV center-of-mass energy, Instant luminosity ~ 2*10³⁴ cm⁻²s⁻¹,
 1M clean Higgs event at 2 IP over 10 years
 - Z pole operation for precise EW measurement: 1E10 Z boson per year
- Proton-Proton collision phase
 - center-of-mass energy constrained by tunnel circumference and high-field dipole
 - Peak luminosity ~ $1*10^{35}$ cm⁻²s⁻¹ (*ArXiv: 1504.06108, discussion on needed Luminosity*)
- Tunnel circumference: 54 km in the baseline design. Longer tunnel to be evaluated. 14/06/2016

Higgs program at CEPC

Observables: Higgs mass, CP, σ(ZH), event rates (σ(ZH, vvH)*Br(H->X)) Derive: Higgs width, branching ratios & absolute value of coupling constants

CEPC Conceptual detector, developed from ILD

A detector reconstruct all the physics object (lepton, photon, tau, Jet, MET, ...) with high efficiency/precision

 High Precision VTX located close to IP: b, c, tau tagging High Precision Tracking system: δ(1/Pt) ~ 2*10⁻⁵(GeV⁻¹)
 PFA oriented Calorimeter System (~o(10⁸) channels): Tagging, ID, Jet energy resolution, ect
 14/06/2016

From Hits to Final State Particles

Goal: ... Access the origin o every detector hit ...

Z→2 muon, H→2 b

Z→2 jet, H→2 tau

ZH→4 jets

Z→2 muon H→WW*→eevv

14/06/2016

CMS Experiment at the LHC, CERN Data recorded: 2012-May-27 23:35:47.271030 GMT Run/Event: 195099 / 137440354

> Specific Final State... Overlap with lots of PU events

Model-independent measurement of $\sigma(ZH)$

• M. McCullough, 1312.3322

14/06/2016

Higgs rare decay

Br($H \rightarrow \gamma \gamma$): photon identification efficiency & ECAL intrinsic resolution

Br(H \rightarrow µµ):

Muon identification & Track Momentum resolution

Higgs width measurement

- $g^{2}(HXX) \sim \Gamma_{H \rightarrow XX} = \Gamma_{total} * Br(H \rightarrow XX)$
- Branching ratios: determined simply by
 - σ (ZH) and σ (ZH)*Br(H→XX)
- Γ_{total}: determined from:
 - From $\sigma(ZH)$ (~g²(HZZ)) and $\sigma(ZH)^*Br(H \rightarrow ZZ)$ (~g⁴(HZZ)/ Γ_{total})
 - From $\sigma(ZH)^*Br(H \rightarrow bb)$, $\sigma(vvH)^*Br(H \rightarrow bb)$, $\sigma(ZH)^*Br(H \rightarrow WW)$, $\sigma(ZH)$
 - Would be good to have some data at E > 250 GeV
- Therefore: at CEPC Higgs program (240-250 GeV operation), Γ_{total} become the bottle neck of the coupling fit once Br(H→XX) is measured more precisely: Br(H→tautau, WW, bb,cc, gg)

Higgs width measurement

Br(H->ZZ): relative error of 6.9% achieved with ZH->ZZZ*->vv(Z)llqq(H) final states. Extrapolation of TLEP result leads to 4.3% relative error

 $\sigma(vvH)^*Br(H->bb)$: relative error of 2.8%

A combined accuracy of 2.8% for the Higgs total width measurements 14/06/2016

Higgs exotic

- Higgs \rightarrow invisible via recoil mass spectrum
 - Di lepton channel: Zhenxing, Moxin (IHEP) & Kevin (Hongkong)
 - Di jet channel: Moxin
- Higgs \rightarrow leptonic exotic mode
 - $H \rightarrow ee$: Wanglei @ PKU
- Higgs \rightarrow hadronic mode
 - $H \rightarrow$ Flavor changing quark pairs: samples ready, no analysis effort
 - $H \rightarrow tc, tu$
 - $H \rightarrow bs$, bd
 - $H \rightarrow$ semi invisible: Jiawei, Kevin (Hongkong) & Zhenxing

Higgs invisible decay

Higgs leptonic decay

The limit results is 0.1665‰ at 95% confidence level

leptonic decay channel	BR upper limit at 95%	collaboration	Journal
h->ee	0.19%	CMS	Phys. Lett. B 744, 184
h->μμ	0.15%	CMS	Phys. Lett. B 744, 184
	0.16%	ATLAS	Phys. Lett. B 738, 68
h->eµ	0.036%	CMS	CMS-PAS-HIG-14-040
h->eτ	0.69%	CMS	CMS-PAS-HIG-14-040
	1.04%	ATLAS	unpublished
h->μτ	1.51%	CMS	Phys. Lett. B 749, 337
	1.43%	ATLAS	unpublished

15

- $H \rightarrow ee$: SM Branching ratio ~ o(10⁻⁹)
- Uplimit at CEPC: one order of magnitude • better than current LHC result
- To explore: $H \rightarrow e\mu$, $\mu \tau$.

14/06/2016

•

http://indico.ihep.ac.cn/event/5592/contribution/12/material/slides/0.pdf

H→Exotic, hadronic

Benchmark Points

Scan over the parameter space for sensitivity:

1. Fix $m_{\tilde{\chi}_1^0} = 0$ GeV and make exclusion contours on the m_{h^0} and $m_{\tilde{\chi}_2^0}$ plane with the range:

 $\begin{array}{l} 10 \ {\rm GeV} < m_{_{h^0}} < 60 \ {\rm GeV} \ (15,25,35,45,55 \ {\rm GeV}) \\ 10 \ {\rm GeV} < m_{_{\tilde{\chi}^0}} < 125 \ {\rm GeV} \ (20,40,60,80,100,120 \ {\rm GeV}) \end{array}$

2. Fix $m_{h^0} = 30 \text{ GeV}$ and make exclusion contours on the $m_{\tilde{\chi}_1^0}$ and $m_{\tilde{\chi}_2^0}$ plane, with the range: $0 \text{ GeV} < m_{\tilde{\chi}_1^0} < 60 \text{ GeV} (5,15,25,35,45,55 \text{ GeV})$ $10 \text{ GeV} < m_{\tilde{\chi}_2^0} < 125 \text{ GeV} (20,40,60,80,100,120 \text{ GeV})$

Suggested by prof. Liu

- Typical process at NMSSM & 2HDM...
- Joint efforts of Hongkong Cluster & IHEP: Main analyzers, Jiawei, Kevin & Zhenxing
 - Initialized at PreCDR, one parameter point explored with Fast Sim (Kevin)
 - Full Simulation exploration during IAS meeting (Zhenxing visited Hongkong)
- Continue by Jiawei & Kevin (Jiawei stayed at IHEP for 3 weeks) 14/06/2016

H→Exotic, hadronic

Para: M(LSP) = 0; M(h0) = 15 GeV; M(NLSP) = 20 GeV

- 95% CL. Uplimt set to be 5E-4; will be significantly improved by including di-electron/tau channel...
- ISR effect not included in the Signal sample. sigma(ZH) refered to SM Xsec of 200 fb. Effect on uplimit setting could be ignored

14/06/2016

• Todo: a full scan over proposed parameter space

Differential distributions

- CEPC: reconstruct Higgs in a ultra-clean environment
- Physics object can be measured to a great precision: energy & direction
 - Leptons/Charged Particle: 1e-4 ~ 1e-5...
 - Photons: 1e-3 ~ 1e-4
 - Jets: 1e-3 in visible energy...
 - Highly depending on the detector design (Larger tracker & Smaller Calorimeter Cells)
- The direction information, represent the tensor form of Higgs operator...

do/dΘ

Higgs CP Phase in $h \rightarrow \tau^+ \tau^-$ Decay

Precision Measurement @ CEPC

CEPC preCDR

1308.1094

Colliders	LHC	HL-LHC	CEPC1	CEPC5	CEPC10
$Accuracy(1\sigma)$	25°	8.0°	5.5°	2.5°	1.7°

Shao-Feng Ge @ CEPC Software Meeting, IHEP, 2016-3-26 Higgs Combination, New Physics Scales & Differential Dist.

The Sim Group will provide the Full Set of SM Background, For any

High Precision Calculation

Generator Studies

- For any Pheno-expoloration, the Sim Group can provide **Full Set of SM Bkgrd** (on the same footing) & more realistic detector simulation.
- Generator: interface between Theory-Pheno And Detector Studies
- Cooperations Interactions with Madgraph & Whizard
 - Madgraph: ISR
 - Whizard 2.0: VTX position missing ...
 - MC4BSM WS
- Our own generator development is more than welcome
- Validation @ precision measurement
- A fully operation chain, still need lots of efforts

 $\begin{array}{l} \mathsf{MM} \to \mathsf{Feynman} \; \mathsf{Rule} \to \mathsf{UFO} \to \mathsf{Samples} \to \\ \mathsf{Validation} \to \mathsf{Sim}/\mathsf{Reco}/\mathsf{Analysis}... \to \mathsf{result} \; \& \\ \mathsf{documentations}. \end{array}$

Gen	erator	

Theory-Pheno: Physics motivation

- Unique/distinguishable advantage of electron-positron Higgs factory
- Higgs:
 - Event Number Counting
 - Absolute Higgs measurements
 - Total generation Xsec
 - Higgs width, Decay branching ratio & absolute couplings
 - Exotic decay mode searching via recoil mass method
 - Differential distribution measurements
 - Higgs CP
 - O5, O6 Higgs interaction operators
- EW: Z pole observables, etc
- Any new observables?

Impact on detector design?

- Optimization on going propose your favorite <u>Detector model</u> OBJECT performance (solid angle coverage, finding efficiency & resolution...)
- For example: Muon chambers will enhance the sensitive region by one order of magnitude... would any physics model – such as these with long lived charged particle – appreciate it?

Detector optimization: cepc_v1 -> cepc_o_v2

Parameter	CEPC_o_v2	CEPC_v1
LStar_zbegin	1150	1146.9
VXD_inner_radius	12	15
VXD_radius_r1	12	15
VXD_radius_r3	35	37
TPC_outer_radius	1500	1808
Hcal_nlayers	40	48
Ecal_cells_size	10	4.9
Field_nominal_value	3	3.5
Yoke Layers	2	3

Performance	adapted optimized	
Tracking: D0, Z0	10% ↑ @ E < 20 GeV (VTX); 5% ↓ @ E > 20 GeV (B-Field);	
Theta, Phi	worse	-
Omega	worse	-
PFA:Clustering	Slightly worse	same
Matching	~10% ↓	~5% ↓
Separation	~10% ↓	~2% ↓
PID	3-5% ↓ @ E > 10 GeV; 10% ↓ @ E < 10 GeV;	~1%↓
JER	20% ↓	~10%↓
Flavor Tagging	Improved up to 5%↑	?

14/06/2016

http://indico.ihep.ac.cn/event/5277/session/14/contribution/67/material/slides/0.pdf

• Team work...

- Theory-Phenology: Model Building Interpretation
 - Description of Physics model & motivations
 - Propose newly observable/measurement
- Detector Simulation-Analysis: Common SM background sample & Realistic detector simulation
- Mutual: Maintain the interface
 - Pheno: Generator development, NP sample production & Validation
 - Detector: Integration into the full chain
 - Standard CEPC generator format should be discussed
- Operational chain: MM->Sample->Simu/reco->Analysis->Interpretation
- Proposition:
 - Pheno-Detector Forum,
 - At CEPC Physics-Software meeting (April, Aug & Dec, 3 times/year)
 - Phenomenology Generator School/Workshops
 - ...
 - Manpower allocation: Recruit Joint PostDoc/Ph.D
 - Support relevant works: short term visit, travel, etc

Backup

Outline

- Personal Perspective On Theory-Pheno
 - Interpretation of analysis result
 - Benchmark observable proposition:
 - Higgs exotic searches
 - Differential distributions
 - Generator Studies
 - Sample preparation & Validation
- This talk will also cover:
 - Fast Simulation: FSClasser & Delphes card
 - Outlook & proposition

Core program: Absolute Higgs measurement

	PreCDR	Now
σ(ZH)	0.51%	0.50%
σ(ZH)*Br(H→bb)	0.28%	0.21%
σ(ZH)*Br(H→cc)	2.1%	2.5%
σ(ZH)*Br(H→gg)	1.6%	1.7%
σ(ZH)*Br(H→WW)	1.5%	1.2%
σ(ZH)*Br(H→ZZ)	4.3%	4%
σ(ZH)*Br(H→ττ)	1.2%	1.0%
σ(ZH)*Br(H→γγ)	9.0%	9.0%
σ(ZH)*Br(H→μμ)	17%	17%
σ(vvH)*Br(H→Zγ)	-	-
σ(vvH)*Br(H→bb)	2.8%	2.8%
Higgs Mass/MeV	5.9	5.0
σ(ZH)*Br(H→inv)		
Br(H→ee)		
Br(H→bbχχ, 4b)	<10 ⁻³	95%. CL = 3e-4

Higgs @ LHC

PP collider: High productivity but low finding efficiency ~already 10⁶ Higgs in Run 1 data...

Higgs signal: found via the decay final states.

 $\sigma(AA \rightarrow H \rightarrow BB) \sim g^2(HAA)g^2(HBB)/\Gamma_{total}$

EW

- Afb(b) starts full sim analysis...
- More?

CP violating dim-6 operators

 $\mathcal{O}_{\Phi\Box} = (\Phi^{\dagger}\Phi)\Box(\Phi^{\dagger}\Phi) \qquad \qquad \mathcal{O}_{\Phi W} = (\Phi^{\dagger}\Phi)W^{I}_{\mu\nu}W^{I\mu\nu}$ $\mathcal{O}_{\Phi D} = (\Phi^{\dagger} D^{\mu} \Phi)^* (\Phi^{\dagger} D_{\mu} \Phi) \quad \mathcal{O}_{\Phi B} = (\Phi^{\dagger} \Phi) B_{\mu\nu} B^{\mu\nu}$ $\mathcal{O}_{\Phi\ell}^{(1)} = (\Phi^{\dagger} i \overset{\leftrightarrow}{D}_{\mu} \Phi) (\bar{\ell} \gamma^{\mu} \ell) \qquad \mathcal{O}_{\Phi WB} = (\Phi^{\dagger} \tau^{I} \Phi) W^{I}_{\mu\nu} B^{\mu\nu}$ $\mathcal{O}_{\Phi\ell}^{(3)} = (\Phi^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} \Phi) (\bar{\ell} \gamma^{\mu} \tau^{I} \ell) \qquad \mathcal{O}_{\Phi \widetilde{W}} = (\Phi^{\dagger} \Phi) \widetilde{W}_{\mu\nu}^{I} W^{I\mu\nu}$ $\mathcal{O}_{\Phi e} = (\Phi^{\dagger} i \overset{\leftrightarrow}{D}_{\mu} \Phi) (\bar{e} \gamma^{\mu} e) \qquad \mathcal{O}_{\Phi \widetilde{B}} = (\Phi^{\dagger} \Phi) \widetilde{B}_{\mu\nu} B^{\mu\nu}$ $\mathcal{O}_{4L} = (\bar{\ell}\gamma_{\mu}\ell)(\bar{\ell}\gamma^{\mu}\ell)$ $\mathcal{O}_{\Phi \widetilde{W}B} = (\Phi^{\dagger} \tau^{I} \Phi) \widetilde{W}_{\mu\nu}^{I} B^{\mu\nu}$

Observables

$$\sigma(s) \qquad \mathcal{A}_{\theta_1} \equiv \frac{1}{\sigma} \int_{-1}^{1} d\cos\theta_1 \operatorname{sgn}(\cos(2\theta_1)) \frac{d\sigma}{d\cos\theta_1}$$
$$\mathcal{A}_{\phi}^{(1)} \equiv \frac{1}{\sigma} \int_{0}^{2\pi} d\phi \operatorname{sgn}(\sin\phi) \frac{d\sigma}{d\phi} \qquad \mathcal{A}_{\phi}^{(2)} \equiv \frac{1}{\sigma} \int_{0}^{2\pi} d\phi \operatorname{sgn}(\sin(2\phi)) \frac{d\sigma}{d\phi}$$
$$\mathcal{A}_{\phi}^{(3)} \equiv \frac{1}{\sigma} \int_{0}^{2\pi} d\phi \operatorname{sgn}(\cos\phi) \qquad \mathcal{A}_{\phi}^{(4)} \equiv \frac{1}{\sigma} \int_{0}^{2\pi} d\phi \operatorname{sgn}(\cos(2\phi)) \frac{d\sigma}{d\phi}$$
$$\mathcal{A}_{c\theta_1,c\theta_2} \equiv \frac{1}{\sigma} \int_{-1}^{1} d\cos\theta_1 \operatorname{sgn}(\cos\theta_1) \int_{-1}^{1} d\cos\theta_2 \operatorname{sgn}(\cos\theta_2) \frac{d^2\sigma}{d\cos\theta_1 d\cos\theta_2}$$

Angular Observable in Higgsstrahlung

1512.06877

At CEPC

- Higgs Run: 10 years, 1 M Higgs boson at 1 B physics events
- Z Pole Runs: 10 Billion Z boson in 1 year
- Perfect understanding of the nature of Higgs boson, precise EW measurements, probe for NP...

Higgs program at CEPC

- Absolute Higgs measurements
- Benchmark measurements
 - sigma(ZH) determination
 - Higgs width measurement: Yuqian's talk
 - H->bb, cc, gg: see Baiyu's talk
 - Higgs exotic
 - Invisible
 - Hadronic state
 - Leptonic final state
- Next step:
 - Data driven method for sys. control?...
 - Differential distributions & loop hole at CEPC

Higgs analysis: Status at PreCDR

14/06/2016

$\sigma(ZH)^*Br(H->bb, cc, gg)$

- Strategy: Event selection + Template fit on the b-likeness Vs c-likeness plane
- 4 independent channels: Signal & Key background are processed with Full Simulation

	Analyzer	bb	CC	gg	
mumuH	Zhenxing, etc	0.96%	13.5%	11.6%	
		0.96%	11.0%	8.73%	
eeH					
tautauH					
vvH	Lianghao, Yulei, Dikai	0.38%	3.5%	2.4%	Notes submitted
qqH	Baiyu, Boyang, etc	0.27%	4.4%	3.0%	Notes submitted
Comb. opti		0.21%	2.5%	1.7%	
Result at PreCDR		0.28%	2.2%	1.6%	

$\sigma(ZH)^*Br(H->bb, cc, gg)$

- Key points
 - MumuH: different template fit technologies need to be compared and understood
 - qqH:
 - Complex analysis:
 - Jet clustering algorithm,
 - Hard gluon emission,
 - Matching
 - Systematic control
 - EeH & tautauH: to be covered
 - All channels: distinguish between H->gg events and H->WW/ZZ->4 jets events is still challenging!

Cut Definition	Sig.	99	qqnn	qqln	nnh
Generated	16260	25M	183K	3681K	
FSClasser output	16768	25M	183K	3681K	7485
$N_{\text{PFO}(E>0.4\text{GeV})} > 20$	16748	23M	163K	3439K	4889
$110 < E_{\rm total} < 150$	14689	10M	126K	705K	3311
$P_{T} > 19$	13687	34K	116K	627K	3101
Isolation lepton veto	13429	33775	115K	327K	2537
$100 < M_{\rm inv} < 135$	12827	9506	10420	162K	2269
$70 < M_{\rm rec} < 125$	12166	7521	10045	110K	2260
$0.15 < y_{12} < 1$	12093	7405	9702	101K	2211
$y_{23} < 0.06$	10902	6644	8456	69313	1220
$y_{34} < 0.008$	10377	6504	7878	58532	519
$-0.98 < \cos(\theta_{\text{included}}^{(2\text{jets})}) < -0.4$	10284	5766	5454	34823	485
BDT > 0.04	8705	381	465	267	230
Significance	84.92				
Efficiency	53.5%				

Fitting result over truth for cc, bb, gg respectively

H -> WW* && H->ZZ*

- Various Final States! Any combination of leptons, missing E/P, jets...
- Processed with Full Simulation:
 - Final states with at most 2 jets
 - Lepton id, Isolate lepton finding and total momentum/energy resolution: key ingredient for these analysis
- WW*
 - Dedicated Isolation lepton finding algorithm has been developed, compared & tuned
- ZZ*
 - Tau related bakground could be largely suppressed once tau finder is more mature

H -> WW* && H->ZZ*

- Various Final States! Any combination of leptons, missing E/P, jets...
- Key measurement for achieving Higgs width
- Processed with Full Simulation:
 - Final states with leptons
 - Lepton ID & Detector coverage: intrinsic requirements
 - Isolation condition for letpons: compromise between Signal Efficiency & Bkgrd rejection rate
 - Libo, responsible for general isolation framework design & H->WW analysis
 - Yuqian, responsible for ZZ analysis

H -> WW*

Table 2.8 Expected precision of the $\sigma(ee \rightarrow ZH) \times BR(H \rightarrow WW^*)$ measurement, assuming an integrated luminosity of 5 ab⁻¹.

Channel	Precision	Comment
$Z \to \mu \mu, H \to WW^* \to \ell \nu q q, \ell \ell \nu \nu$	4.9%	CEPC Full Simulation
$Z \to ee, H \to WW^* \to \ell \nu q q, \; \ell \ell \nu \nu$	7.0%	Estimated
$Z \rightarrow \nu \nu, H \rightarrow WW^* \rightarrow qqqq$	2.3%	Extrapolated from ILC result
$Z \to qq, H \to WW^* \to \ell \nu qq$	2.2%	Extrapolated from ILC result
Combined	1.5%	

Table from PreCDR

4.9% accuracy, should be updated to 4.2% at the CEPC note, which is composed Of 14.2% from IIvv channel and 4.4% of Ivqq channel.

Full Simulation analysis, performed by Libo, is applied on Z->dimuon, H->WW*->llvv channel Clean signal, tiny fraction: 0.1% of all H->WW* events.

Category	Total	Signal	Background	-	
$l_1 = e, l_2 = \mu$	105 ± 10.2	105 ± 10.2	0.0±0.0	9.8%	
$l = \mu$	58±7.6	52±7.2	6±2.4	14 6%	In total
l = e	40±6.3	36±6	4±2	17.6%	7.4%
WW* full leptonic decay	203 ± 14.2	193±13.9	10 ± 3.2	17.0/0	

Table 4: Statistic error of different flavor final state and $H \to WW^* \to ll \nu \bar{\nu} (l = e, \mu)$

Improved by a factor of 2 comparing to PreGDR

7% accuracy achieved with counting: improved by 2 times Comparing to Pre-CDR Obj Eff: find 2 leptons from the Z pole and 2 isolated leptons. 47

4 H->WW*->lvqq analysis

Category	Signal	ZH	•
Total	2112	32291	500 CEPC Preliminary
$N_{ZPole} = 2; N_{Isolep} = 1; N_{Jets} = 2$	1853	2524	400 – n — Signal
$80 \text{ GeV} < M_{Inv}^{\mu^+\mu^-} < 100 \text{ GeV}$	1665	2173	(T)
$120 \text{ GeV} < M_{Rec}^{\mu^+\mu^-} < 150 \text{ GeV}$	1610	2109	300 - Higgs Background
$(Y12 * y23)^2 < 0.005$	1601	1687	
$E_{lepton} > 15 \text{ GeV}$	1416	841	
$5 \text{ GeV} < E_{Missing} < 70 \text{ GeV}$	1325	464	
$15 \text{ GeV} < M_{Rec}^{di-Jet} < 95 \text{ GeV} < 6$	1289	156	- L
$N_{Remain} > 7$	1252	96	$0 \frac{120 130 140 150 160}{120 130 140 150 160}$
$ \delta E_{Jets} < 50 \text{ GeV}$	1217	55	$\mathbf{M}_{\mathbf{Rec}}^{\mu^{*}\mu^{\cdot}}$ (GeV/c ²)

Table 4: Cut chain of semi leptonic decay of $H \rightarrow WW^*$

2016/3/26

CEPC Physics Software Meeting

Z DecayIIvvtau
tauqqWDecayIIvvtauqqIvlvIIIIIvqqIIIIqqqqIIIITau+XIIII

Green: undone Yellow: 25% Orange: 50%

H->ZZ*

Yuqian's Full simulation

					•
	qq	VV	taus	Z->	
	9.24k	2.64k	444	888	ZZ*->4q
	5.29k	1.51k	254	508	2v + 2q
	1778	508 -	85	170	2l + 2q
	756	216	36	73	4v
Fast simulation	508	145	24	49	2l + 2v
	86	24	4	/ 8	41
	1246	356	60	120	X + tau
	1	1	1	/	/

Priority 1: isolated leptons.

Result from ini-Z to di-muon/electron: 15% comb 11.4% = 9.0% Result from ini-Z to invisible: 11% comb 13% comb 20% = 7.7%; including W fusion contribution, should increase the statistic by 18%; thus 7%

(comparing to 6.9% accuracy we achieved with Fast simulation at Pre-CDR) In total: 5.5%

Reference Num at PreCDR: 4.3% Next step: Including other channels with leptonic final states

H->di photon

- Feng & JianHuan
- Converted Photon recovery algorithm: proved to be efficient & save back ~ 10-15% of statistic: need further polishment
- Dedicated Photon Energy Estimator & Photon ID has been developed and adjusted to CEPC_v1 geometry

H->di muon

- Cui Zhenwei, (Wang Binlong)
- Test bed for event selection tuning
 - Cut based;
 - MVA-BDT based;
- Carefully designed BDT seems could largely improve the analysis result.
 Checking details

	pre-section	217.7	10356245		
	124.2 <hmass<125.5 163.2<="" td=""><td colspan="2">30050</td><td></td></hmass<125.5>		30050		
	90.7 <recoilmass<92.5 105.6<="" td=""><td colspan="2">419</td><td></td></recoilmass<92.5>		419		
	-55 <pzsum<52 93.3<="" td=""><td colspan="2">290</td><td></td></pzsum<52>		290		
	29.2 <ptsum<62 88.5<="" td=""><td colspan="2">269</td><td></td></ptsum<62>		269		
	-0.29 <cosup<1< td=""><td colspan="2"><mark>29<cosup<1< mark="">55.2 69</cosup<1<></mark></td><td></td><td></td></cosup<1<>	<mark>29<cosup<1< mark="">55.2 69</cosup<1<></mark>			
	-1 <cosum<0.20< td=""><td colspan="2"><mark>sum<0.20</mark> 47.5 48</td><td></td><td></td></cosum<0.20<>	<mark>sum<0.20</mark> 47.5 48			
	0 <arguu<178< td=""><td>46.5</td><td colspan="2">42</td><td></td></arguu<178<>	46.5	42		
pre-section			214.2	2853	46
32.3<(InvMass-RecMass)<34.2			98.4	7008	
215.95<(InvMass+RecMass)<216.66			79.1	158	
-0.88<(cosup+cosum)<0.87			78.9	157	
-1.92<(cosup-cosum)<0.40			48.9	40	
-62.1 <pzsum<58.5< td=""><td>47.9</td><td colspan="2">37</td></pzsum<58.5<>			47.9	37	
10.0 <ptsum<62.4< td=""><td>47.6</td><td colspan="2">37</td></ptsum<62.4<>			47.6	37	
0 <ptuu<178< td=""><td>46.5</td><td colspan="2">34</td></ptuu<178<>			46.5	34	

