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11. The Geometric Origin of Identities Among Yangian-Invariants

In this section, we will focus primarily on on-shell di↵erential forms for which the

integral over auxiliary Grassmannian degrees of freedom is fully localized by the

�-function constraints, without imposing any conditions on the external kinematical

data other than momentum conservation. These are on-shell diagrams with (2n 4)

degrees of freedom or their momentum-twistor images with 4k degrees of freedom,

and for which �4(C) > 0; we will refer to such on-shell forms as Yangian-invariants,

and frequently refer to them (improperly) as ‘functions’ of the kinematical variables.

One of the most remarkable and important properties about Yangian-invariants

is that they satisfy many, intricate functional identities. Examples of such identities

have long been known, and are crucial for our understanding of many important

physical properties of scattering amplitudes. Perhaps the simplest and most familiar

examples of such identities come from equating the various implementations of the

BCFW recursion relations, (2.26); for example, for the 6-particle NMHV tree-level

scattering amplitude, the BCFW recursion can alternatively lead to two distinct

formulae depending on which pair of adjacent legs are singled-out by the recursion:

=

{4, 5, 6, 8, 7, 9}

+

{3, 5, 6, 7, 8, 10}

+

{4, 6, 5, 7, 8, 9}

=

{4, 5, 7, 6, 8, 9}

+

{4, 5, 6, 7, 9, 8}

+

{5, 4, 6, 7, 8, 9}
This identity is not easy to prove directly if each term is viewed as a multivariate,

rational ‘function’ of the kinematical data. However, its veracity is crucial to our un-

derstanding of many important properties of the complete amplitude. For example,

although the BCFW-recursion breaks cyclicity by the choice of legs to deform, the

entire amplitude—being cyclically-invariant—must be independent of this choice.

A wide variety of such identities can be generated simply by equating all the myr-

iad BCFW ‘formulae’ obtained by recursing the left- and right-amplitudes appearing

across the BCFW-bridge in all possible ways (at each stage of the recursion). For ex-

ample, for the 8-particle N2MHV tree amplitude, there are many hundreds of ways to

follow the recursion all the way down to a sum of 20 trivalent, on-shell diagrams; this
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• off-shell states
• Gauge-dependent
• locality
• Explosive growth of
number of terms

• on-shell states
• Gauge invariant
• non-locality
• Slow growth of number of
diagrams/terms



How to justify a good/worse representation?
⋆ Simple
⋆ Make the symmetry obvious

Example: Why people like Dimensional regularization?
It preserve the gauge symmetry and Lorenz group symmetry

Why we need on-shell diagram and top-form?
⋆ It make the gauge symmetry and Yangian symmetry obvious
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Poincaré invariance in the same way, but arise only in theories with higher-dimension

operators like F 3 or R3. In general, Poincaré invariance fixes the kinematical de-

pendence of the three-particle amplitude involving massless particles with arbitrary

helicities to be, [67]:
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(2.10)

As mentioned above, in maximally supersymmetric theories all helicity states

are unified in a single super-multiplet, and so there is no need to distinguish among

the particular helicities of particles involved; and so, we may consider the simpler,

cyclically-invariant amplitudes:

and (2.11)

The first includes among its components the (�,+,+) amplitude of (2.7), while the

latter includes the (+,�,�) amplitude. These super-amplitudes are given by,
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(2.12)

(Although not essential for our present considerations, it may be of some inter-

est that these objects can be made fully permutation invariant by including also a

prefactor fa1,a2,a3 depending on the ‘colors’ a
i

of the particles involved (where ‘color’

is simply a label denoting the possible distinguishable states in the theory). General

considerations of quantum mechanics and locality (see e.g. [67]) require that any such

prefactor must be fully antisymmetric and satisfy a Jacobi identity—implying that

color labels combine to form the adjoint representation of a Lie algebra. The most

physically interesting case is when this is the algebra of U(N); in this case, N can be

viewed as a parameter of the theory, and scattering amplitudes can be expanded in

powers of 1/N to all orders of perturbation theory, [68]. In this paper, we will mostly

concern ourselves with the leading-terms in 1/N—the planar sector of the theory.)
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singularities of an amplitude are determined by entirely by on-shell data. At tree-

level, the singularities are simply the familiar factorization channels,

(2.23)

where the left- and right-hand sides are both fully on-shell scattering amplitudes. At

loop-level, all the singularities of the integrand can be understood as factorizations

like that of (2.23), or those for which an internal particle is put on-shell; at least

for N = 4 SYM in the planar limit, these singularities are given by the “forward-

limit” [77] of an on-shell amplitude with one fewer loop and two extra particles,

where any two adjacent particles have equal and opposite momenta, denoted:

(2.24)

Combining these two terms, the singularities of the full amplitude are, [13]:

(2.25)

Here we have suggestively used the symbol “@” to signify “singularity of”. Of course,

the symbol @ is often used to denote “boundary” or “derivative”; we will soon see

that all of these senses are appropriate.

Equation (2.25) can be understood as defining a “di↵erential equation” for scat-

tering amplitudes; and it turns out to be possible to ‘integrate’ it directly. This is

precisely what is accomplished by the BCFW recursion relations. For planar N =4

SYM, the all-loop BCFW recursion relations, when represented in terms of on-shell

diagrams are simply:

(2.26)
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A warm up example: Four point amplitude
Adding Bridge  (a,b) 

1 2

34

1 2

34

1 2

34

1 2

34

1 2

34

✓
1 ↵2 0 0
0 1 0 ↵1

◆

✓
1 ↵2 + ↵4 ↵2↵3 0
0 1 ↵3 ↵1

◆

✓
1 0 0 0
0 1 0 ↵1

◆

✓
1 ↵2 ↵2↵3 0
0 1 ↵3 ↵1

◆

(2, 4)

(1, 2)

(2, 3)

(1, 2)

Grassmannian Matrix

✓ c1 c2 c3 c4
1 1 0 0 0
2 0 1 0 0

◆

A =

Z
dC2⇥4

Vol(GL(2))

�2⇥4
(C · e⌘)

(12)(23)(34)(41)

�2⇥2
(C · e�)�2⇥(2)

(� · C?
)

Finally we can get the four 
point tree-level amplitude

cb ! cb + ↵ca



Six Point amplitude
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(3, 6) ! (1, 3) ! (3, 5) ! (2, 3) ! (3, 4) ! (1, 2) ! (2, 3) ! (1, 2) !

0

@
1 ↵6 + ↵8 ↵2 + ↵6↵7 ↵2↵5 ↵2↵3 0
0 1 ↵4 + ↵7 ↵4↵5 0 0
0 0 1 ↵5 ↵3 ↵1

1

A

This only lie in the sub-manifold of the 
Grassmannian. The constraint is �: (561)=0

Adding the BCFW bridges reductively

The top-form is just

A =

I
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dC3⇥6

Vol(GL(k))
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(C · e⌘)

(123)(234)(345)(456)(561)(612)
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Geometry and 
Permutation

(3.3)

It is natural to ask whether such a picture can be generalized to more realistic

theories in higher dimensions. This seems impossible at first sight, since the pictures

drawn above only make physical sense in (1+1) dimensions (not only because they

are drawn on a plane). The fact that particles can only move in one spatial dimen-

sion is what makes it possible to describe all interactions as a sequence of local 2!2

scattering processes. Also important is the absence of any particle creation or de-

struction, allowing us to label the final-states by the same labels as the initial-states.

Neither of these features hold for the higher-dimensional theories in which we are

primarily interested: for planar N =4 SYM, particle creation and destruction plays

a fundamental role; and the most primitive processes are not 2!2 amplitudes, but

rather the 3-particle amplitudes discussed above, (2.11).

An important starting-point for describing higher-dimensional scattering pro-

cesses is to forgo the traditional meaning of the “S-matrix”—an operator which

maps initial states to final states. Rather, we find it much more convenient to treat

all the external particles on equal footing, using crossing symmetry to formulate the

S-matrix as a process for which all the external particles are taken to be incoming.

One lesson we can take from (1+1) dimensions is that any connection between

scattering and permutations must involve on-shell processes. In (3+1) dimensions,

this leads us to trivalent, on-shell diagrams with black and white vertices discussed

in the previous section. And so we are led to try and associate a permutation with

these diagrams. As it turns out, just such a connection exists between two-colored,

planar graphs and permutations, and has recently been studied in the mathematical

literature, [37] (see also [40]).

Let’s jump-in and describe how it works. The way to read-o↵ a permutation from

an on-shell graph is as follows. For each external leg a (with clockwise ordering),

follow the graph inward from a, turning left at each white vertex, and turning right at

each black vertex; this “left-right path” will terminate at some external leg, denoted

�(a). For example, the three-particle building blocks of N =4, (2.11), are associated

with permutations in the following way:

,
 
1 2 3
# # #
2 3 1

!
and ,

 
1 2 3
# # #
3 1 2

!
(3.4)
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6

✓
1, 2, 3, 4, 5, 6
4, 5, 6, 8, 7, 9

◆
!

⇢
� : (561) = 0

f(C) = 1
(123)(234)(345)(456)(561)(612)
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? ),

Grassmannian Integral Form

•    is constrained by some linear relations among
the columns of C 

• G(k,n) is the space of k-dimensional planes in 

• f(C) is any rational function of minors of C.  For planar 
diagram, the f(C) are simply

• quadratic constraints 

• Classify by concepts and tools in algebra geometry (ideal, 
intersections, Grobner basis, Free modular decomposition). 

�

�(
Pn

i=1 �i�̃i)
linearize������! �(C · �̃)�(� · C>

? )]

(1 · · · k)(2 · · · k + 1) · · · (k12 · · · k � 1)



Non-planar on-shell diagrams I:  
tangled geometric constraints 

(234) = 0, (356) = 0

 (1,3)

Constraints
(361)

(123)(234)(345)(356)(146)(561)(612)
.

(234)
(214) �

(356)
(156) = 0 (214)2(361)

(123)(234)((13)\(24)56)((13)\(24)45)(146)(561)(612)

Integrand

�
(1b3) \ (24)56

�



Non-planar on-shell diagrams II:  
No-bridge  diagram

(1, 7) ! (2, 6) ! (3, 5) ! (2, 3 ! (3, 4) ! (12) ! (2, 3) ! (5, 7) ! (3, 7)

(135)2

(123)(234)(345)(456)(156)(357)(157)(126)(137)
.

0

@
C 0

0
0 0 c3 c4 c5 c6 1

1

A .

(126) = (12)c6 (234) = �c3(24) + c4(23)
(123) = (12)c3 (456) = c4(56)� c5(46)
(156) = �(16)c5 (135) = �c3(15) + c5(13)
(137) = (13) (345) = c3(45)� c4(35) + c5(34)
(357) = (35) (157) = (15) ,

[(56)(13)(24)� (23)(15)(46)]2

(23)(12)(24)(26)(45)(34)(16)(56)(35)(15)(13)(46)
,

(234)2, (456)2,(126)2Cycle integrating

(234)2, (456)2,(126)2

for c3, c4, c5, c6
c6 ! 0, c3 ! (23)

(24)c4, c5 ! (56)
(46)c4 Now everything is the rank two minor

No Constraints left,
MHV

�fp(125364) + fp(125463)� fp(134265) + fp(126543)� fp(132465)� fp(123564),

MHV: Any non-planar amp can be taken as summation of planar amps



Non-planar on-shell diagrams III:  
General Procedure

f( bC) = M0(
bX)

Y

i

Mi(
bX � ↵Y )⇥

✓
minors

without ↵

◆

↵ = M0( bX)/R(Y )

General method to obtain the integrand

Fi(C) ! Fi( bC) = Fi(C) + F 0
i (C)↵ = F 0

i ( bC)↵

Fi(· · · bX � ↵Y · · · ) = 0
Constraints

where

a cb

1 2

2

1

1

2



Non-planar on-shell diagrams IV:  
General Procedure

C 0 =
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BBB@
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1 2
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1
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An NMHV Example 
1
fp

(134)(357)[(457)(126)�(456)(127)]3

(124)(126)(135)(145)(267)(367)(457)2

fp = (123)(234)(345)(456)(567)(671)(712).where
For NMHV, there are geometry constraints

(345)2, (567)2.

(2, 8) ! (6, 8) ! (4, 2) ! (1, 2 ! (2, 3) ! (2, 4) ! (4, 5) ! (4, 6) ! (6, 7) ! (1, 6) ! (6, 8)

�1

(124)(126)(257)(134)(345)(567)(367)
�1

(124)(126)(167)(234)(357)(345)(567)

1

(124)(127)(167)(346)(235)(345)(567)
1

(124)(127)(134)(267)(356)(345)(567)

1

(123)(126)(143)(467)(275)(345)(567)
1

(123)(126)(243)(467)(175)(345)(567)

1

(123)(127)(143)(267)(456)(345)(567)
1

(123)(127)(234)(167)(456)(345)(567)
.

But non of them correspond to planar amplitude

After a long calculation we can simplify it 
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