High precision study for boosted Higgs at LHC

Second China High Precision HEP Workshop

Xuan Chen

Centre for High Energy Physics Peking University

Beijing, June 15, 2016

Xuan Chen (CHEP, Peking University)

Typical Event at LHC

- Large production rate for Standard Model processes
 - jets
 - top quark pairs
 - vector bosons
- Allow high precision measurement
 - masses $(m_T, m_H \cdots)$
 - couplings (SM, EFT, BSM)
 - parton distributions
 - differential cross sections
- Strong constrain for both SM and BSM

Milestone Achievement \rightarrow New Scalar @ 125 GeV

- Theory is not crucial for direct discovery
- However is needed to interpret discovery as due to the production and decay of a Standard Model Scalar-like particle
- Indirect determination of spin and CP properties
- Currently the most accurately studied process involving QCD (N³LO + NNLL)

Higgs Boson Discovery \rightarrow Precision Physics

- Higgs discovery requires sophisticated theory predictions
 - higher-order perturbative calculations
 - resummation program
 - reliable non-perturbative tools (PDFs, PS, Jet ...)
- BSM effects are well hidden \rightarrow more precise study of Higgs couplings

Xuan Chen (CHEP, Peking University)

Higgs Boson Discovery \rightarrow Precision Physics

ATLAS Simulation Preliminary $\sqrt{s} = 14 \text{ TeV}: \left[\text{Ldt}=300 \text{ fb}^{-1} ; \left[\text{Ldt}=3000 \text{ fb}^{-1} \right] \right]$

- Higgs discovery requires sophisticated theory predictions
 - higher-order perturbative calculations
 - resummation program
 - reliable non-perturbative tools (PDFs, PS, Jet ...)
- BSM effects are well hidden → more precise study of Higgs couplings
 Xuan Chen (CHEP, Peking University)
 High precision study for boosted Higgs at LHC

- Boosted Higgs is common phenomenon at LHC
 - Distinct treatment from both theory and experiment
 - More of opportunity rather than challenge

- Boosted Higgs is common phenomenon at LHC
 - Distinct treatment from both theory and experiment
 - More of opportunity rather than challenge
- Boosted Higgs is a useful tool to study the properties of the Higgs boson
 - Predict and test differential cross section involving $d\sigma/dp_T$, $d\sigma/dy\cdots$
 - Study various Higgs decay channels in boosted system

- Boosted Higgs is common phenomenon at LHC
 - Distinct treatment from both theory and experiment
 - More of opportunity rather than challenge
- Boosted Higgs is a useful tool to study the properties of the Higgs boson
 - Predict and test differential cross section involving $d\sigma/dp_T$, $d\sigma/dy\cdots$
 - Study various Higgs decay channels in boosted system
- Improve signal/ background ratio for different jet multiplicities
 - $\bullet~{\rm V}$ boosted Higgs from $p\bar{p} \rightarrow V + H$
 - Jet boosted Higgs from $gg \to t\bar{t} + H$
 - Jet boosted Higgs from $pp \to H+jets$

- Boosted Higgs is common phenomenon at LHC
 - Distinct treatment from both theory and experiment
 - More of opportunity rather than challenge
- Boosted Higgs is a useful tool to study the properties of the Higgs boson
 - Predict and test differential cross section involving $d\sigma/dp_T$, $d\sigma/dy\cdots$
 - Study various Higgs decay channels in boosted system
- Improve signal/ background ratio for different jet multiplicities
 - $\bullet~{\rm V}$ boosted Higgs from $p\bar{p} \rightarrow V + H$
 - Jet boosted Higgs from $gg \to t\bar{t} + H$
 - $\bullet\,$ Jet boosted Higgs from $pp \to H+jets$
- Exclusive contribution to n-jet bins for Jet veto analysis in Higgs production

• Reduced signal/ background ratio from Higgs associated production channels

- V boosted Higgs from $p\bar{p} \rightarrow V + H$
 - Select events with $p_T^{\bar{H}} > 200 GeV$
- Jet boosted Higgs form $gg \to t\bar{t} + H$
 - Select events with $p_T^{\breve{H}} > 200 GeV$
 - Compare double and triple b-taggings to prevent Jet overlap

Butterworth, Davison, Rubin, Salam 2008 Xuan Chen (CHEP, Peking University) High precision study for boosted Higgs at LHC

• ATLAS and CMS both started the measurement for boosted Higgs

- $pp \rightarrow H \rightarrow \gamma \gamma$ jet-bin analyses
 - Different experimental accuracy in each bin
 - Large theory/exp disagreement at high jet multiplicity

- Various selection rules in experiment to distinguish signal from background
- Need to study the precise theory involving those selection rules (e.g. jet veto cut)
 - N^3LO H production result is not enough for 0-jet bin: $\sigma_0 = \sigma_{tot} \sigma_{\geq 1}$
 - Unertainty is reduced by improving $\sigma_{\geq 1}$ (same α_s order: $H@N^3LO$, HJ@NNLO)

• Differential cross section in for boosted Higgs

- Differential corss sections contain detailed properties of Higgs (event shape, forward/backward symmetry, \cdots)
- Large prediction error could be dominated by missing higher orders
- Request for more precise differential predictions

State-of-the-art Predictions for Boosted Higgs on LHC

- ggF channel (jet boosted, colour charged current)
 - H + 2 jets NLO (EFT): H. van Deurzen, N. Greiner et al 13
 - H + 3 jets NLO (EFT): G. Cullen, H. van Deurzen et al 13
 - H + jet NNLO (EFT): R. Boughezal et al 13; XC et al 14; F. Caola et al 15
 - H + H NNLO (EFT) D. de Florian, J. Mazzitelli 14
 - H + jet LO (Full mt): S. Dawson 90's
 - H + H NLO (Full mt): S. Borowka, N. Greiner, G. Heinrich et al 16
- VBF channel (jet boosted, colour neutral current)
 - H+2 jets NNLO (Fully inclusive): P. Bolzoni, F. Maltoni 10
 - HH+2 jets NNLO (Fully inclusive): Liu-Sheng Ling et al 14
 - H+2 jets NNLO (Fully differential): M. Cacciari, F. A. Dreyer et al 15
- VH channel (V boosted, colour charged current)
 - ZH NNLO: G. Ferrera, M. Grazzini, F. Tramontano 14
 - WH NNLO: G. Ferrera, M. Grazzini, F. Tramontano 13
 - WHH NNLO: see J. Wang's talk
- $t\bar{t}$ fusion channel (jet boosted, colour charged current)
 - $H+t\bar{t}$ approximate NNLO: A. Broggio, A. Ferroglia et al 15

State-of-the-art Predictions for Boosted Higgs on LHC $\bullet \ pp \rightarrow VBF \rightarrow H + 2 \ jets$

M. Cacciari, F. A. Dreyer et al 15

- Realistic collider VBF cuts: $p_t^j > 25 GeV$; $|y_j| < 4.5$; $\Delta y_{j_1,j_2} > 4.5$ etc
- Improved scale variation
- Different distribution shape for NNLO Xuan Chen (CHEP, Peking University)
 High precision study

State-of-the-art Predictions for Boosted Higgs on LHC $\bullet \ pp \rightarrow H + jet \ (EFT)$

F. Caola, K. Melnikov, M. Schulze 15

- Improved scale variation
- Relatively uniform k factor for NNLO/NLO (show later)
- Similar cuts used in ATLAS however has tension when comparing with data

Xuan Chen (CHEP, Peking University)

State-of-the-art Predictions for Boosted Higgs on LHC

- ggF channel (jet boosted, colour charged current)
 - H + 2 jets NLO (EFT): H. van Deurzen, N. Greiner et al 13
 - H + 3 jets NLO (EFT): G. Cullen, H. van Deurzen et al 13
 - H + jet NNLO(EFT): R. Boughezal et al 13; XC et al 14; F. Caola et al 15
 - H + H NNLO (EFT) D. de Florian, J. Mazzitelli 14
 - H + jet LO (Full mt): S. Dawson 90's
 - H + H NLO (Full mt): S. Borowka, N. Greiner, G. Heinrich et al 16
- VBF channel (jet boosted, colour neutral current)
 - H+2 jets NNLO (Fully inclusive): P. Bolzoni, F. Maltoni 10
 - HH+2 jets NNLO (Fully inclusive): Liu-Sheng Ling et al 14
 - H+2 jets NNLO (Fully differential): M. Cacciari, F. A. Dreyer et al 15
- VH channel (V boosted, colour charged current)
 - ZH NNLO: G. Ferrera, M. Grazzini, F. Tramontano 14
 - WH NNLO: G. Ferrera, M. Grazzini, F. Tramontano 13
 - WHH NNLO: see J. Wang's talk
- $t\bar{t}$ fusion channel (jet boosted, colour charged current)
 - H+ $t\bar{t}$ approximate NNLO: A. Broggio, A. Ferroglia et al 15

Higgs+jet building blocks

• Higgs production via gluon fusion through a quark loop. In the heavy Top mass limit, we have the effective interaction

• The effective dimension five term in Lagrangian Wilczek, Shifman et al (70's)

$$\mathcal{L}_{H}^{int} = \frac{C}{2} H \operatorname{Tr} G_{\mu\nu} G^{\mu\nu} \qquad C = \frac{\alpha_s}{6\pi V} (1 + \mathcal{O}(\alpha_s))$$

- Less than 1% theoretical uncertainty in pure Higgs production Harlander, Mantler et al (10)
- EFT approximation breaks down in high P_T region in Higgs + jets final states Harlander, Neumann et al (12)
- Effective dimension six operators for new physics effects Dawson et al (14); Ghosha et al (14)

$$O_g = \Phi^{\dagger} \Phi G^a_{\mu\nu} G^{\mu\nu a} \qquad O_{3g} = f^{abc} G^{a\mu}_{\nu} G^{b\nu}_{\rho} G^{c\rho}_{\mu}$$

Xuan Chen (CHEP, Peking University)

High precision study for boosted Higgs at LHC

. . .

Higgs+jet building blocks

- tree level 2→3+H amplitudes Del Duca, Frizzo, Maltoni (Feynman); XC, Nigel (BCFW);
 - Implicit divergency in P.S.
- 1-loop 2→2+H amplitudes Berger, Del Duca, Dixon; Badger, Glover, Mastrolia, Williams; Badger, Ellis
 - Implicit divergency in P.S. as well as explcit poles up to ϵ^{-2}
- 2-loop 2→1+H amplitudes Gehrmann, Jaquier, Glover, Koukoutsakis
 - Explicit poles up to ϵ^{-4}
- Analytic results with spinor-helicity formalism (Stable IR limit for RR and RV ?)

Parton Level Cross Section Structure at NNLO

$$\begin{split} d\hat{\sigma}_{NNLO} &= \int [\langle \mathcal{M}^0 | \mathcal{M}^0 \rangle]_{H+5} d\Phi_{H+3} \\ &+ \int [\langle \mathcal{M}^0 | \mathcal{M}^1 \rangle + \langle \mathcal{M}^1 | \mathcal{M}^0 \rangle]_{H+4} d\Phi_{H+2} \\ &+ \int [\langle \mathcal{M}^1 | \mathcal{M}^1 \rangle + \langle \mathcal{M}^2 | \mathcal{M}^0 \rangle + \langle \mathcal{M}^0 | \mathcal{M}^2 \rangle]_{H+3} d\Phi_{H+1} \\ &= \int_{d\Phi_{H+3}} d\hat{\sigma}_{NNLO}^{RR} + \int_{d\Phi_{H+2}} d\hat{\sigma}_{NNLO}^{RV} + \int_{d\Phi_{H+1}} d\hat{\sigma}_{NNLO}^{VV} \end{split}$$

- $d\hat{\sigma}$ renormalised factorized parton level cross section
- Analytical integration of P.S. transforms IR divergence into explicit poles
- Challenge to extract implicit IR divergence from RR and RV without P.S. integration
 - Calculate RR and RV in separate parton level Monte Carlos
 - Collect finite contributions from RR and RV for differential cross-section analysis

NNLO Subtraction

$$d\hat{\sigma}_{NNLO} = \int_{d\Phi_{H+3}} (d\hat{\sigma}_{NNLO}^{RR} - d\hat{\sigma}_{NNLO}^{S}) + \int_{d\Phi_{H+2}} (d\hat{\sigma}_{NNLO}^{RV} - d\hat{\sigma}_{NNLO}^{T}) + \int_{d\Phi_{H+1}} (d\hat{\sigma}_{NNLO}^{VV} - d\hat{\sigma}_{NNLO}^{U})$$

• Consistency requirement:

- Subtraction terms mimic the divergent behaviour of matrix elements
- Each bracket is finite
- Calculations in *d* dimension for explicit pole cancellation
- The construction of red terms and the treatment of P.S. depends on the subtraction method
- pp→H+J processes: color particles in both initial and final states

$$0 = \int_{d\Phi_{H+3}} d\hat{\sigma}_{NNLO}^S + \int_{d\Phi_{H+2}} d\hat{\sigma}_{NNLO}^T + \int_{d\Phi_{H+1}} d\hat{\sigma}_{NNLO}^U$$

Xuan Chen (CHEP, Peking University)

NNLO Antenna Subtraction Method

Gehrmann-De Ridder, Gehrmann, Glover 05

- Subtraction terms constructed from antenna functions (from ME)
- Each antenna has two specified hard radiators + 1 or 2 unresolved patrons

$$\begin{split} X_3^0(i,j,k) \sim & \frac{|\mathcal{M}_{ijk}^0|^2}{|\mathcal{M}_{IL}^0|^2} \\ X_4^0(i,j,k,l) \sim & \frac{|\mathcal{M}_{ijkl}^0|^2}{|\mathcal{M}_{IL}^0|^2} \\ X_3^1(i,j,k) \sim & \frac{|\mathcal{M}_{ijk}^1|^2}{|\mathcal{M}_{IK}^0|^2} - X_{ijk}^0 \frac{|\mathcal{M}_{IK}^1|^2}{|\mathcal{M}_{IK}^0|^2} \end{split}$$

• Momentum mappings give the P.S. for reduced ME

$$d\Phi_{H+3} \to d\Phi_{H+2} d\Phi_{H+3} \to d\Phi_{H+1} d\Phi_{H+2} \to d\Phi_{H+1}$$

- Integrated antenna functions all known and contain explicit poles
- Explicit pole cancellation between integrated antenna functions and loop calculations is analytical

Xuan Chen (CHEP, Peking University)

Antenna Subtraction Method

• Antenna function form physical matrix elements

A, Ã, B, C ~ γ^{*} → qq̄ + partons (hard quark - antiquark pair)
D, E, Ẽ ~ X̃ → g̃ + partons (hard quark - gluon pair)
F. G. G̃, H ~ H → partons (hard gluon - gluon pair)

Gehrmann-De Ridder, Gehrmann, Glover, 05

• Complete set of Antenna tool box

phase config. \otimes type \otimes parton types [FF, IF, II] \otimes $[X_3^0, X_4^0, X_3^1] \otimes [A \sim H]$

- All antenna functions are analytically integrable
 - Final-Final \mathcal{X}_3^0 , \mathcal{X}_4^0 and \mathcal{X}_3^1 Gehrmann-De Ridder, Gehrmann, Glover (05)
 - Initial-Final \ddot{X}^0_3 , \ddot{X}^0_4 and \ddot{X}^1_3 Daleo, Gehrmann, Gehrmann-De Ridder, Luisoni, Maitre (06,09,12)
 - Initial-Initial \mathcal{X}_3^0 , \mathcal{X}_4^0 and \mathcal{X}_3^1 Boughezal, Daleo, Gehrmann-De Ridder, Gehrmann, Maitre, Monni, Ritzmann (10,11,12)

Xuan Chen (CHEP, Peking University)

Antenna subtraction for double real emission (RR)

 $d\hat{\sigma}_{NNLQ}^S \sim X_3^0 |\mathcal{M}_{n+1}^0|^2 + X_4^0 |\mathcal{M}_n^0|^2 + X_3^0 X_3^0 |\mathcal{M}_n^0|^2 + X_3^0 |\mathcal{M}_n^0|^2 soft$

Three possible colour ordering of double unresolved particles

Xuan Chen (CHEP, Peking University)

Antenna subtraction for real emission at loop level (RV)

$$d\hat{\sigma}_{NNLO}^T \sim J_2^{(1)} |\mathcal{M}_{n+1}^0|^2 + X_3^0 |\mathcal{M}_n^1|^2 + X_3^1 |\mathcal{M}_n^0|^2 + J_2^{(1)} X_3^0 |\mathcal{M}_n^0|^2$$

Currie, Glover, Wells (13)

Only single unresolved limit

Xuan Chen (CHEP, Peking University)

Antenna subtraction for two-loop level (VV)

- Double virtual level only have explicitly poles and no parton become unresolved
- Collect all leftover subtraction terms (integrated) in $d\hat{\sigma}^U_{NNLO}$

$$\begin{split} d\hat{\sigma}_{NNLO}^{U} &\sim J_{2}^{(1)} (|\mathcal{M}_{n}^{1}|^{2} - \frac{\beta_{0}}{\epsilon} |\mathcal{M}_{n}^{0}|^{2}) \\ &- \frac{1}{2} J_{2}^{(1)} \otimes J_{2}^{(1)} |\mathcal{M}_{n}^{0}|^{2} \\ &+ J_{2}^{(2)} |\mathcal{M}_{n}^{0}|^{2} \end{split}$$

Currie, Glover, Wells (13)

$$pole\{d\hat{\sigma}_{NNLO}^{VV}\} \sim pole\left\{I_{ij}^{(1)} \otimes |\mathcal{M}_{n}^{1}|^{2} - (\frac{1}{2}I_{ij}^{(1)} \otimes I_{ij}^{(1)} + \frac{\beta_{0}}{\epsilon}I_{ij}^{(1)} - I_{ij}^{(2)})|\mathcal{M}_{n}^{0}|^{2}\right\}$$

S. Catani (98)

- VV pole cancellation analytically checked with FORM
- Master code (.map) \rightarrow (.frm) (.f) (.tex)

Xuan Chen (CHEP, Peking University)

XC, J. Cruz-Martinez, J. Currie, A. Gehrmann-De Ridder, T. Gehrmann, N. Glover, A. Huss, M. Jaquier, T. Morgan, J. Niehues, J. Pires

$$\begin{array}{ll} \checkmark & pp \to H \to \gamma\gamma \text{ plus 0, 1, 2 jets} \\ \checkmark & pp \to e^+e^- \text{ plus 0, 1 jets} \\ \checkmark & pp \to \text{dijets} \\ \checkmark & ep \to 2(+1) \text{ jets} \\ \checkmark & \dots \end{array}$$

Xuan Chen (CHEP, Peking University)

• $pp \rightarrow H + \geq 1 jet$

- Higgs production via gluon fusion in EFT
- Precise study for p_t^H distribution (Boosted Higgs)
- Current large disgreement in $\gamma\gamma Jet$ final states
- One of the first NNLO processes done with three different subtraction formalisms
 - pp \rightarrow H + J Antenna subtraction. xC, Gehrmann, Glover and Jaquier 1408.5325, 1604.04085
 - pp \rightarrow H + J Sector Improved Decomposition subtraction (without quark-quark channel). Boughezal, Caola, Melnikov, Petriello, Schulze 1302.6216, 1504.07922, 1508.02684
 - pp \rightarrow H + J N-jettiness subtraction. Boughezal, Focke, Giele, Liu, Petriello 1505.03893
 - Important crosscheck to appear in LHCHXSWG YR4 report ggF chapter

• $pp \rightarrow H + \ge 1 jet$

- Higgs production via gluon fusion in EFT
- Precise study for p_t^H distribution (Boosted Higgs)
- Current large disgreement in $\gamma\gamma Jet$ final states
- One of the first NNLO processes done with three different subtraction formalisms
 - pp \rightarrow H + J Antenna subtraction. xC, Gehrmann, Glover and Jaquier 1408.5325, 1604.04085
 - pp \rightarrow H + J Sector Improved Decomposition subtraction (without quark-quark channel). Boughezal, Caola, Melnikov, Petriello, Schulze 1302.6216, 1504.07922, 1508.02684
 - pp \rightarrow H + J N-jettiness subtraction. Boughezal, Focke, Giele, Liu, Petriello 1505.03893
 - Important crosscheck to appear in LHCHXSWG YR4 report ggF chapter
- Published results with ATLAS cuts (1407.4222v2):
 - ATLAS: $\sigma_{H+\geq 1j}^{\text{fid}} \to \gamma \gamma + \geq 1j}(8 \text{ TeV}) = 21.5 \pm 5.3 \text{(stat.)} \pm 2.2 \text{ (syst.)} \pm 0.6 \text{(lumi)} \text{ fb}$
 - NNLOJET: $\sigma_{NNLO}^{\text{fid}} = 9.4^{+0.65}_{-0.89}$ fb ($\mu_R = \mu_F = m_H, 0.5 \times m_H, 2 \times m_H$)

$$\sigma_{LO}^{\rm fid} = 5.42^{+2.32}_{-1.49} ~{\rm fb}, ~\sigma_{NLO}^{\rm fid} = 7.98^{+1.76}_{-1.46} ~{\rm fb}, ~\sigma_{NNLO({\rm gr})}^{\rm fid} = 9.44^{+0.59}_{-0.85} ~{\rm fb}$$

• Sector Improved Decomposition:

$$\sigma_{LO}^{\rm fid} = 5.42^{+2.32}_{-1.49} \,\, {\rm fb}, \,\, \sigma_{NLO}^{\rm fid} = 7.98^{+1.76}_{-1.46} \,\, {\rm fb}, \,\, \sigma_{NNLO({\it gA})}^{\rm fid} = 9.45^{+0.58}_{-0.82} \,\, {\rm fb}$$

Xuan Chen (CHEP, Peking University)

- Improve with new setup (preliminary):
 - Include full m_t, m_b, m_c dependence at LO:
 - Apply modern PDF set: PDF4LHC15_nnlo (was NNPDF2.3)
 - $\bullet\,$ Apply identical photon isolation algorithm as ATLAS (85% \sim 95% efficiency)

$$\sigma_{LO}^{\mathsf{fid}(m_q)} = 4.19^{+1.78}_{-1.17} \; \mathsf{fb}, \; \sigma_{NLO}^{\mathsf{fid}(m_q@LO)} = 7.72^{+1.7}_{-1.45} \; \mathsf{fb}, \; \sigma_{NNLO}^{\mathsf{fid}(m_q@LO)} = 9.19^{+0.71}_{-0.96} \; \mathsf{fb}$$

$$\begin{split} p_{\perp}^{jet} &> 30 \text{ GeV}, \ \text{In}_{jet}\text{I} < 4.4 \\ p_{\perp}^{Y_1} &> 0.35 \cdot \text{m}_{\text{H}}, \ p_{\perp}^{Y_2} &> 0.25 \cdot \text{m}_{\text{H}} \\ \text{In}_{\gamma}\text{I} &< 2.37 \\ \text{anti-k}_{\text{T}} \quad (\text{R=0.4}) \\ \text{PDF4LHC15} \\ \mu_{\text{R}} &= \mu_{\text{F}} &= (0.5, 1, 2) \cdot (\text{m}_{\text{H}}^2 + p_{\text{TH}}^2)^{1/2} \end{split}$$

ATLAS fiducial cut

• Improve with new setup (preliminary):

- Include full m_t, m_b, m_c dependence at LO:
- Apply modern PDF set: PDF4LHC15_nnlo (was NNPDF2.3)
- $\bullet\,$ Apply identical photon isolation algorithm as ATLAS (85% \sim 95% efficiency)

 $\sigma_{LO}^{\rm fid(m_q)} = 4.19^{+1.78}_{-1.17} ~{\rm fb}, ~\sigma_{NLO}^{\rm fid(m_q@LO)} = 7.72^{+1.7}_{-1.45} ~{\rm fb}, ~\sigma_{NNLO}^{\rm fid(m_q@LO)} = 9.19^{+0.71}_{-0.96} ~{\rm fb}$

 $\begin{array}{l} p_{\perp}^{jet} > 30 \; GeV, \; |\eta_{jet}| < 4.4 \\ p_{\perp}^{Y_1} > 0.35 \cdot m_H, \; p_{\perp}^{Y_2} > 0.25 \cdot m_H \\ |\eta_{\gamma}| < 2.37 \\ anti-k_T \quad (R=0.4) \\ \text{PDF4LHC15} \\ \mu_R=\mu_F=(0.5,1,2) \cdot (m_H^2+p_{TH}^2)^{1/2} \end{array}$

 $\begin{array}{l} p_{\perp}^{jet} > 25 \; GeV, \; I\eta_{jet} | < 2.5 \\ p_{\perp}^{Y_1} > 1/3 \cdot m_H, \; p_{\perp}^{Y_2} > 1/4 \cdot m_H \\ I\eta_V | < 2.5 \\ anti-k_T \quad (R=0.5) \\ PDF4LHC15 \\ \mu_R=\mu_F=(0.5,1,2) \cdot (m_H^2 + p_{\perp}^2)^{1/2} \end{array}$

ATLAS fiducial cut

CMS fiducial cut

• Published CMS data with very different cut (photon isolation efficiency 63%) (1508.07819):

• CMS: $\sigma_{H+\geq 1j \to \gamma\gamma+\geq 1j}^{\rm fid}$ (8 TeV) = $10.7\pm7.7({\rm comb.})$ fb (hepData not available)

 $\sigma_{LO}^{\rm fid(m_q)} = 4.19^{+1.81}_{-1.15} ~{\rm fb}, ~\sigma_{NLO}^{\rm fid(m_q@LO)} = 8.03^{+1.84}_{-1.53} ~{\rm fb}, ~\sigma_{NNLO}^{\rm fid(m_q@LO)} = 9.81^{+0.8}_{-1.06} ~{\rm fb}$

• Differential cross section comparison

XC, Cruz-Martinez, Gehrmann, Glover and Jaquier (Preliminary)

- Tension in the total cross section help us better understand the distributions
- In general, normalising by σ^H_{tot} is to minimize the luminosity error
- Tension in the last bin above due to finite quark mass effects

Xuan Chen (CHEP, Peking University)

• Differential cross section comparison

XC, Cruz-Martinez, Gehrmann, Glover and Jaquier (Preliminary)

- Differential distribution in the high p_T region is well controled
- Scale variation reduced drastically with NNLO
- NNLO corrections are essential (≥ 25%) in some bins

Xuan Chen (CHEP, Peking University)

p_T^H study from $pp \to H + \ge 0 jet$

- Study Higgs p_T distributions with parton boosted Higgs at NNLO+NNLL
- Loose/remove the requirment of jet to study more inclusive P.S. for Higgs
- Still require a p_T^H cut to keep the integral finite
- No jet algorithm applied
- Large log terms related to the $p_T^H \ {\rm cut} \ {\rm will} \ {\rm appear}$
- Require resummation especially in the small p_T region (see Huaxing Zhu's talk)

P. F. Monni, E. Re, P. Torrielli 16

• Higgs p_T distributions with parton boosted Higgs at NNLO

XC, Cruz-Martinez, Gehrmann, Glover and Jaquier (Preliminary)

- Differential distribution in full p_T region is well controled
- Scale variation reduced drastically with NNLO
- NNLO corrections are subtential and towards the right direction

Summary & Outlook

Summary

- · Boosted properties of Higgs is an interesting field not yet well understood
 - Boosted Higgs is very common on LHC and reveal more details of understanding of SM
 - Precise QCD calculations are essential for such study at LHC
 - Resolve theory/experiment disagreement requires more inputs on both sides

Future work

- To compare with ATLAS and CMS data in $H \rightarrow ZZ(WW)$ decay channel
- The dominant Higgs decay channel $H \rightarrow b\bar{b}$ is more complicated
- Implementation/collaboration on NNLO VBF channel

Summary & Outlook

Summary

- Boosted properties of Higgs is an interesting field not yet well understood
 - Boosted Higgs is very common on LHC and reveal more details of understanding of SM
 - Precise QCD calculations are essential for such study at LHC
 - Resolve theory/experiment disagreement requires more inputs on both sides
- Future work
 - To compare with ATLAS and CMS data in $H \rightarrow ZZ(WW)$ decay channel
 - ${\, \bullet \,}$ The dominant Higgs decay channel $H \to b \bar b$ is more complicated
 - Implementation/collaboration on NNLO VBF channel

THANK YOU!

Xuan Chen (CHEP, Peking University)

High precision study for boosted Higgs at LHC

Beijing, June 15, 2016 32 / 36

NNLO subtraction scheme

NNLO subtraction schemes are usually inspired by NLO techniques

- FKS \rightarrow Sector Improved Decomposition (STRIPPER) (M.Czakon 10; Boughezal et al 11)
- q_T subtraction + FKS \rightarrow N-jettiness (J.R.Gaunt et al 15; Boughezal, et al 15)
- Antenna function $(X_3^0) o$ Antenna function (X_3^1, X_4^0) (T.Gehrmann et al 05)
- q_T subtraction (S.Catani, M.Grazzini 07), Colourful subtraction (Del Duca, Trocsanyi et al 05), Born projection (Cacciari, Dreyer et al 15) · · ·

• Each NNLO subtraction scheme has its advantanges and disadvantages

NNLO subtraction scheme

NNLO subtraction schemes are usually inspired by NLO techniques

- FKS \rightarrow Sector Improved Decomposition (STRIPPER) (M.Czakon 10; Boughezal et al 11)
- q_T subtraction + FKS \rightarrow N-jettiness (J.R.Gaunt et al 15; Boughezal, et al 15)
- Antenna function $(X_3^0) \rightarrow$ Antenna function (X_3^1, X_4^0) (T.Gehrmann et al 05)
- q_T subtraction (S.Catani, M.Grazzini 07), Colourful subtraction (Del Duca, Trocsanyi et al 05), Born projection (Cacciari, Dreyer et al 15) •••

• Each NNLO subtraction scheme has its advantanges and disadvantages

	Analytic	Local	FS colour	IS colour	Automated
Antenna	 ✓ 	 ✓ 	 ✓ 	 ✓ 	×
STRIPPER	×	 ✓ 	 ✓ 	 ✓ 	×
N-jettiness	 Image: A set of the set of the	×	 	 ✓ 	×
Colourful	 Image: A set of the set of the	× .	 	×	×
q_T	 Image: A set of the set of the	×	×	 ✓ 	 Image: A set of the set of the
Born Projection	 Image: A set of the set of the	 	 Image: A set of the set of the	 Image: A second s	×

Xuan Chen (CHEP, Peking University)

- Matrix elements
 - Use known tree, one-loop, two-loop ME directly (fast evaluation)
 - $\bullet\,$ Automation not yet available $\rightarrow\,$ interface with automated tools
 - Constrained by limited two-loop ME
 - Test numerical stability of known tree and one-loop ME (Internal cancellation of terms with high divergent order)

- Matrix elements
- Subtraction terms (semi-automated)
 - Analytical construction for process with different legs
 - Fast application for process with same complexity: $pp \rightarrow H + Jet$ directly application to $pp \rightarrow V + Jet$
 - Maple \rightarrow (Form) \rightarrow Fortran (auto-generation)

```
\{i4 = k3, i6 = k4, i7 = k5, [i1] = k1, [i2] = k2\}
3
         call pmap7to5II(i1,i2,i3,i5,i4,i6,i7,k1,k2,k3,k4,k5,ipass)
4
         call ecuts_vj(5, ipass)
5
         if (ipass.eq.1) then
6
           jpass(31)=1
7
           call getqcdnorm(ix,partons(31,:),facnorm(31,:))
8
Q
           wt(31) = -1d0 * FullF40(i1, i3, i2, i5, 7) * A3g0H(k1, k2, k3, k4, k5)
           call bino(1, partons(31,:), -relfac*wt(31)*facnorm(31,:),5)
10
         endif
```

• Uniformed structure (user friendly)

- Matrix elements
- Subtraction terms (semi-automated)
- Uniformed structure (user friendly)
 - Automated link between LO, NLO and NNLO

```
jet.map:
1
2 ##
3 LO : = [
                                    RR := \Gamma
4 [A4g0,[g,g,g,g],1],
                                    [A6g0,[g,g,g,g,g,g],1],
5 [B2g0, [qb,g,g,q], 1/nc],
                                    [At6g0, [g,g,g,g,g,g], -1/nc**2],
6 [Bt2g0, [qb,gt,gt,q], -1/nc**3], [B4g0, [qb,g,g,g,g,q], 1/nc],
7 [COg0,[qb,Q,Qb,q],1/nc**2],
                                    [Bt4g0, [qb,g,g,g,g,q], -1/nc**3],
8 [D0g0,[qb,q,qb,q],-1/nc**3]
                                    [Btt4g0, [qb,g,g,g,g,q], (nc**2+1)/nc**5]
                                    1:
9]:
  gcdnormjet.f:
1
                  ###########
  c -- double real
3
        case(171)
4
           factor=2d0*1d0/24d0*facRR
                                                  ! g g -> g g g g
                                                                         A6g0
5
        case(172)
6
           factor=-1d0/nc**2*2d0*1d0/24d0*facRR
                                                       ! g g -> g g g g At6g0
7
8
```

```
case(173)
    factor=1d0/nc*1d0/24d0*facRR ! q qb -> g g g B4g0
case(174)
```

• Optmised integration: azimuthal averaging, dynamic scale, double differential XS

9

- Matrix elements
- Subtraction terms (semi-automated)
- Uniformed structure (user friendly)
 - Automated link between LO, NLO and NNLO

```
sigRRHJ.f:
1
                  2
 c--- q qb to g g g ph1 ph2
       if(ip(88))then
4
5
         iproc = 88 nfB1 = 3 ip1 = 30 ip2 = -30
         call getqcdnorm(ix,partons,factor)
6
         kinwt = factor*(B3g0H(1,3,4,5,2,6,7)
7
                             +B3g0H(1,3,5,4,2,6,7)
8
      .
                             +B3g0H(1,4,3,5,2,6,7)
9
                             +B3g0H(1,4,5,3,2,6,7)
                             +B3g0H(1,5,3,4,2,6,7)
                             +B3g0H(1,5,4,3,2,6,7))
 sigSHJ.f:
1
                        ###############
 c--- q qb to g g g ph1 ph2
3
       if(ip(88))then
4
         iproc = 88 nfB1 = 3 ip1 = 30 ip2 = -30
         wt = qqbB3g0HS(1,3,4,5,2,6,7)
6
         wtsum = wtsum + wt
```

• Optmised integration: azimuthal averaging, dynamic scale, double differential XS

Xuan Chen (CHEP, Peking University)