
FDC Project

FDC Project

Bin Gong

Collaborated with J.X. Wang and Y.D. Wang

Institute of High Energy Physics, CAS

June 17, 2016

FDC Project

Outline

1 Brief Introduction

2 Tutorial

FDC Project

Brief Introduction

Brief Introduction

FDC = Feynman Diagram Calculation

Purpose: automatic calculation of physical processes

First developed by Prof. J.X. Wang since 1993

First version of FDC has been presented at AIHENP93.

Written in REDUCE and RLISP to generate Fortran Code

Including some additional parts for certain physical research
e.g. FDC-PWA (Partial Wave Analysis application for
experimental study)

FDC Project

Brief Introduction

REDUCE

a general-purpose Computer Algebra System geared towards
applications in physics.

written in Portable Standard LISP

something like Mathematica, FORM and Maple etc.

open-sourced and freed now (since December 2008)

user-level language: RLISP

two modes: algebraic and symbolic

FDC Project

Brief Introduction

a simple example of reduce

Tr(p̂1p̂2p̂3p̂4) is calculated here, shown in both algebraic and symbolic modes

FDC Project

Brief Introduction

FDC Project

Brief Introduction

Current Models

The Standard Model (SM) has already been constructed.

The Minimal Supersymmetric Standard Model (MSSM) also
has been constructed.

Also compatible with phenomenological models.

Most intermediate states and effective vertices from NRQCD
has been implemented in the SM.

QCD counter terms have been manually inserted in the SM.

FDC Project

Brief Introduction

Process Calculation at Tree Level

generate Feynman diagrams (after you choose your model and
process)

manipulate amplitude diagram by diagram (and square it
according to your option)

generate Fortran codes for amplitude or squared amplitude

output analytic results for (squared) amplitude (LaTeX
Format available)

generate Fortran codes for phase space integration (including
special treatment for peaks, BASES)

cross section integration (run the Fortran codes above)

parton level event generation (SPRING inside BASES)

parton shower and hadronization (PYTHIA)

FDC Project

Brief Introduction

One-loop Part of FDC

The one-loop part of FDC is completed in 2007, and upgraded
in 2011 to calculate processes involving P-wave particles

The results are obtained analytically.

at the level of amplitude square, before the integration of
phase space.
usually they are still in numerical form (Fortran codes), as in
most cases, they are too complicated to read.

A two-cutoff phase space slicing method (PSS) [Harris and
Owens (2002)] is realized in FDC to deal with IR divergences
in real correction processes

The divergences are factorized in soft/collinear limit, and
added to corresponding virtual correction processes.

All the divergence are separated analytically, and then
summed up to check if they are really cancelled with others.

FDC Project

Brief Introduction

More on one-loop calculation

Counter term diagrams are generated automatically (after the
input of renormalization constant)

Loop integrals are calculated analytically under dimensional
regularization.

All the divergence (both UV and IR) are separated during the
calculation of amplitude analytically

In 2007 version, Passarino-Veltman reduction method is used
for tensors reduction

In 2011, new reduction method (a kind of IBP) for loop
integrals is realized.

The cutoff independence has to be checked after summing up
both real and virtual corrections.

FDC Project

Brief Introduction

Work Done with FDC at one-loop level (mostly in
quarkonium physics)

Quarkonium production in e+e− annihilation

J/ψ + ηc , J/ψ + J/ψ, J/ψ + X

Quarkonium production and polarization puzzle at hadron
colliders.

J/ψ(Υ):
3
S
[1]
1 ,

3
S
[8]
1 ,

1
S
[8]
0 ,

3
P

[8]
J

χc(b):
3
P

[1]
J ,

3
S
[8]
1

Decays

ηb → J/ψ + J/ψ

Others

FDC Project

Brief Introduction

n(intermediate state)
3
S

[1]
1

3
S

[8]
1

1
S

[8]
0

3
P

[8]
J

gg → 〈cc̄〉n + g 6/129 16/413 12/267 12/267

gq → 〈cc̄〉n + q - 5/111 2/49 2/49

qq̄ → 〈cc̄〉n + g - 5/111 2/49 2/49

gg → 〈cc̄〉n + gg 60 123 98 98
gg → 〈cc̄〉n + qq̄ 6 36 20 20

gq → 〈cc̄〉n + gq 6 36 20 20

qq̄ → 〈cc̄〉n + gg 6* 36 20 20
qq̄ → 〈cc̄〉n + qq̄ - 14 4 4

qq̄ → 〈cc̄〉n + q′q̄′ - 7 2 2

qq → 〈cc̄〉n + qq - 14 4 4
qq′ → 〈cc̄〉n + qq′ - 7 2 2

Number of diagrams for subprocesses in inclusive J/ψ(Υ) hadroproduction at
NLO

FDC Project

Tutorial

Prerequisites

A Unix-like system

REDUCE

open source
available at http://reduce-algebra.com/downloading.htm

A Fortran Compiler

MPI environment if you want to use MPI

FDC Project

Tutorial

Establish Environments

environment variables

fdc: where you store your FDC source
model: where you store your models
PATH: you have to tell your OS where to find “reduce” and
other commands provided by FDC

bash: modify .bashrc in your home directory and add:

export fdc=/̃fdc2.0

export model=/̃model
export PATH=$PATH:/usr/local/bin:$fdc/bin:./

csh/tcsh: modify .cshrc in your home directory and add:

setenv fdc /̃fdc2.0

setenv model /̃model
set path=($path /usr/local/bin $fdc/bin ./)

FDC Project

Tutorial

Installation

Install Reduce (usually psl version)

you will get a script called ”redpsl” after installation
make a new script ”reduce” with only two lines:
redhome=“path of your reduce/../pslbuild/...”
exec $redhome/psl/bpsl -td 1000 -f $redhome/red/reduce.img
and put it in the directory you choose before
check /usr/local/bin/reduce in the virtual machine for this step

Copy FDC source to the directory your chosen above, and run
util/xbuild to build fdc source in the source directory.

Compile Fortran Libraries of FDC and BASES (confirm
Fortran compiler).

Construct/obtain a model

FDC Project

Tutorial

Particles in the given model:

name name in FDC mass mass in FDC width in FDC charge spin cp
νe nue 0 0 0 0 1/2 no
νµ numu 0 0 0 0 1/2 no
ντ nut 0 0 0 0 1/2 no
e− ef me fme whe −1 1/2 no
µ− mu mµ fmmu whmu −1 1/2 no
τ− tau mτ fmtau whtau −1 1/2 no
u qu mu fmu whu 2/3 1/2 no
c qc mc fmc whc 2/3 1/2 no
t qt mt fmt wht 2/3 1/2 no
d qd md fmd whd −1/3 1/2 no
s qs ms fms whs −1/3 1/2 no
b qb mb fmb whb −1/3 1/2 no
γ p 0 0 0 0 1 no
Z0 z mZ0 zm wh 0 1 no
w+ w mw wm wh 1 1 no
g gs 0 0 0 0 1 no
h0 h0 mh hm wh 0 0 no
gg gsg 0 0 0 0 0 no

FDC Project

Tutorial

Calculation

create a directory for the process use process cp

modify “process.def” and “option” files in the directory to
specific

physical model of your process
incoming and outgoing particles
order of result
way to obtain squared amplitude
some others...

use doall to perform the following:

gen diag: generate diagrams of the process (psdraw)
amp: manipulate square of amplitude and output in Fortran
kine: generate code for phase space integration
make: compile the Fortran code

run the Fortran code with int (int2, int3, int4)

FDC Project

Tutorial

Fortran Codes

all stored in the directory fort

makefile

parameter(1).f: physical parameters

int.f: main program, need parameters in input.dat

func.f: phase space
amps2.f: squared amplitude

method 1:
amp???.f /ampl???.f: LO/NLO amplitude of corresponding
diagram
ams??.f: square of LO amplitude
amsl??.f square of NLO amplitude with LO amplitude

method 2
amps20.f: square of LO amplitude
amp???.f: square of corresponding NLO diagram with LO
amplitude

xxn2(3,4).f: duplicate of code for divergences (int2-4)

FDC Project

Tutorial

Thanks for your attention!

FDC Project

Tutorial

construction and triangulation of convex polyhedral cone

Start from:

Gk = C ′
∫ 1

0
dN−1ααvUβ

k F
γ
k (1)

do transformation αi = e−yi

Gk = C ′
∫ ∞

0
dN−1ye−v ·yUβ

k F
γ
k (2)

suppose ∆bb′ is the domain where e−b(b′)·y is maximal

Gk =
∑
b

∑
b′

∫
∆bb′

dN−1ye−(v+bβ+b′γ)·y ×

cb +∑

d �=b

cde
−(d−b)·y

β

×

cb′ + ∑

d′ �=b′
cd′e

−(d′−b′)·y

γ

(3)

FDC Project

Tutorial

Zbb′ is a set of vectors, Zbb′ = {vi}, without zero vector.

∆bb′ is a set of all possible y defined by

∆bb′ ≡ {y |(y , vi) ≥ 0, ∀vi ∈ Zbb′} . (4)

C(Zbb′) is a vector space generated by Zbb′

C(Zbb′) ≡
{∑

i

civi |ci ≥ 0, vi ∈ Zbb′

}
. (5)

It is also a convex polyhedral cone in N-dimensional Euclidean space.

Dual cone of C(Zbb′) is defined by

C(Zbb′)
V ≡ {y |(y , vi) ≥ 0, ∀vi ∈ C(Zbb′)}= ∆bb′ . (6)

C(Zbb′)
V can also be expressed by all its edges:

C(Zbb′)
V =

{∑
i

ciui |ci ≥ 0, ui ∈ Ubb′

}
. (7)

finding ∆bb′ → finding Ubb′

FDC Project

Tutorial

The dual cone is constructed by finding all its edges.

“positive” and “negative” vectors

∀ N − 1 linear independent vectors (inequalities) → a candidate, judge by
(u, vi) ≥ 0 for all other vi

suppose there are m vectors remaining after redundancy removal, total
number of possible edges: CN−1

m

FDC Project

Tutorial

B. W. Harris and J. F. Owens, Phys. Rev. D65, 094032 (2002).

