

CFETR项目总体介绍

万元熙 1, 2

¹ University of Science and Technology of China, Hefei, China

² Institute of Plasma Physics, CAS Hefei, China

E-mail: wanyx@ipp.ac.cn or wanyx@ustc.edu.cn

2016年4月27-29日,上海

高温与高场超导材料及其应用技术研讨会

Chinese Fusion Engineering Test Reactor

中国(磁约束)聚变工程实验堆

是一个全超导托卡马克型的聚变工程实验堆

•为什么要建设CFETR,其基础及科学技术目标?

·为什么CFETR必须是超导托卡马克?

- 1. 聚变能的开发在托卡马克装置上取得重大进展:
 - ・托卡马克
 - •从T3 ITER
 - ·超导托卡马克是实现稳态运行的必要条件;
 - ・从 ITER—PFPP
- 2. CFETR项目介绍
 - ・科学目标
 - ・建设基础
 - ・总体工程概念设计
 - ・已开始的预制研究
 - ·期望和计划——尽快开始工程设计和更多部件的预研
- 3. 小结

磁场可以约束带电粒子

磁约束

principle of magnetic confinement

Both ions and electrons, of which the plasma consists, have electrical charge and move spirally along a magnetic field line by nature.

磁容器可盛装和约束高温等离子体

开发聚变能的研究在

托卡马克类型的磁约束实验

装置上取得了突破性进展!

托卡马克环形磁容器的实际构成

Toroidalnaya Kamera Magnitnaya

器的三个基本磁场:

- 纵向磁场;
- 极向磁场
- 等离子体电流磁场

最重要的工程参数是:

大半径:	K
小半径:	a/b
纵场强度:	B _T
等离子体电流	I _p

Primary Transformer Circuit (inner poloidal field coils)

> asma Positioning nd Shaping Colls

- 最高温度达到 2-4 亿度;
- 最高聚变输出功率超过 16 兆瓦;
- 功率放大因子Q = 聚变输出功率/输入功率,已达到 1.25;

磁约束聚变正在发生里程碑的重大转变:

Discovers from many medium size devices and theory progress :

获得聚变功率:改善约束达到劳森判据—得失相当

开发聚变能必须经过二个关联和必要的阶段-2

稳态运行充

分必要条件

- 为了能够长时间保持燃烧状态,托卡马克环形磁容器
 - •由外部磁体产生的磁场必须稳态 📰 🚽 超导磁体;
 - ·必须维持稳态的等离子体电流; 无感电流驱动
 - · 其它物理和技术问题:如破裂控制等
- 所以超导托卡马克是聚变堆稳态运行以获得实用聚变能源的必要条

托卡马克物理和工程技术前沿研究领域

建设超导托卡马克,实现长脉冲或者稳态运行,

研究在这种条件下各种先进运行模式,成为了以开发能源

"燃烧"

为目标的聚变最前沿的物理和工程技术研究领域!!!

$\mathbf{E}_{\mathbf{fusion}} \propto (\mathbf{n} \times \mathbf{T} \times \boldsymbol{\tau}_{E}) \times \mathbf{t}$

磁约束聚变正在发生里程碑的重大转变:

Discovers from many medium size devices and theory progress :

关于国际热核聚变实验堆 ITER

科学目标: 功率放大倍数达到 5~10,聚变功率达到40~70 万千 瓦,一次放电聚变燃烧维持时间400~3000秒; **集成演示未来能提供能源的聚变堆的物理和工程技术** 基础:

- 规 模:是一个耗资超过百亿,10年才能建成,总重超过2万3千 吨的最大国际合作项目;
- 科学基础: 它是在许多托卡马克上获得的实验定标率的基础上的 适当外推;根据这一定标率的外推在托卡马克上开发 聚变能的科学可行性已被证实;
- 重要意义:是各国建实用聚变堆前最重要的共担风险的堆工程技 术和堆物理集成发展研究,目标是为建造未来具有实 用意义的聚变堆奠定基础;

ITER 现状:进展和目标

The ITER Project moving forward at full speed

● 场地和各部件加工正在顺利推进, 已陆续运抵现场

- 总装准备工作和总装已经开始招标;
- 预期2025年建成放电;
- 预期2030年前后开始氘氚运行, 逐步实现 Q≥10,

聚变功率 40 万千瓦, 400-3000秒长脉冲放电

Bernard Bigot

ITER 现状:采购包分担

国际热核聚变实验堆 (ITER)建筑群

ITER 现状:场地建设进展

ITER 现状:主机厅

Tokamak System Integration

Cleaning facility building 17

Assembly hall 13

TOKAMAK building 11

- Introduction of the Tokamak components in Building17;
- Preparation and sub-assembly of the sectors in Building13;
- Transport of the sector sub-assemblies via 2x750 ton crane to the Tokamak Pit;
- Final assembly of the components/sub-assemblies in the Tokamak Pit.

ITER 现状:主机厅进展

Recent on-site achievements: **Assembly Hall** Before being integrated in the machine, the components will be prepared and pre-assembled in the building of 6000 m2 up to 60 meters. The 730-ton roof was put in place September 10-11, 2015.

ITER 超导磁体系统:・ 产生并维持典型托卡马克磁容器 ・ 感应产生兆安量级的等离子体电流

ITER 超导磁体系统

Table 1.1-1Overall Magnet System	Parameters
Number of TF coils	18
Magnetic energy in TF coils (GJ)	~ 41
Maximum field in TF coils (T)	11.8
Centering force per TF coil (MN) (~~100吨)	403
Vertical force per half TF coil (MN)	205
TF electrical discharge time constant (s)	11
CS peak field (T)	13.5
Total weight of magnet system (t)	~ 10,135

ITER 现状:TF磁体热处理

Manufacturing progress Japan

Japan is manufacturing half of the 18 giant toroidal field coils needed for ITER. Here, the D-shaped pancake windings are heat treated at 650 °C for 100 hours to react tin and niobium to form the superconducting compound niobium-tin.

ITER 现状:真空室加工

Manufacturing progress Korea

In Korea, where two of nine vacuum vessel sectors are under construction, welding is carried out on the upper section of an inner shell—only a small piece of the full component.

ITER 现状:外杜瓦系统

ITER Cryostat Overview

ITER Cryostat forms a vacuum tight container, surrounding the entire Tokamak Machine subjected to external pressure and designed to evacuate to a base pressure of 1x10⁻⁴ Pa;
 Cryostat supporting system is designed to provide the support to Superconducting Magnet System and Vacuum Vessel. (Cryostat Dimension: ~ 30m high, 30m diameter)

• ITER 最大不足是:

有效燃烧时间太短(14年的氘氚运行实验期内D-T燃烧时间仅为 4% 约 ~ 6.72月);

- 绝大部分包层仅为屏蔽包层,结果是:
 - ⑦ 没有足够的、具有实用价值的聚变能量输出;
 - 📽 不能在实际的运行实验中实现(演示)氚自持;
 - ⑦ 因为有效的燃烧时间太短(占空比太低),因此不能充分进行有关DEMO和 未来聚变能电站要求的有关材料、包层功能以及重要部件(例如偏滤器) 的实验研究;
- 因此,国际聚变界一致认为必须在设计和建造聚变电站之前建设和
 运行工程实验堆

新的里程已经开始:从 ITER 到 FPP

• ITER:

- "燃烧"等离子体稳态运行物理可行性?
- "燃烧"等离子体稳态运行工程可行性?
- 维持稳态等离子体电流、加热在物理、技术上的挑战;
- 偏滤器物理和工程技术
- 先进运行模式物理和工程上的可行性?

• CFETR:

- 氚的增殖和自持:物理和工程技术挑战?
- 聚变堆材料:第一壁材料;包层结构材料;增殖包层功能材料;
- 核环境下的遥操作;
- 包层高效发电

我国建设CFETR的基础—(1)建成全超导托卡马克EAST装置

② EAST的研究进入国际前沿—1MA, 400s稳态运行

获得了411s的中心等离子体密度约2×10¹⁹m⁻³、中心电子 温度大于2000万度的高温等离子体 (JET:60s)

EAST的研究进入国际前沿——获得高约束稳态等离子体

获得稳定重复超过 30 秒的 H 模等离子体放电 (JET : 12s)

EAST的研究进入国际前沿—获得高约束稳态等离子体

国家决定依托科技大学成立磁约束聚变堆总体设计组

(2011年3月16日)

科学技术部司发函

国科基函〔2011〕3号

关于成立磁约束聚变堆总体 设计组(筹备)的通知

教育部科技司,中科院基础局,中核集团科技部:

为全面消化吸收国际热枝聚变实验堆(ITER)设计技术,掌握 聚变堆相关的物理和工程设计及关键技术,开展我国磁约束聚变堆 总体设计研究,经研究,决定成立磁约束聚变堆总体设计组(筹备), 磁约束聚变堆总体设计组(筹备)由19名成员组成,万元照教授 任组长,李建刚研究员、刘永研究员和汪小琳研究员任副组长,磁 约束聚变堆总体设计组(筹备)成员名单见附件,总体设计组成员 可根据需要适当增补或调整。

磁约束聚变堆总体设计组(筹备)的职责是:

1. 全面收集、整理、保存、吸收、消化和利用 ITER 总体设计

磁约束聚变堆总体设计组(筹备)成员名单 万元熙 教 授 中国科学技术大学 副组长: 李瑋刚 研究员 中科院等高子体物理所 刘 永 研究员 核工业西南物理研究院 组长万元熙 汪小琳 研究员 中国工程物理研究院 成 员(按姓氏笔画排序) 万发荣 教 授 北京科技大学 研究员 中科院等离子体物理所 万宝年 冯开明 研究员 核工业西南物理研究院 副组长: 汪小琳 叶昆方 研究员 中科院等离子体物理所 教 授 华中科技大学 研究員 中国科学技术大学/中科院等高子体物理所 某官处 研究员 核工业西南物理研究院 核工业西南物理研究院 ITER 组织/中科院等高子体物理) 核工业西南物理研究院 中科院等高子体物理所 中科院等离子体物理所 副组长: 李建刚、刘永 研究员 核工业标准化研究所 億 腐 研究员 中科院等高子体物理所 虚清泉 研究员 中科院等离子体物理所/德国等离子体研究所

- 1 -

及总体管理技术资料;

推进实施;

工作。

2. 开展我国聚变堆总体设计研究,编制聚变堆总体设计各项

3. 研究提出聚变堆设计人才培养方案建议,并根据需要协助

中国科学技术大学作为磁约束聚变堆总体设计组(筹备)依托

请各有关部门和单位支持磁约束聚变堆总体设计组(筹备)的

附件:磁约束聚变堆总体设计组(筹备)成员名单

抄送: 中国科学技术大学、总体设计组各成员单位。

任务的规划、计划和实施方案,根据发展需求对计划实施提出调整

建议,为条件成熟时建造中国聚变堆奠定必要的设计基础;

4. 完成科技部交办的其它任务。

主题词:成立 聚变 设计 通知

单位,科技部将每两年对依托单位进行评估。

经过四年的国内外研讨和设计,总体组确定了CFETR的

科学目标,完成了CFETR的总体工程概念设计,在完成ITER

采购包的同时CFETR某些项目的预研取得重要进展;

CFETR 项目受到国内外同行高度关注!

- 基于ITER , 超越 ITER ;
- 聚变功率第一步: P_f = 50 ~ 200MW; 第二步: 1000MW;
- 年有效"燃烧"运行时间等于大于50%的长脉冲或者稳态运行;
- 通过先进增殖包层实现<u>氚自持和热能转换发电;</u>
- 基于现有ITER物理基础(k~1.8-2,q > 3, H~1),但具有进一步升 级的能力;
- 实现和演示聚变能源堆包层和偏滤器等涉核部件的遥控安装和维护;
- 为进一步建造原型聚变电站 (PFPP) 奠定物理工程技术基础

CFETR 装置的总体布局

- $B_t = 4.5 5T;$
- I_p=7-10MA;
- **R** = 5.7m;
- a = 1.6m;
- K= a/b=1.8~2.0;
- $\beta_{\rm N} \sim 2.-3$; $q_{95} \ge 3$;
- Triangularity $\delta = 0.4-0.8$;
- Single-null diverter;
- Neutron wall loading ≈0.5MW/m²;
- **Duty cycle time = 0.3-0.5;**
- TBR ~ 1.2
- Possible upgrade to R~6.0 m, a~2 m, B_t= 5T~7T, I_p~14 MA

CFETR上可以实现的关键参数范围

Operation mode	А	B	С	D	E	ITER -SS	Upgrade
I _p (MA)	10	10	10	8	8	9	15
P _{aux} (MW)	65	65	65	65~70	65	59	65
q ₉₅	3.9	3.9	3.9	4.9	4.9	5.2	3.9
W(MJ)	171~174	193	270~278	171	255	287	540
P _{Fus} (MW)	197~230	209	468~553	187~210	409	356	1000
Q _{pl}	3.0~3.5	3.2	7.2~8.5	2.7~3.2	6.3	6.0	15
T _{i0} (keV)	17.8~18.5	29	19.8~20.8	20.6~21	21	19	25
N _{el} (10 ²⁰ /m ³)	0.75	0.52	1.06	0.65	0.94		1
n _{GR}	0.6	0.42	0.85	0.65	0.95	0.82	0.85
$\beta_{\rm N}$	1.59~1.62	1.8	2.51~2.59	2	2.97	3.0	2.7
$\beta_{\rm T}(\%)$	~2.0	2.3	3.1~3.25	2	2.97	2.8	4.2
$f_{bs}(\%)$	31.7~32.3	35.8	50~51.5	50	73.9	48	47
$\tau_{98Y2}(s)$	1.82~1.74	1.55	1.57~1.47	1.37	1.29	1.94	1.88
$P_N/A(MW/m^2)$	0.35~0.41	0.37	0.98	0.33~0.37	0.73	0.5	1.38
I _{CD} (MA)	3.0~3.1	7.0	2.45	4.0	2.76		3.0
H ₉₈	1	1.3	1.2	1.3	1.5	1.57	1.2
T _{burning} (S)	1250	SS	2200	M/SS	SS Th	PO.3 R	Wan etc

CFETR设计任务分解(分类)

- 1. 反应堆总体(物理、工程)集成设计;
- 2. 聚变堆物理和运行实验;
- 3. 加热、电流驱动物理和工程技术;
- 4. 诊断及CODAC;
- 5. 聚变堆总体结构(真空室、真空系统、 杜瓦、冷屏);
- 6. 低温、超导磁体及其支撑系统;
- 7. 内部部件(包层、核反应、偏滤器、 材料);

- 8. 电源,水冷及技术支持系统;
- 9. 遥控安装及维护;
- 10. 燃料循环及处理;
- 11. 辐射防护及安全;
- 12. RAMI分析;
- 13. 工程总体管理及标准化;
- 14. 厂房和选址

建成先进3D设计平台

Design and management servers

Terminals of the design cloud

Virtual reality system

先进设计平台的特点

CFETR 超导磁体系统

	Ci Diri man paranoters (i i Like/ ouper-xi, onownake)				/
	Parameter	ITER-Like	Super-X	Snowflake	ITER
	Number of TF coils	16	16	16	18
	Plasma current (MA)	10	10	10	15
	Central magnetic field(T)	5.0	5.0	5.0	5.3
	Maximum current of TF coil (kA/turn)	67.4	67.4	67.4	68
	Major radius(m)	5.7	5.7	5.7	6.2
	Minor radius(m)	1.6	1.6	1.48	2.0
	Ohm field coil center radius(m)	1.415	1.415	1.415	2.055
	Maximum Volt second	160	160	160	240-250
	Elongation	1.8/2.0	1.8/2.0	2.17/2.14	1.70/1.85
	Number of PF coils	6	8	8	6
Back U-shaped structure Front inner panel Back inner panel Toroidal flexisle support		S3U S2U S1U S1L S2L S3L	ing Tie Plate	The magnedistribution maximum is about 12 2 4 6 The max field in p about 14	etic flux n. The B of CS coil 2 T 8 10 12 cimum of stray plasma area is b GS

structure

Present State and Future Plan for Nb₃Al Superconductor Our Current Level Aim within 5-8 years Aim within 3-5 years **RHQ Nb₃Al wires:** RHQ Nb₃Al strands: MATERIALS LTD Nb₃Al strands: 700–1000 m; Dia.0.70-1.20 2000-3000 m; Dia.0.70-Cu-matrix; Dia.0.70-1.20 mm; 18 or 48 filaments with 1.20 mm Cu stabilization; mm; 700-1000 m; Cu wrap; T_c=18.0 K, 48 or 56 filaments; 18 filaments; J_c (4.2K, $J_{c}(4.2K, 15T) = 600-800$ $J_{c}(4.2K, 15T) = 1000-1200$ 15T)=200-300 A/mm² A/mm² for long strands. A/mm² for long strands. for long strands. 16T or 18T Nb₃Al Highfield Solenoid Magnets MAGNETS Full-size React with React and Wind Nb₃Al magnet with and Wind Nb₃Al a field of 15.2 T: process. Bore size 20 mm. Insert for CFETR Outer Dia, 65 mm. 100-200 m Nb₃Al CICC **DEMO** with a field Height 120 mm with Dia.42.6 mm and of 15-16T. Operation Current of 46 kA at 13 T. WE HAVE A DREAM! Full-size React and Wind Nb₃AI TF and CS coils for DEMO within 8-10 years.

< 0

COILS	R(m)	Z(m)	$\triangle R(m)$	$\triangle Z(m)$	TURNS	
CS1U	1.625	0.7	0.85	1.4	476	
CS2U	1.625	2.1	0.85	1.4	476	
CS3U	1.625	3.5	0.85	1.4	476	
CS4U	1.625	4.9	0.85	1.4	476	
CS4L	1.625	-4.9	0.85	1.4	476	
CS3L	1.625	-3.5	0.85	1.4	476	
CS2L	1.625	-2.1	0.85	1.4	476	
CS1L	1.625	-0.7	0.85	1.4	476	

Bi2212-High temperature Superconducting Central solenoid

CS coils include eight Bi2212 coils. Each coil consists of 14 double pancake

\$ 032

46

Bi2212 strands cabling and CICC structure

Parameters	HTS coil
Centerline location R/m	1.625
Total turns of each coil	476 turns, 14 DP(34 turns)
Number of Superconducting wire/turn	525
Minimum piece length	400 m
Cable configuration	$(1sc+1Cu) \times 3 \times 5 \times 5 \times 7$
Dimension of each turn/m	46 mm×46 mm
Operation current of each turn/kA	51.00
Operation current density /A/mm ²	200
B _{max} / T	20 T

CFETR 装置的总体布局

使用

Bi-2212

Nb₃Al

- $B_t = 4.5 5T;$
- **I**_p=**7-10MA**;
- **R** = 5.7m;
- a = 1.6m;
- $K = a/b = 1.8 \sim 2.0;$
- $\beta_{\rm N} \sim 2.-3$; q₉₅ ≥ 3 ;
- Triangularity $\delta = 0.4-0.8$;
- Single-null diverter;
- Neutron wall loading $\approx 0.5 M W/m^2$;
- **Duty cycle time = 0.3-0.5;**
- TBR ~ 1.2
- Possible upgrade to R~6.0 m, a~2 m, B_t= 5T~7T, I_p~14 MA

CFETR 真空室

- A torus shaped double wall structure;
- To provide high vacuum for plasma and primary radiation confinement boundary;
- To support in-vessel components
- Important space of the Vacuum Vessel for plasma;
- First safety barrier;

The CFETR blanket system composed of tritium breeding blanket and shielding blanket.

reflector

Inner target

Cassette.

Outer target

Snowflake divertor design

CFETR 偏滤器

- Cassette structure for easier RH handling. Shared cassette between snowflake and ITER-like divertor.
- Small incident angle ~16°

particle

reflector

- Outer > Closed 'V' shape configuration.
 - Pumping gap between dome and targets.
 - Divertor cooling scheme was developed.
 - Support design compatible with RH was finished.

CFETR tokamak 总装

CFETR工程概念设计总结

- I_p=7-10 MA
- $B_{to} = 4.5 5.0T$
- $R_0 = 5.7 \text{ m}$;
- a = 1.6 m;
- k=a/b=1.8~ 2.0
- $q_{95} \ge 3$;
- β_N ~2-3
- **P**_{fusion}: 200MW~1GW

Possible upgrade to R~5.9 m, a~2 m, B_t = 5T, I_p~14 MA

Chinese Fusion Engineering Test Reactor

(CFETR) Integration assembling with the RH)

CFETR某些关键部件的

预研制已经开始!

CFETR R&D 发展战略

·已建成三条超导导体生产线

- 3 jacketing lines and conductor integrating facility were set up in ASIPP.
- 2 parallel buildings were set up for conductor integrating, NDE, cabling, acceptance test.
- All conductors produced by CN DA were accepted with their first tests.
- The first ITER oversized components, PF5 conductor, arrived at ITER site in June.

Ceremony for 1st shipping

TF conductor arriving Italia

TF conductor arriving Japan

PF conductor arriving ITER site

已开始1/32 节全尺寸 CFETR 真空室研制

已开始1/6全尺寸 CFETR 中心螺管线圈研制

	Coil Parar	neters	
Nb ₃ Sn Coil	Design Paramet	1324	
	Max. field	12 T	
	Max. field rate	1.5 T/s	CS3U CS2U
	Inner radius	750 mm	CS1U
	Coil structure	Hybrid magnet Inner: Nb ₃ Sn coil Outer: NbTi coil	CS1L CS2L CS3L
NbTi Coil	Conductor type	Nb ₃ Sn CICC NbTi CICC	
Nb ₃ Sn	Conductor	NbTi Con	ductor
$ \begin{array}{c} $	49	$ \begin{array}{c} $	6.12

各种遥控系统的研制正在取得进展

EAST 上的遥控检测和维修实验取得成功

召开了多次有国际最著名聚变专家参加的研讨会

国际顾问委员会由国际最著名的聚变专家组成

CFETR受到国际聚变界高度关注

总体组已完成了CFETR的总体工程概念设计,

受到国内外同行高度关注,纷纷要求进一步扩大

交流、合作! 许多国外专家要求到中国来工作!

期望和建议

期望国家尽早决定正式开始CFETR的工程设计和关键部 件的预研!它将为建造CFETR奠定设计和预研基础! ● 全力支持先进超导材料(如Bi2212和Nb₃AI)的研发, 希望早日取得成功,它将是CFETR升级(聚变功率由 200MW升级到1000MW)的关键; • 由中国牵头建造CFETR将使中国在聚变能的开发领域引

领国际前沿!也将使我国先进超导材料的研发和产业发 展进入国际最先进行列!

- 国际聚变界决定联合建造ITER 是磁约束聚变能源开发研究 重要的里程碑进展,合作各方必须确保它的成功。
- 做为开发聚变能源重要一步,中国聚变工程实验堆的设计和
 预研,包括遥操作已经取得了重要进展;
- CFETR需要得到超导研究和产业界的大力支持才有可能实现 一期和升级运行,它的成功对建设未来先进聚变能电站十分 重要!
- 通过广泛国际合作和国内聚变界的共同努力,期望中国聚变 工程实验堆 CFETR 能在2030年建成,在2050年前后开始 聚变示范堆的建设。

核聚变能的成功开发将造福全人类,值得我们全力以赴!

Thanks for your attention !