# Introduction to Online System Trigger and DAQ (TriDAS) and beyond

# 北京大学物理学院 王大勇 dayong.wang@pku.edu.cn

The 3rd International Summer school on TeV Experimental Physics Tsinghua, July 17, 2016

是从天上掉下来的吗? ...不是。 是自己头(电)脑里固有的吗? ....不是。 ....只能从....科学实验...中来。



#### 我们的数据 是从哪里来 的?





### A modern HEP experiment





D712/mb-26/06/97



# **CMS Detector**

SILICON TRACKER Pixels (100 x 150 μm<sup>2</sup>) ~1m<sup>2</sup> ~66M channels Microstrips (80-180μm) ~200m<sup>2</sup> ~9.6M channels

> *CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL)* ~76k scintillating PbWO<sub>4</sub> crystals

#### PRESHOWER

Silicon strips ~16m<sup>2</sup> ~137k channels

STEEL RETURN YOKI ~13000 tonnes

Flexible trigger Large silicon tracker Strong magnetic field Broad acceptance

SUPERCONDUCTING SOLENOID Niobium-titanium coil carrying ~18000 A

Total weight: 14000 tonnesOverall diameter: 15.0 mOverall length: 28.7 mMagnetic field: 3.8 T

Niobium-titanium coil carrying ~18000 A

> HADRON CALORIMETER (HCAL) Brass + plastic scintillator ~7k channels

*FORWARD CALORIMETER* Steel + quartz fibres ~2k channels

#### MUON CHAMBERS

Barrel: 250 Drift Tube & 480 Resistive Plate Chambers Endcaps: 473 Cathode Strip & 432 Resistive Plate Chambers

### Online: Trigger, DAQ, Monitoring & Control ...





### Collisions at the LHC:



**Proton - Proton** 

**Protons/bunch Beam energy** Luminosity

2804 bunch/beam **10**<sup>11</sup> 7 TeV (7x10<sup>12</sup>eV) 10<sup>34</sup>cm<sup>-2</sup>s<sup>-1</sup>

Crossing rate 40 MHz(every25ns) Collision rate ≈

7x10<sup>8</sup> s<sup>-1</sup>

data recording rate 300 Hz 200-300 MB/sec

New physics rate ≈ .00001 Hz **Event selection: 1** in 10,000,000,000,000



Task: inspect detector information and provide a first decision on whether to keep the event or throw it out

The trigger is a function of :



Event data & Apparatus Physics channels & Parameters

 Detector data not (all) promptly available
Selection function highly complex
⇒T(...) is evaluated by successive approximations, the TRIGGER LEVELS (possibly with zero dead time)

### General trigger requirements

- The role of the trigger is to make the online selection of particle collisions potentially containing <u>interesting</u> <u>physics</u>
- Need high efficiency for selecting processes of interest for physics analysis
  - Efficiency should be precisely known
  - Selection should not have biases that affect physics results
- Need large reduction of rate from unwanted high-rate processes (capabilities of DAQ and also offline computers)
  - Instrumental background
  - High-rate physics processes that are not relevant for analysis
- System must be affordable
  - Limits complexity of algorithms that can be used
- Not easy to achieve all the above simultaneously!
- And never forget that an event rejected by the Trigger is lost for ever!

# 1960/70s:Simple trigger for spark chamber



### Dead time

Experiments frozen from trigger to end of readout

- Trigger rate with no deadtime = R per sec.
- Dead time / trigger =  $\tau$  sec.
- For 1 second of live time =  $1 + R\tau$  seconds
- Live time fraction =  $1/(1 + R\tau)$
- Real trigger rate =  $R/(1 + R\tau)$  per sec.

| Rate in Hz | Dead time ms. | Live time % | Trigger rate Hz |
|------------|---------------|-------------|-----------------|
| 10         | 10            | 91          | 9.1             |
| 1000       | 10            | 9.1         | 91              |

Solution: multi-level triggers!

$$S = \frac{pfR}{1 + R(t + f\tau)}$$

Exercise: the good event trigger rate

of the two level trigger is

where p is the purity of the event sample selected by the secondlevel trigger, R is the first-level trigger rate, t is the second-level decision time, f is the fraction of events that pass the second-level trigger, and  $\tau$  is the readout time.

# Trigger systems 1980's and 90's

- bigger experiments  $\rightarrow$  more data per event
- higher luminosities → more triggers per second
  - both led to increased fractional deadtime
- use multi-level triggers to reduce dead-time
  - first level fast detectors, fast algorithms
  - higher levels can use data from slower detectors and more complex algorithms to obtain better event selection/background rejection

# Trigger systems 1990's and 2000's

- Dead-time was not the only problem
- Experiments focussed on rarer processes
  - Need large statistics of these rare events
  - But increasingly difficult to select the interesting events
  - DAQ system (and off-line analysis capability) under increasing strain - limiting useful event statistics
    - This is a major issue at hadron colliders, but will also be significant at ILC
- Use the High Level Trigger to reduce the requirements for
  - The DAQ system
  - Off-line data storage and off-line analysis



实验的取数环境:加速器的时间结构,事例率和数据率,数据量,死时间

#### 一些对撞机及相应探测器的参数

| 对撞机                     | <i>最大束流</i><br>能量 <b>/GeV</b> | <i>亮度/(</i> 10³⁰<br>cm <sup>-2</sup> s <sup>-1</sup> ) | 周长<br>/km | 東团数     | <i>对撞周期</i><br>/ns | 探测器       | 电子学道数             |
|-------------------------|-------------------------------|--------------------------------------------------------|-----------|---------|--------------------|-----------|-------------------|
| <b>DAΦNE</b>            | 0.75                          | 5                                                      | 0.0977    | 30~120  | 2.7 ~<br>10.8      | KLOE      | 23k               |
| BEPC                    | 2.2                           | 5                                                      | 0.2404    | 1       | 802                | BES       | 20k               |
| CESR                    | 6                             | 830                                                    | 0.768     | 9X4     | 14-220             | CLEO      | 400k              |
| LEP                     | 101                           | 10000                                                  | 26.66     | 5120    | 22000              | ALEPH etc | 100~ 300k         |
| KEKB                    | 8+3.5                         | 3000                                                   | 3.016     | 1658    | 2                  | BELLE     | 133k              |
| HERA                    | e30+<br>p920                  | 14                                                     | 6.336     | 189+180 | 96                 | H1 etc    | 250k              |
| Tevatron                | 1000                          | 210                                                    | 6.28      | 36      | 396                | CDF etc   | 75~100k           |
| <b>LHC</b><br>2016/7/17 | 7000                          | 10000                                                  | 26.66     | 2835    | 25                 | CMS etc   | <b>100M</b><br>19 |





# Data Rate: TrigDAQ Comparisons



# ATLAS/CMS Data Flow Rates

- From detectors> 10<sup>14</sup> Bytes/sec
- After Level-1 accept~ 10<sup>11</sup> Bytes/sec
- Into event builder~ 10<sup>9</sup> Bytes/sec
  - Onto permanent storage~ 10<sup>8</sup> Bytes/sec

### LHC Trigger and DAQ summary

| ATLAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No.Levels<br>Trigger | First Level<br>Rate (Hz)                   | <b>Event</b><br>Size (Byte)            | <b>Readout</b><br>Bandw.(GB/s) | <b>Filter Out</b><br>MB/s (Event/s)                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------|----------------------------------------|--------------------------------|-----------------------------------------------------------------------|
| CMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                    | 10 <sup>5</sup><br>v-2 10 <sup>3</sup>     | <b>10</b> <sup>6</sup>                 | 10                             | <b>100</b> (10 <sup>2</sup> )                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                    | <b>10</b> <sup>5</sup>                     | <b>10</b> <sup>6</sup>                 | 100                            | <b>100</b> (10 <sup>2</sup> )                                         |
| LHCb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>3</b> LV<br>LV    | -₀ 10 <sup>6</sup><br>-1 4 10 <sup>4</sup> | 2x10 <sup>5</sup>                      | 4                              | <b>40</b> (2x10 <sup>2</sup> )                                        |
| Pictore worker<br>Pictore worker | <b>4</b> Рр.<br>р-г  | -Pp <b>500</b><br>⊳ 10 <sup>3</sup>        | 5x10 <sup>7</sup><br>2x10 <sup>6</sup> | 5                              | <b>1250</b> (10 <sup>2</sup> )<br><b>200</b> (10 <sup>2</sup> )<br>24 |

# Trigger Levels



#### Collision rate 10<sup>9</sup> Hz

Channel data sampling at 40 MHz

#### Level-1 selected events 10<sup>5</sup> Hz

Particle identification (High  $p_{T} e, \mu$ , jets, missing  $E_{T}$ )

- Local pattern recognition
- Energy evaluation on prompt macro-granular information

#### Level-2 selected events 10<sup>3</sup> Hz

#### Clean particle signature (Z, W, ..)

- Finer granularity precise measurement
- Kinematics. effective mass cuts and event topology
- Track reconstruction and detector matching

### Level-3 events to tape 100-400 Hz

#### Physics process identification

Event reconstruction and analysis

# Level-1 Trigger

### Level-1 trigger: reduce 40 MHz to 10<sup>5</sup> Hz

This step is always there



# Three physical entities(ATLAS)

### Additional processing in LV-2: reduce network bandwidth requirements





- Reduce number of building blocks

 Rely on commercial components (especially processing and communications)

### Comparison of 2 vs 3 physical levels

### Three Physical Levels

- Investment in:
  - Control Logic
  - Specialized processors





### Two Physical Levels

- Investment in:
  - Bandwidth
  - Commercial Processors







### **CMS CSC Track Finder**





**Dayong Wang** 

### Technologies in Level-1 systems

- ASIC(Application-Specific Integrated Circuit) used in some cases
  - Highest-performance option, better radiation tolerance and lower power consumption (a plus for on-detector electronics)
- FPGA(Field-Programmable Gate Array) used in all systems
  - Impressive evolution with time. Large gate counts and operating at 40 MHz (and beyond)
  - Biggest advantage: flexibility
    - Can modify algorithms (and their parameters) in situ
- Communication technologies
  - High-speed serial links (copper or fiber)
    - LVDS up to 10 m and 400 Mb/s; HP G-link, Vitesse for longer distances and Gb/s transmission
  - Backplanes
    - Very large number of connections, multiplexing data
      - operating at ~160 Mb/s
  - High speed optical links (fibers)
    - Up to 10Gb/s per link

# Level-1 Trigger: decision loop

- Synchronous 40 MHz digital system Global Trigger 1
  - Typical: 160 MHz internal pipeline
  - Latencies:
    - Readout + processing: < 1µs</li>
    - Signal collection & distribution: ≈ 2µs
- At LvI-1: process only calo+µ info



# Global Trigger

- A very large OR-AND network that allows for the specification of complex conditions:
  - I electron with P<sub>T</sub>>20 GeV OR 2 electrons with P<sub>T</sub>>14 GeV OR 1 electron with P<sub>T</sub>>16 and one jet with P<sub>T</sub>>40 GeV...
  - The top-level logic requirements (e.g. 2 electrons) constitute the "trigger-table" of the experiment
    - Allocating this rate is a complex process that involves the optimization of physics efficiencies vs backgrounds, rates and machine conditions



Detical System:
Single High-Power
Laser per zone
Reliability, trans

- Reliability, transmitter upgrades
- Passive optical coupler fanout

#### 1310 nm Operation

 Negligible chromatic dispersion

#### InGaAs photodiodes

 Radiation resistance, low bias
Synchronization



2835 out of 3564 p bunches are full, use this pattern:





2016/7/17

# Trigger Latency



#### At Level-1: only calo and muon info

Pattern recognition much faster/easier



- Simple algorithms
- Small amounts of data
- Local decisions



Need to link sub-detectors

### **The ATLAS Trigger System**





# Overview of CMS L1 Trigger



### Trigger alg: based on Particle signatures



#### Lvl-1 Calo Trigger: $e/\gamma$ algorithm (CMS)



#### ATLAS em cluster trigger algorithm

¢



- E.M. calorimeter
- Hadronic calorimet

 $\Delta \eta \mathbf{x} \Delta \phi \approx \mathbf{0.1} \mathbf{x} \mathbf{0.}^{*}$ 

"Sliding window" algorithm repeated for each of ~4000 cells



| > E.M. cluster threshold    |
|-----------------------------|
| <br>AND                     |
| < E.M. isolation threshold  |
| AND                         |
| < Hadronic isolation thresh |





Extrapolation: using look-up tables
Track Assembler: link track segmentpairs to tracks, cancel fakes
Assignment: P<sub>T</sub> (5 bits), charge, η (6 bits), φ( 8 bits), quality (3 bits)

# Lvl-1 muon trigger (CMS)



Pattern of strips hit:

#### **Implemented in FPGAs**

# The LVL1 Muon Trigger (ATLAS)

Safe Bunch Crossing
Identification
Wide p<sub>T</sub>-threshold

range

- Strong rejection of fake muons (induced by noise and physics background)

→Fast and high redundancy system



However this system: <sup>0</sup>

- 1. Looks only for tracks coming from the pp collision point
- 2. Looks only for ultrarelativistic tracks

#### 2016/7/17



Lvl-1 Calo  $e/\gamma$  trigger: performance

# Global muon trigger

- Combine results from RPC, CSC and DT triggers
- Match muon candidates from different trigger systems; use complementarity of detectors
- improve efficiency and rate
- assign muon isolation
- deliver the 4 best (highest P<sub>T</sub>, <sup>\*</sup>/<sub>2</sub>
   highest-quality) muons to
   Global Trigger
- Pt resolution:
  - 18% barrel
  - 35% endcaps

Efficiency: ~ 97%



50





### HLT/DAQ Hardware(ATLAS)

First 4 racks of HLT processors, each rack contains

- ~30 HLT PC's (PC's very similar to Tier-0/1 compute nodes)
- 2 Gigabit Ethernet Switches
- a dedicated Local File Server



### High Level Triggers (HLT)

- Run on farm of commercial CPUs: a single processor analyzes one event at a time and comes up with a decision
- Has access to full granularity information
- Freedom to implement sophisticated reco algorithms, complex selection requirements, exclusive triggers ...

#### **Constraints:**

- CPU time (Cost of filter farm)
  - Reject events ASAP: set up internal "logical" selection steps
    - L2: muon+ calorimeter only
    - □ L3: use full information including tracking
- Must be able to measure efficiency from data
  - Use inclusive selction whenever possible
    - □ Single/double object above pT/ET, etc.
  - Define HLT selection paths from the L1
- Keep output rate limited (obvious...)

2016/7/17

#### HLT Challenge: Compromise





### **HLT design principles**

- Early rejection
  - Alternate steps of feature extraction with hypothesis testing: events can be rejected at any step with a complex algorithm scheduling
- Event-level parallelism
  - Process more events in parallel, with multiple processors
  - Multi-processing or/and multi-threading



- Queuing of the shared memory buffer within processors
- Algorithms are developed and optimized offline, often software is common to the offline reconstruction



### Trigger performance: Efficiency vs background rejection



- Example: B meson trigger in LHCb
- Discriminating variable: Transverse momentum (P<sub>T</sub>)



# The evolution of DAQ systems







| 1970-80         |
|-----------------|
| MiniComputers   |
| first standard: |
| CAMAC           |
| •kByte/s        |

#### 1980-90 Microprocessors Distributed systems •MByte/s

1990-2000+ Communications networks Control & Data networks Embedded processors •GByte/s

# Typical architecture 2000+

Basic Architecture: ~ same for most experiments



- Readout (units/drivers/buffers/...)
- Switching network
- Processor Farm
- Control & Monitor System

#### Overview of the CMS DAQ and useful terminology





• Detector signals are collected through individual data acquisition systems (cables and boards) that end up at the FEDs: the first element of Global Data Acquisition system (DAQ)

• FED (detector FrontEnd boards): multiple FEDs per detector collect event fragments that are sent to the online event processing farm

• **Builder Units:** Computing farm that collects event fragments from all FEDs and merge them to produce full event information

• Filter Units: Computing farm where the High Level Trigger (HLT) is run to filter interesting events

• Storage Manager: application that saves to local disks events selected by the HLT

# **Event Building**

#### Event builder :

Physical system interconnecting data sources with data destinations. It has to move each event data fragments into a same destination



Fabric of switches for builder networks PC motherboards for data Source/Destination nodes

# 运行控制(RunControl)

>负责系统运行控制,提供 DAQ系统的状态管理,控 制数据获取的动作行为

▶ 遵循有限状态机模型的控制器分级系统,组织成树型层次结构,避免单一控制结点产生消息瓶颈



# Propagating transitions

 Each component or sub-system is modeled as a FSM
 The state transition of a component is completed only if all its subcomponents completed their own transition
 State transitions are triggered by commands sent through a *message*

State transitions are triggered by commands sent through a *message* system





HLT: All processing beyond Level-1 performed in the Filter Farm Partial event reconstruction "on demand" using full detector resolution 2016/7/17 64





#### Central Processing @ CERN





<sup>2016/7/17</sup> 

### Data Streams and Tier0 workflow

- Data streams & Tier0 workflows  $\rightarrow$  specialized for different tasks
- Depending on the latency
  - express  $\rightarrow$  prompt feedback & calibrations
    - short latency: 1-2 hours
    - ~40Hz bandwidth shared by:
      - calibration (1/2)
      - detector monitoring (1/4)
      - physics monitoring (1/4)
  - Alignment & Calibration (AlCa) streams
  - bulk data → sample for physics analysis (prompt reconstruction)
    - split in Primary Datasets (using High Level Trigger (HLT) decision)
    - will be delayed of 48h  $\rightarrow$  get latest calibrations
    - writing ~300Hz



# Data Tiers and Algorithms





- The complexity of the offline workflows requires robust validation
- Several stages of Data Quality Monitoring (DQM):
  - online DQM  $\rightarrow$  monitor detector performance during data-taking
    - dedicate event stream (sampling)
  - offline DQM  $\rightarrow$  monitor performance of physics objects
    - runs on full statistics available for analysis:
      - express reco  $\rightarrow$  fast feedback
      - prompt-reco  $\rightarrow$  continuous monitor
      - offline re-reco  $\ _{\rightarrow}\ validation$  of software and condition updates
- Physics Validation Team → coordinates the validation activity.
   Feedback from:
  - groups responsible for physics objects
  - detector performance groups
  - analysis group





#### Scope of Online DQM Shifts:

Identify problems with detector performance or data integrity during the run SPOT PROBLEMS QUICKLY FOR OPTIMAL OPERATION EFFICIENCY

2016/7/17

2




# TriDAS Challenges: HL-LHC@10<sup>35</sup>





2023/24:在座诸位大有可为!

• 230 min.bias collisions per 25 ns. crossing N<sub>ch</sub>(|y|≤0.5)

- ~ 10000 particles in  $|\eta| \le 3.2$
- mostly low p<sub>T</sub> tracks

requires upgrades to detectors

# Further References:

#### Bi-annual CHEP:

http://chep2015.kek.jp/

http://www.chep2013.org/

## Annual TWEPP conference:

<u>http://www.lip.pt/events/2015/TWEPP/</u> 2015(in Sep)

<u>https://indico.cern.ch/event/299180/overview</u> 2014

#### CMS TriDAS TDR.

V1: CERN-LHCC-2000-038 ; CMS-TDR-6-1

V2: CERN-LHCC-2002-026 ; CMS-TDR-6

## ATLAS TriDAS TDR

V1: CERN-LHCC-1998-014, ATLAS-TDR-12

V2: CERN-LHCC-2003-022, ATLAS-TRD-016

**ISOTDAQ:** the international school of trigger and data acquisition

http://isotdaq.web.cern.ch/isotdaq/isotdaq/Home.html



物理学是实验科学 ■ 以大搏小,见微知著  $dp \cdot dx \sim \hbar \xrightarrow{p \sim E} 1 \text{ TeV} \propto \frac{1}{2 \times 10^{-19} \text{ met}}$ ■ 以今日之物理探究明日之物理 □ 技术支撑 □ 标准烛光 ■研无定法, 无所不用其极