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Making a new particle



Unambiguous data

Ok, but see:
http://cerncourier.com/cws/article/cern/54388



Backgrounds



What’s in an event?

No event can be unambiguously interpreted.



Why statistics?

The nature of our data demands it.



Statistics for Discovery



Hypothesis testing

1.

To search for a new particle, we compare the predictions 
of two hypotheses:
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To search for a new particle, we compare the predictions 
of two hypotheses:

2.

X

PLUS X



Hypothesis Testing
BSM Particle 

is real
Standard Model

Claim BSM
Discovery

No Claim
of Discovery

True 
Positive

True 
Negative

False 
Negative

Type II error

False 
Positive

Type I error

α

β, power=1-β



Example

Number of Events

Freq
of occurance

H0 H1

A threshold makes sense.
Choice of position balances

Type I/II errors

Typically:
fix α

minimize β



Generalize

H0 H1

H0 H1Hypothesis
Testing

Parameter
Estimation cross-section



More complicated



Neyman-Pearson
Statement of the problem:



Neyman-Pearson
NP lemma says that the best

decision boundary is the likelihood ratio:

(Gives smallest β for fixed α)



What does the TS do?

(K. Cranmer)

Finds a region in variable space



Test statistic

(K. Cranmer)

Reduce vector of observables to 1 number

How to choose TS?



No problem
Fairly easy to find test statistic

if you can calculate

P(x|H1), P(x|H0)

or generally

   P(data|theory)



Hypothesis Testing
Sometimes this is easy

Standard Model
SM+X

pr
ob

ab
ili
ty
 d

en
si
ty

high level feature



Hypothesis Testing

Which can tell us which hypothesis is preferred via a likelihood ratio:
 
  LSM+X             P(data | SM+X)
  LSM  P(data | SM)

Standard Model
SM+X
Collider Data

high level feature
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We can compare the predictions to the collider data



In general

We have a good 
understanding of all
of the pieces 

Do we have

f(data|theory)?



In general

Hard
scatteringParton

Density
Functions

Showering
Hadronization

We have a good 
understanding of all
of the pieces 

Do we have

f(data|theory)?



In general

What would

f(data|theory)

look like?



The dream
f(data|final-state particles P)

x f(final state particles P|showered particles S)

x f(showered particles S|hard scatter products M)

x f(hard scatter products M| theory)

Sum over all possible intermediate P,S,M



The dream
f(data|final-state particles P)

x f(final state particles P|showered particles S)

x f(showered particles S|hard scatter products M)

x f(hard scatter products M| theory)

Sum over all possible intermediate P,S,M

Hard
scatteringParton

Density
Functions

Hadronization

Showering

Detector Response



The dream
f(hard scatter products M| theory)

Theory well defined
automatic calculators exist

for almost any (B)SM theory



The dream
f(hard scatter products M| theory)

Theory well defined
automatic calculators exist

for almost any (B)SM theory



The nightmare

We have: solid understanding of microphysics
We need: analytic description of high-level physics

f(data|final-state particles P)

x f(final state particles P|showered particles S)

x f(showered particles S|hard scatter products M)





The solution

Iterative approach
(1) Draw events from f(M|theory)
(2) add random showers
(3) do hadronization
(4) simulate detector

We have: solid understanding of microphysics
We need: analytic description of high-level physics

But: only heuristic lower-level approaches exist

Iterative simulation strategy, no overall PDF



The solution

What do we get
Arbitrarily large samples of events
drawn from f(data|theory), but not
the PDF itself

We have: solid understanding of microphysics
We need: analytic description of high-level physics

But: only heuristic lower-level approaches exist

Iterative simulation strategy, no overall PDF



The problem
Don’t know PDF, have events drawn from PDF

Need to recreate PDF

(K. Cranmer)



What do we need?
Want:
our model of the expected
results of the experiment

f( data | theory )

Provides:
- PDF for data as a
     function of POI, NPs
- generate pseudo-data
- fix data to get lhood

We have:
A tool that can generate
sample event data

How do we use that
 to build our PDF?



MC events to PDF
Simple approach : histogram

(K. Cranmer)



Example

Use histograms to define

 P(data | SM+X), 

and

 P(data | SM)

Standard Model
SM+X



G Cowan



Curse of Dimensionality
How many events

do you need
to describe a 1D 

distribution? O(100)

An n-D distribution?

O(100n)  

!!

(K. Cranmer)



The nightmare
f(data|final-state particles P)

x f(final state particles P|showered particles S)

x f(showered particles S|hard scatter products M)

“data” is a 100M-d vector!
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Machine Learning
fe
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2

feature 1

Standard Model
X

Separate SM+X 
into SM and X



Machine Learning
fe
at
ur
e 

2

feature 1

Standard Model
X

Classifier output

de
ns

ity

Separate SM+X 
into SM and X

Use Neural Net
(or SVMs,Decision 
Trees…) to summarize 
into one feature:



Dimensional Reduction

Classifier output

de
ns

ity

  LSM+X             P(data | SM+X)
  LSM  P(data | SM)=

This dimensional reduction can be very helpful.

Summarize the differences between the hypotheses

And require a histogram in only one dimension



No problem
Fairly easy to find test statistic

if you can calculate

P(x|H1), P(x|H0)

or generally

   P(data|theory)

or: use ML to reduce data to 1-dimension



Task for ML

Find a function:

which contains the same
hypothesis testing power

as 



ML approaches

1. Kernel methods

2. Neural Networks

3. Support Vectors



Kernel Methods



Generalized histogram

Revisit
Can we be smarter

than this?

Rather than
use a delta

function, use
a smoother blob



Kernel density estimate

This resmoothing effectively increases
the power of an individual example event.

G Cowan



Density Estimation

G Cowan



Density Estimation

G Cowan



Density Estimation

G Cowan



Density Estimation

G Cowan



Density Estimation

G Cowan



KDE
Discussion
KDE evaluation can be very slow
  loop over all examples for every eval.

KDE training is trivial
  zero time, simple construction on data

Adaptive strategies
  Make wider kernels were low prob.

Still suffers from problems in very high
 dimensional applications.



Neural Networks



Neural networks
Strategy:

Build f(x)=y(x) out of a pile of convoluted
mini-functions

here h() is a non-linear activation function
and the w factors are unknown parameters



Neuron
Example activation function



Simple visualization



What weights?
Every set of weight values defines a different

function y(x).  Which to use?

Define a good function as one which minimizes
the error:



Finding good weights

We have 
a weight space 
a quality metric

We need
to find the max quality (or min error)

Search the space!



Searching for weights



Back prop



How much to train?
A complex network, heavily trained will
learn the statistical fluctuations of the 
training examples.



Avoiding overtraining



More complex networks



How complex?
Essentially a functional fit with many parameters

...

...

Single layer
In theory any function
can be learned with

a single hidden layer.

But might require very
large hidden layer

Input
Hidden

Output

69



Neural Networks
Essentially a functional fit with many parameters

...

...
Problem:

Networks with > 1 layer are
very difficult to train.

Consequence:
Networks are not good

at learning non-linear functions.
(like invariant masses!)

In short:
Can’t just throw 4-vectors at NN.

Input
Hidden

Output

70



Search for Input
ATLAS-CONF-2013-108

Can’t just use 4v

Can’t give it too 
many inputs

Painstaking search 
through input 
feature space.

71



Deep networks
...

...

Input
Hidden

Output

...

Hidden

...

Hidden

...

Hidden

New tools
let us 
train
deep 

networks.

How well
do they work?

72



Real world applications

73



Paper

arXiv: 1402.4735
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Benchmark problem

Can deep networks
automatically discover
useful variables?

Signal

Background

75



4-vector inputs

21 Low-level vars
jet+lepton mom. (3x5)

missing ET (2)
jet btags (4)

Not much
separation

visible in 1D 
projections

76



4-vector inputs
7 High-level vars

m(WWbb)
m(Wbb)
m(bb)

m(bjj)
m(jj)
m(lv)
m(blv)
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4-vector inputs
7 High-level vars

m(WWbb)
m(Wbb)
m(bb)

m(bjj)
m(jj)
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        Standard NNs
Results
Adding hi-level 
 boosts performance
Better: lo+hi-level.

Conclude:
NN can’t find
    hi-level vars.

Hi-level vars
  do not have all info
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Standard NNs
Results
Adding hi-level 
 boosts performance
Better: lo+hi-level.

Conclude:
NN can’t find
    hi-level vars.

Hi-level vars
  do not have all info

Also true for 

BDTs, SVNs,  etc

81



Deep Networks
Results
Lo+hi = lo.

Conclude:
DN can find
    hi-level vars.

Hi-level vars
  do not have all info
  are unnecessary
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Deep Networks
Results
DN > NN

Conclude:
DN does better
 than human 
 assisted NN

83



The AIs win

84



Results

Identified example benchmark where traditional
 NNs fail to discover all discrimination power.

Adding human insight helps traditional NNs.

Deep networks succeed without human insight.
  Outperform human-boosted traditional NNs.

85



What is possible?
Raw             Sparsified      Reco           Select                    Ana
1e7                 1e3            100              50                        1 



What is possible?
Raw             Sparsified      Reco           Select                    Ana
1e7                 1e3            100              50                        1 

Skip more steps with ML?



Or this?
Raw             Sparsified      Reco           Select                    Ana
1e7                 1e3            100              50                        1 

Improve each step with ML?



Jet tagging



b-tagging



Optimization
How to select events which give a top 
mass measurement with the smallest 
uncertainty?

- Uncertainty is a property of the set 
of events, not an individual event. No 
truth labels for each event.

- Various background affect 
measurement differently.

- Classifiers are not well suited.
Optimize directly!



Optimization

1 7
12

4
2

4 9
1

3 1

3
18



NEAT
Using NEAT, we can search the space of topologies at the same time!

NEAT algorithm
[Stanley & Miikkulainen 2002]



Performance vs Purity



Support Vector Machines



Linear problem

Consider a simple, linear separation 
problem



Daniel Whiteson

(xi,yi) are training data
 αi  are positive Lagrange multipliers

(images from applet at http://svm.research.bell-labs.com/)

Support Vector Machines

• To find the hyperplane that gives the highest separation 
(lowest “energy”), we maximize the Lagrangian w.r.t αi:
 

The solution is:

Where αi=0 for non support vectors 



Daniel Whiteson

Support Vector Machines

But not many problems 
of interest are linear.
Map data to higher dimensional 
space where separation can be 
made by hyperplanes

We want to work in our original space. 
Replace dot product with kernel 
function:

K(x,x)=



Daniel Whiteson

Support Vector Machines

Neither are entirely 
separable problems 
very difficult.

• Allow an imperfect 
decision boundary, but 
add a penalty.

• Training errors, points 
on the wrong side of 
the boundary, are 
indicated by crosses.



Daniel Whiteson

Support Vector Machines

We are not limited to
linear or polynomial
kernels. 

!  Gaussian kernel SVMs 
outperformed PDEs in 
recognizing handwritten
numbers from the USPS 
database.

Gives a highly 
flexible SVM



July 11, 2001Daniel Whiteson

Algorithm Comparisons

Algorithm Advantages Disadvantages

Neural Nets •Very fast evaluation •Build structure by hand
•Black box
•Local optimization

PDE •Transparent operation •Slow evaluation
•Requires high statistics

SVM •Fast evaluation
•Kernel positions 
chosen automatically
•Global optimization

•Complex
•Training can be time 
intensive
•Kernel selection by hand



Example



2D example

G Cowan



2D Example

G Cowan



Likelihood Ratio

G Cowan
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ROC

G Cowan



Summary

Machine Learning is powerful
main purpose is dimensional reduction

several tools: NN, SVM, KDE
others not discussed: BDT, PCA

Each have strengths and weaknesses


