Machine Learning

 for
High Energy Physics

Daniel Whiteson, UC Irvine
 iSTEP 2016, Beijing

Caveał

I am not a professional statistician!

Caveat

I am not a professional statistician!

Google

statistician

Web

Making a new particle

THERE ARE A LOT OF DIFFERENT REACTIONS THAT CAN GIVE YOU THE HIGGS. FOR EXAMPLE...

YOU CAN FUSE \quad (9) WHICH GIVES

Unambiguous data

Ok, but see:
http://cerncourier.com/cws/article/cern/54388

Backgrounds

THE PROBLEM IS, THERE'S LOTS OF OTHER WAYS YOU CAN MAKE TWO BOTTOM QUARKS:

IT'S ONE OF THE MOST COMMON THINGS TO MAKE.

What's in an event?

No event can be unambiguously interpreted.

Why statistics?

The nature of our data demands it.

Statistics for Discovery

Hypothesis testing

To search for a new particle, we compare the predictions of two hypotheses:
1.

THE STANDARD MODEL

Hypothesis testing

To search for a new particle, we compare the predictions of two hypotheses:
1.

THE STANDARD MODEL

Fermions

2.

THE STANDARD MODEL PLUS X
Fermions

Hypothesis Testing

BSM Particle Standard Model is real

Claim BSM Discovery

No Claim of Discovery

True	False α
Positive	Positive
Type I error	

False
Negative
Type II error Negative
β, power=1- β

Example

A threshold makes sense.
Choice of position balances Type I/II errors

Typically:
fix α minimize β

Generalize

Hypothesis Testing

HO H1

Parameter
Estimation
H1 cross-section

More complicated

Neyman-Pearson

Statement of the problem:

Given some prob that we wrongly reject the Null hypothesis

$$
\alpha=P\left(x \notin W \mid H_{0}\right)
$$

Find the region W (where we accept H_{0}) such that we minimize the prob

$$
\beta=P\left(x \in W \mid H_{1}\right)
$$

$\left.\begin{array}{c|cc} & \begin{array}{c}\text { BSM Particle } \\ \text { is real }\end{array} & \begin{array}{c}\text { BSM Particle } \\ \text { is not real }\end{array} \\ \hline \begin{array}{c}\text { Claim } \\ \text { Discovery }\end{array} & \begin{array}{c}\text { True } \\ \text { Positive }\end{array} & \begin{array}{c}\text { False } \\ \text { Positive }\end{array} \\ \text { Type I error }\end{array}\right]$

Neyman-Pearson

NP lemma says that the best

 decision boundary is the likelihood ratio:$$
\frac{P\left(x \mid H_{1}\right)}{P\left(x \mid H_{0}\right)}>k_{\alpha}
$$

(Gives smallest β for fixed α)

	BSM Particle is real	BSM Particle is not real
Claim Discovery	True Positive	False Positive
No Claim of Discovery	Type I error Negative	True
	β, power=1- β	

What does the TS do?

Finds a region in variable space

(K. Cranmer)

Test statistic

Reduce vector of observables to 1 number

How to choose TS?
(K. Cranmer)

No problem

Fairly easy to find test statistic

if you can calculate
$P(x \mid H 1), P(x \mid H O)$
or generally
P (data|theory)

Hypothesis Testing

Sometimes this is easy

Hypothesis Testing

We can compare the predictions to the collider data

Which can tell us which hypothesis is preferred via a likelihood ratio:

$$
\frac{L_{S M+X}}{L_{S M}}=\frac{P(\text { data } \mid S M+X)}{P(\text { data } \mid S M)}
$$

In general

We have a good understanding of of the pieces

Do we have
$f($ data | theory)?

In general

We have a good

 understanding of all of the piecesDo we have
$f($ data |theory)?

Parton
Density
Functions

Showering

Hard scattering

In general

What would

f(data|theory)

look like?

The dream

f(data | final-state particles P)

$x f($ final state particles $P \mid$ showered particles S)
x f(showered particles S | hard scatter products M)
x f (hard scatter products $M \mid$ theory)

Sum over all possible intermediate P,S,M

The dream

Detector Response

f (data | final-state particles P)

Hadronization
$\times f($ final state particles $P \mid$ shnwarad narticles S)
Showering
x f (showered particles SThard scatter products M)
$\times f$ (hard scatter products $\mathrm{M} \mid$ theory)
Parton scattering

The dream

f(hard scatter products M | theory)

diagram 1
Theory well defined automatic calculators exist for almost any (B)SM theory

The dream

f(hard scatter products M | theory)

The nightmare

f(data | final-state particles P)

$\times f($ final state particles $\mathrm{P} \mid$ showered particles S$)$
x f(showered particles S |hard scatter products M)

We have: solid understanding of microphysics We need: analytic description of high-level physics

The solution

We have: solid understanding of microphysics We need: analytic description of high-level physics But: only heuristic lower-level approaches exist

Iterative simulation strategy, no overall PDF
Iterative approach
(1) Draw events from $f(M$ |theory)
(2) add random showers
(3) do hadronization
(4) simulate detector

The solution

We have: solid understanding of microphysics We need: analytic description of high-level physics But: only heuristic lower-level approaches exist

Iterative simulation strategy, no overall PDF
What do we get
Arbitrarily large samples of events drawn from $f($ data |theory), but not the PDF itself

The problem

Don't know PDF, have events drawn from PDF

What do we need?

Want:

our model of the expected results of the experiment f(data | theory)

We have:
A tool that can generate sample event data

Provides:

- PDF for data as a
function of POI, NPs
- generate pseudo-data
- fix data to get lhood

How do we use that to build our PDF?

MC events to PDF

Simple approach : histogram

$$
f_{h i s t}^{w, s}(x)=\frac{1}{N} \sum_{i} h_{i}^{w, s}
$$

Example

Approximate LR from 2D-histograms

Suppose problem has 2 variables. Try using 2-D histograms:
signal

background

Approximate pdfs using $N(x, y \mid \mathrm{s}), N(x, y \mid \mathrm{b})$ in corresponding cells. But if we want M bins for each variable, then in n-dimensions we have M^{n} cells; can't generate enough training data to populate.
\rightarrow Histogram method usually not usable for $n>1$ dimension.

Curse of Dimensionality

How many events

$$
f_{h i s t}^{u, s}(x)=\frac{1}{N} \sum_{i} h_{i}^{v, s}
$$ do you need to describe a 1D distribution? O(100)

An n-D distribution?

$O\left(100^{n}\right)$

!!

The nightmare

f(data|final-state particles P)

$\times f($ final state particles $\mathrm{P} \mid$ showered particles S$)$
x f(showered particles S | hard scatter products M)
"data" is a $100 \mathrm{M}-\mathrm{d}$ vector!

The nightmare

f (data | final-state particles P)

$x f($ final stat
$x f($ showered

Machine Learning

Standard Model X

Separate SM+X into $S M$ and X
feature 1

Machine Learning

Separate SM+X

Standard Model X
feature 2

into SM and X

Use Neural Net (or SVMs,Decision Trees...) to summarize into one feature:

Dimensional Reduction

This dimensional reduction can be very helpful.

Summarize the differences between the hypotheses

$$
\frac{L_{S M+X}}{L_{S M}}=\frac{P(\text { data } \mid S M+X)}{P(\text { data } \mid S M)}
$$

And require a histogram in only one dimension

No problem

Fairly easy to find test statistic if you can calculate
$P(x \mid H 1), P(x \mid H 0)$
or generally
P (data|theory)
or: use ML to reduce data to 1-dimension

Task for ML

Find a function:
$f(\bar{x}): \mathbb{R}^{N} \rightarrow \mathbb{R}^{1}$
which contains the same hypothesis testing power as

$$
\frac{P\left(x \mid H_{1}\right)}{P\left(x \mid H_{0}\right)}>k_{\alpha}
$$

ML approaches

1. Kernel methods

2. Neural Networks

3. Support Vectors

Kernel Methods

Generalized histogram

Revisit

Can we be smarter than this?

Rather than use a delta function, use a smoother blob

Kernel density estimate

Consider d dimensions, N training events, $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}$, estimate $f(\boldsymbol{x})$ with

$\vec{f}(\vec{x})=\frac{1}{N h^{d}} \sum_{i=1}^{N} K\left(\frac{\vec{x}-\vec{x}_{i}}{h}\right) \quad$| \boldsymbol{x} where we want $i^{\text {th }}$ training |
| :--- |
| to know pdf |
| event |\quad| bandwidth |
| :--- |
| (smoothing parameter) |

G Cowan
Use e.g. Gaussian kernel: $\quad K(\vec{x})=\frac{1}{(2 \pi)^{d / 2}} e^{-|\vec{x}|^{2} / 2}$
This resmoothing effectively increases the power of an individual example event.

Density Estimation

Suppose the pdf (dashed line) below is not known in closed form, but we can generate events that follow it (the red tick marks):
 X
Goal is to find an approximation to the pdf using the generated date values.

Density Estimation

Place a kernel pdf (here a Gaussian) centred around each generated event weighted by $1 / N_{\text {event }}$:

Density Estimation

The KDE estimate the pdf is given by the sum of all of the Gaussians:

Density Estimation

The width h of the Gaussians is analogous to the bin width of a histogram. If it is too small, the estimator has noise:

Density Estimation

If width of Gaussian kernels too large, structure is washed out:

KDE

Discussion

KDE evaluation can be very slow loop over all examples for every eval.

KDE training is trivial
zero time, simple construction on data
Adaptive strategies
Make wider kernels were low prob.
Still suffers from problems in very high dimensional applications.

Neural Networks

Neural networks

Strategy:

$$
f(\bar{x}): \mathbb{R}^{N} \rightarrow \mathbb{R}^{1}
$$

Build $\mathrm{f}(\mathrm{x})=\mathrm{y}(\mathrm{x})$ out of a pile of convoluted mini-functions

$$
y(\vec{x})=h\left(w_{0}+\sum_{i=1}^{n} w_{i} x_{i}\right)
$$

here $h()$ is a non-linear activation function and the w factors are unknown parameters

Neuron

Example activation function

Simple visualization

input layer

What weights?

Every set of weight values defines a different function $\mathrm{y}(\mathrm{x})$. Which to use?

Define a good function as one which minimizes the error:

$$
E(\boldsymbol{w})=\frac{1}{2} \sum_{a=1}^{N}\left|y\left(\vec{x}_{a}, \boldsymbol{w}\right)-t_{a}\right|^{2}=\sum_{a=1}^{N} E_{a}(\boldsymbol{w})
$$

Contribution to error from each event

Finding good weights

We have
a weight space
a quality metric $\quad E(\boldsymbol{w})$

We need
to find the max quality (or min error)
Search the space!

Searching for weights

Consider gradient descent method: from an initial guess in weight space $\boldsymbol{w}^{(1)}$ take a small step in the direction of maximum decrease. I.e. for the step τ to $\tau+1$,

$$
\boldsymbol{w}^{(\tau+1)}=\boldsymbol{w}^{(\tau)}-\eta \nabla E\left(\boldsymbol{w}^{(\tau)}\right)
$$

If we do this with the full error function $E(\boldsymbol{w})$, gradient descent does surprisingly poorly;

But gradient descent turns out to be useful with an online (sequential) method, i.e., where we update \boldsymbol{w} for each training event a, (cycle through all training events):

$$
\boldsymbol{w}^{(\tau+1)}=\boldsymbol{w}^{(\tau)}-\eta \nabla E_{a}\left(\boldsymbol{w}^{(\tau)}\right)
$$

Back prop

Error backpropagation ("backprop") is an algorithm for finding the derivatives required for gradient descent minimization.

The network output can be written $y(\boldsymbol{x})=h(u(\boldsymbol{x}))$ where

$$
u(\vec{x})=\sum_{j=0} w_{1 j}^{(2)} \varphi_{j}(\vec{x}), \quad \varphi_{j}(\vec{x})=h\left(\sum_{k=0} w_{j k}^{(1)} x_{k}\right)
$$

where we defined $\phi_{0}=x_{0}=1$ and wrote the sums over the nodes in the preceding layers starting from 0 to include the offsets.

So e.g. for event a we have $\frac{\partial E_{a}}{\partial w_{1 j}^{(2)}}=\left(y_{a}-t_{a}\right) h^{\prime}(u(\vec{x})) \varphi_{j}(\vec{x})$
Chain rule gives all the needed derivatives. activation function

How much to train?

A complex network, heavily trained will learn the statistical fluctuations of the training examples.

Avoiding overtraining

error

rate | optimum at minimum of |
| :---: |
| error rate for test sample |

More complex networks

Superscript for weights indicates layer number

$$
\begin{aligned}
& \varphi_{i}(\vec{x})=h\left(w_{i 0}^{(1)}+\sum_{j=1}^{n} w_{i j}^{(1)} x_{j}\right) \\
& y(\vec{x})=h\left(w_{10}^{(2)}+\sum_{j=1}^{n} w_{1 j}^{(2)} \varphi_{j}(\vec{x})\right)
\end{aligned}
$$

How complex?

Essentially a functional fit with many parameters

Single layer

In theory any function can be learned with a single hidden layer.

But might require very large hidden layer

Neural Networks

Essentially a functional fit with many parameters

Problem:
Networks with > 1 layer are very difficult to train.

Consequence:

Networks are not good at learning non-linear functions. (like invariant masses!)

In short:

Can't just throw 4 -vectors at NN.

Search for Inpuł

ATLAS-CONF-2013-108

Can't just use 4v

Can't give it too many inputs

Painstaking search through input feature space.

Variable	VBF			Boosted		
	$\tau_{\text {lep }} \tau_{\text {lep }}$	$\tau_{\text {lep }} \tau_{\text {had }}$	$\tau_{\text {had }} \tau_{\text {had }}$	$\tau_{\text {lep }} \tau_{\text {lep }}$	$\tau_{\text {lep }} \tau_{\text {had }}$	$\tau_{\text {had }} \tau_{\text {had }}$
$m_{T r}^{\text {MMC }}$	-	-	-	-	-	-
$\Delta R(\tau, \tau)$	\bullet	\bullet	\bullet		\bullet	\bullet
$\Delta \eta\left(j_{1}, j_{2}\right)$	-	-	-			
$m_{j_{1,2} / 2}$	-	-	-			
$\eta_{i_{1}} \times \eta_{i_{2}}$		-	-			
$p_{\mathrm{T}}^{\text {Iotal }}$		-	-			
sum p_{T}					-	-
$p_{\mathrm{T}}\left(\tau_{1}\right) / p_{\mathrm{T}}\left(\tau_{2}\right)$					-	-
$E_{T}^{\text {miss }} \phi$ centrality		-	-	-	-	-
$x_{\tau 1}$ and $x_{\tau 2}$						-
$m_{\tau \tau, j_{1}}$				-		
$m_{\ell_{1}, \ell_{2}}$				-		
$\Delta \phi_{\ell_{1}, \ell_{2}}$				-		
sphericity				-		
$p_{T}^{\ell_{1}}$				-		
$p_{T}^{j_{1}}$				-		
$E_{T}^{\text {miss }} / p_{T}^{\ell_{2}}$				-		
m_{T}		-			-	
$\min \left(\Delta \eta_{\ell_{1} \ell_{2}, \mathrm{jets}}\right)$	-					
$j_{3} \eta$ centrality	-					
$\ell_{1} \times \ell_{2} \eta$ centrality	\bullet					
$\ell \eta$ centrality		-				
$\tau_{1,2} \eta$ centrality			-			

Table 3: Discriminating variables used for each channel and category. The filled circles identify which variables are used in each decay mode. Note that variables such as $\Delta R(\tau, \tau)$ are defined either between the two leptons, between the lepton and $\tau_{\text {had }}$, or between the two $\tau_{\text {had }}$ candidates, depending on the decay mode.

Deep nełworks

New tools

 let us train deepOutput networks.
How well do they work?

Real world applications

(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

Head turn: DeepFace uses a 3-D model to rotate faces, virtually, so that they face the camera. Image (a) shows the original image, and (g) shows the final, corrected version.

Paper

arXiv: 1402.4735

Benchmark problem

Signal

Can deep networks

 automatically discover useful variables?
4-vector inputs

21 Low-level vars

 jet+lepton mom. (3×5) missing ET (2) jet btags (4)Not much separation visible in 1D projections

4-vector inputs

7 High-level vars

m(WWbb) m(Wbb) m(bb)

m(bii) m(ii)
m(lv)
m(blv)

4-vector inputs

7 High-level vars

4-vector inputs

7 High-level vars

m(WWbb) m(Wbb) m(bb)

Standard NNs

Results

Adding hi-level boosts performance Better: lo+hi-level.

Conclude:

NN can't find hi-level vars.

Hi-level vars
do not have all info

Standard NNs

Deep Networks

Results

Lo+hi = lo.
Conclude: DN can find hi-level vars.

Hi-level vars do not have all info are unnecessary

Deep Networks

Results
DN > NN
Conclude: DN does better than human assisted NN

The Als win

Results

Identified example benchmark where traditional NNs fail to discover all discrimination power.

Adding human insight helps traditional NNs.
Deep networks succeed without human insight. Outperform human-boosted traditional NNs.

What is possible?

Raw	Sparsified	Reco	Select	Ana
le7	1 e 3	100	50	1

What is possible?

Raw	Sparsified	Reco	Select	Ana
1 e7	1 e3	100	50	1

Skip more steps with ML?

Or this?

Raw	Sparsified	Reco	Select	Ana
1e7	1 e 3	100	50	1

Improve each step with ML?

Jeł łagging

b-fagging

Optimization

How to select events which give a top mass measurement with the smallest uncertainty?

- Uncertainty is a property of the set of events, not an individual event. No truth labels for each event.
- Various background affect measurement differently.
- Classifiers are not well suited. Optimize directly!

Optimization

Step \#I: Evaluate

NEAT

Using NEAT, we can search the space of topologies at the same time!

Add Node Mutation

Add Link Mutation

NEAT algorithm
[Stanley \& Miikkulainen 2002]

Performance vs Purity

Support Vector Machines

Linear problem

Consider a simple, linear separation problem

Support Vector Machines

- To find the hyperplane that gives the highest separation (lowest "energy"), we maximize the Lagrangian w.r.t α_{i} :

Support Vector Machines

But not many problems of interest are linear.

Map data to higher dimensional space where separation can be made by hyperplanes

$$
\Phi: R^{d} \mapsto \mathrm{H}
$$

We want to work in our original space. Replace dot product with kernel function:

$$
\mathrm{K}(\mathrm{x}, \mathrm{x})=\mathbf{X}_{i} \cdot \mathbf{X}_{j}
$$

Support Vector Machines

Neither are entirely separable problems very difficult.

- Allow an imperfect decision boundary, but add a penalty.
- Training errors, points on the wrong side of the boundary, are indicated by crosses.

Support Vector Machines

We are not limited to linear or polynomial kernels.
$K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=e^{-\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / 2 \sigma^{2}}$ Gives a highly
flexible SVM
> Gaussian kernel SVMs outperformed PDEs in recognizing handwritten numbers from the USPS database.

Daniel Whiteson

Algorithm Comparisons

Algorithm	Advantages	Disadvantages
Neural Nets	\bullet Very fast evaluation	\bullet Build structure by hand \bullet Black box \bullet Local optimization
PDE	•Transparent operation	\bullet Slow evaluation \bullet Requires high statistics
SVM	\bullet Fast evaluation \bullet Kernel positions chosen automatically \bullet Global optimization	\bullet - Complex •Training can be time intensive \bullet Kernel selection by hand

Example

2D example

Joint and marginal distributions of x_{1}, x_{2}

Distribution $f\left(x_{2}\right)$ same for s, b.
So does x_{2} help discriminate between the two event types?

2D Example

Consider two variables, x_{1} and x_{2}, and suppose we have formulas for the joint pdfs for both signal (s) and background (b) events (in real problems the formulas are usually not available).
$f\left(x_{1} \mid x_{2}\right) \sim$ Gaussian, different means for s / b,
Gaussians have same σ, which depends on x_{2}, $f\left(x_{2}\right) \sim$ exponential, same for both s and b , $f\left(x_{1}, x_{2}\right)=f\left(x_{1} \mid x_{2}\right) f\left(x_{2}\right)$:

$$
\begin{aligned}
& f\left(x_{1}, x_{2} \mid \mathrm{s}\right)=\frac{1}{\sqrt{2 \pi} \sigma\left(x_{2}\right)} e^{-\left(x_{1}-\mu_{\mathrm{s}}\right)^{2} / 2 \sigma^{2}\left(x_{2}\right)} \frac{1}{\lambda} e^{-x_{2} / \lambda} \\
& f\left(x_{1}, x_{2} \mid \mathrm{b}\right)=\frac{1}{\sqrt{2 \pi} \sigma\left(x_{2}\right)} e^{-\left(x_{1}-\mu_{\mathrm{b}}\right)^{2} / 2 \sigma^{2}\left(x_{2}\right)} \frac{1}{\lambda} e^{-x_{2} / \lambda} \\
& \sigma\left(x_{2}\right)=\sigma_{0} e^{-x_{2} / \xi}
\end{aligned}
$$

Likelihood Ratio

Neyman-Pearson lemma says best critical region is determined by the likelihood ratio:

$$
t\left(x_{1}, x_{2}\right)=\frac{f\left(x_{1}, x_{2} \mid \mathrm{s}\right)}{f\left(x_{1}, x_{2} \mid \mathrm{b}\right)}
$$

Equivalently we can use any monotonic function of this as a test statistic, e.g.,

$$
\ln t=\frac{\frac{1}{2}\left(\mu_{\mathrm{b}}^{2}-\mu_{\mathrm{s}}^{2}\right)+\left(\mu_{\mathrm{s}}-\mu_{\mathrm{b}}\right) x_{1}}{\sigma_{0}^{2} e^{-2 x_{2} / \xi}}
$$

Boundary of optimal critical region will be curve of constant $\ln t$, and this depends on x_{2} !

Contours of constant MVA output

Fisher discriminant

Contours of constant MVA output

Boosted Decision Tree 200 iterations (AdaBoost)

Training samples: 10^{5} signal and 10^{5} background events

ROC

ROC $=$ "receiver operating characteristic" (term from signal processing).

Shows (usually) background rejection ($1-\varepsilon_{\mathrm{b}}$) versus signal efficiency ε_{s}.

Higher curve is better; usually analysis focused on a small part of the curve.

Summary

Machine Learning is powerful

main purpose is dimensional reduction
several tools: NN, SVM, KDE others not discussed: BDT, PCA

Each have strengths and weaknesses

