Machine Learning
for
High Energy Physics

i?«,:ﬁ{f“SE
W
Daniel Whiteson, UC Irvine
ISTEP 2016, Beijing



Caveat

| am not a professional statistician!




Caveat

| am not a professional statistician!

GO 816 statistician

engineering

Web Images

awesome nerds




)
-~ 71

THESE TWO THINGS ARE

RIGHT NO




Making a new particle

THERE ARE A LOT OF DIFFERENT REACTIONS THAT \

CAN GIVE YOU THE HIGGS. FOR EXAMPLE... -
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Unambiguous data

Ok, but see:
http://cerncourier.com/cws/article/cern/54388




Backgrounds
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What’s in an event®?

Ieptormdidate \’\
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CATLAS
A EXPERIMENT

Run Number: 166658, Event Number: 34533931

No event can be unambiguously interpreted.




Why statistics?

2 GeV

P, (k) = 18 GeV N I A €
pys(Th) = 26 GeV ATLAS
mys (1, Th) = 47 GeV R

my €)= 8 Gev 1A EXPERIMENT

ET* =7 GeV
Run Number: 160613, Event Number: 9209492

Date: 2010-08-03 02:12:37 CEST

Z — TT TINENOS
Candidate in 7 TeV Collisions’, i~

nature of our data demands it.




Statistics for Discovery




Hypothesis testing

To search for a new particle, we compare the predictions
of two hypotheses:

1.

THE STANDARD MODEL
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Hypothesis testing

To search for a new particle, we compare the predictions
of two hypotheses:

1. 2.
THE STANDARD MODEL THE STANDARD MODEL ~LU= ¢
Fermions Fermions
‘ up charm top ‘ up charm top x

down strange bottom down strange bottom
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Hypothesis Testing

BSM Particle  siqndard Model

is real

Claim BSM True Fa.lste o
. - Positive
Discovery Positive
Type | error
. False
No Claim Negative True

of Discovery

Type Il error ~ Negative

B, power=1-$




Freq
of occurance

Number of Events

A t.hreshold r.n.akes sense. Typically:
Choice of position balances fx o
Type I/Il errors

minimize 3




Generalize

Hypot.he5|s HO M1
Testing
Parameter _

Estimation HO H1

cross-section




More complicated

accept

iccept

C

> L;

ccept

[G. Cowan]




Neyman-Pearson

Statement of the problem:

Given some prob that we wrongly reject the Null hypothesis

a= P(z ¢ W|H))

Find the region W (where we accept Hj) such that we minimize the prob

B = P(z € W|H,)

BSM Particle BSM Particle

is real is not real
. Fal
Claim True a. s'e X
" .. Positive
Discovery Positive
Type | error
_ False
No Claim

of Discovery

Negative True

Type Il error  Negative

B, power=1-




Neyman-Pearson

NP lemma says that the best

decision boundary is the likelihood ratio:

P(x
P(x

(Gives smallest B for fixed «)

BSM Particle BSM Particle
. is

is real is not real
Claim Tru Fc‘l
. . Positiv
Dis y Positiv
Type | error
) Fal
No Claim Negative Tru
of Discovery e Negative




What does the TS do?

Y1

—

~__

L1

Y2

Finds a region in variable space

—

N

\\5\
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(K. Cranmer)




Test statistic

Reduce vector of observables to 1 number

signal + background background-only

Probability Density

T isti
signal like est Statistic background like

How to choose TS?

(K. Cranmer)




No problem

Fairly easy to find test statistic
if you can calculate
P(x|HT), P(x|HO)
or generally

P(data |theory)




Hypothesis Testing

Sometimes this is easy

Standard Model
SM+X

probability density

high level feature




Hypothesis Testing

We can compare the predictions to the collider data

Standard Model
SM+X
e Collider Data

probability density

high level feature

Which can tell us which hypothesis is preferred via a likelihood ratio:

Lopex P(data | SM+X)
LSM - P(data | SM)




In general

We have a good
understanding of
of the pieces

Do we have

f(data | theory)?




In general

We have a good ‘
understanding of all . .&& =

of the pleces

Do we have

f(data |theory)?

Parton R
Density w2 ar
Functions P




What would
f(data |theory)

look like®




f(data | final-state particles P)
x f(final state particles P|showered particles S)
x f(showered particles S|hard scatter products M}

x f(hard scatter products M | theory)

Sum over all possible intermediate P,S,M




The drea

f(data | final-state particles P)

Detector Response

Hadronization

x f(final stafe parficles P|showered narticles S)
Showering

x f(showered particles S|hard scatter products M}

x f(hard scatter products M | theory‘)\

/ Hard

Parton scattering

Sum over all pensty € intermediate P,S, m

Functions




The dream

f(hard scatter products M| theory)

diagram 1

Theory well defined
automatic calculators exist
for almost any (B)SM theory




The dream

f(hard scatter products M| theory)




The nightmare

f(data | final-state particles P)
x f(final state particles P|showered particles S)

x f(showered particles S|hard scatter products M}

We have: solid understanding of microphysics
We need: analytic description of high-level physics
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The solution

We have: solid understanding of microphysics
We need: analytic description of high-level physics
But: only heuristic lower-level approaches exist

lterative simulation strategy, no overall PDF

lterative approach

(1) Draw events from f(M |theory)
(2) add random showers

(3) do hadronization

(4) simulate detector




The solution

We have: solid understanding of microphysics
We need: analytic description of high-level physics
But: only heuristic lower-level approaches exist

lterative simulation strategy, no overall PDF

What do we get
Arbitrarily large samples of events

drawn from f(data|theory), but not
the PDF itself




The problem

Don’t know PDF, have events drawn from PDF

-3 -2

N

LI

Need to recreate PDF

| 1 l 1 1
1 2 3

(K. Cranmer)




What do we need?

Want:

our model of the expected
results of the experiment
f( data | theory )

Provides:

- PDF for data as a
function of POI, NPs

- generate pseudo-data

- fix data to get lhood

We have:

A tool that can generate
sample event data

How do we use that
to build our PDF?2




MC events to PDF

Simple approach : histogram

AO? 1 1 1 T 7 L L LA B B B B B B B S
x V. - -
N -

X
(K. Cranmer)




Example

8000 [,
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Approximate LR from 2D-histograms
Suppose problem has 2 variables. Try using 2-D histograms:

> >

. ’ ..J . .. .o o : . ! : *
31gnal — "":*f-.;.;r? ) — S : back-
et e —teet—t .
o "2, *% e o’ e
ARG Y, I ground
K : o .... . .i.
. o' e

o*
PSLLEE S B PO b

] R‘ '.’- . ,‘.; o of . :
AN wf 20T LT
\ X X

Approximate pdfs using N(x,y|s), N(x,y|b) in corresponding cells.
But i1f we want M bins for each variable, then in #n-dimensions we
have M" cells; can’t generate enough training data to populate.

— Histogram method usually not usable for » > 1 dimension.

G Cowan




Curse of Dimensionality

How many events @) = 5 Yo ne
do you need go7 L
to describe a 1D o8| E
distribution2 O(100) .t /j[ ( -
- )/ N _ .
03 / 3
An n-D distribution?® 02} T 3
B MmInmNE
O(100") s 2 4 0 1 2 7

(K. Cranmer)




The nightmare

f(data | final-state particles P)
x f(final state particles P|showered particles S)

x f(showered particles S|hard scatter products M}

“data” is a T00M-d vector!




The nightmare

f(data| final-state particles P)

x f(final stat SR, | Harficles S)

x f(showered ter products M)

actor!




Machine Learning

Separate SM+X
Standard Model into SM and X
X

feature 2

feature 1




feature 2

Machine Learning

Separate SM+X
into SM and X

Standard Model
X

Use Neural Net

(or SVMs,Decision
Trees...) to summarize
into one feature:

density

feature 1




Dimensional Reduction

This dimensional reduction can be very helpful.

density

Classifier output

Summarize the differences between the hypotheses

RSV P(data | SM+X)
Loy, = P(data | SM)

And require a histogram in only one dimension




No problem

Fairly easy to find test statistic
if you can calculate

P(x|H1), P(x|HO)
or generally

P(data|theory)

or: use ML to reduce data to 1-dimension




Find a function:
f(z): RY - R!
which contains the same

hypothesis testing power
as

p(fL‘ Hl)
P(z|Hy)

>k,




ML approaches

1. Kernel methods

2. Neural Networks

3. Support Vectors




Kernel Methods




Generalized histogram

" N o o
1 Revisit
femp: Nz(s(x—ﬂ?z)
07 —— i o Can we be smarter
“-0.62— — thcm i'hIS2

Rather than
use a delta
function, use
a smoother blob




Kernel density estimate

Consider d dimensions, N training events, Xy, ..., Xy,
estimate f(x) with

f ith trainin
x where we want X o /% training

to know pdf / event
\

hd h
VTS bandwidih
kernel (smoothing parameter)
G Cowan 1 .
Use e.g. Gaussian kernel: K@) = (Qw)d/Qe—lxl /2

This resmoothing effectively increases
the power of an individual example event.




Density Estimation

Suppose the pdf (dashed line) below 1s not known in closed form,
but we can generate events that follow it (the red tick marks):

~
~

(0 I ) I1

X

Goal is to find an approximation to the pdf using the generated
date values.

G Cowan




Density Estimation

Place a kernel pdf (here a Gaussian) centred around each
generated event weighted by 1/N

event*

G Cowan




Density Estimation

The KDE estimate the pdf is given by the sum of
all of the Gaussians:

G Cowan




Density Estimation

The width /4 of the Gaussians 1s analogous to the bin width
of a histogram. If it is too small, the estimator has noise:

G Cowan




Density Estimation

If width of Gaussian kernels too large, structure 1s washed out:

G Cowan




KDE

Discussion
KDE evaluation can be very slow
loop over all examples for every eval.

KDE training is trivial
zero time, simple construction on data

Adaptive strategies
Make wider kernels were low prob.

Still suffers from problems in very high
dimensional applications.




Neural Networks




Neural networks

Strategy:
f(z) : RY —» R'

Build f(x)=y(x) out of a pile of convoluted
mini-functions

n
W, Z W X;
i=1

here h() is a non-linear activation function
and the w factors are unknown parameters

y(X)=h




Neuron

Example activation function

o
-
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Simple visualization

A output node

input layer




What weights?

Every set of weight values defines a different
function y(x). Which to use?

Define a good function as one which minimizes

the error:
1 N N
Fon=L (w1 =X
: : \

Contribution to error

—f

a)

from each event




Finding good weights

We have y(x)=hlw +iw x)
a weight space .
a quality metric E(w)
We need

to find the max quality (or min error)

Search the space!




Searching for weights

Consider gradient descent method: from an initial guess in weight
space w'” take a small step in the direction of maximum decrease.

[.e. for the step T to T+1,
w ™=y V E(w'?)

\\

learning rate (n>0)

[f we do this with the full error function E(w), gradient descent does
surprisingly poorly;

But gradient descent turns out to be useful with an online (sequential)
method, 1.e., where we update w for each training event a, (cycle through

all training events): | |
w =y _nVE (w')




Back prop

Error backpropagation (“backprop™) 1s an algorithm for finding the
derivatives required for gradient descent minimization.

The network output can be written y(x) = h(u(x)) where

ZHU _ x) , X /7‘2”11‘3«1\,

where we defined ¢, = x, = 1 and wrote the sums over the nodes

in the preceding layers starting from O to include the offsets.

-
iy (/‘ E / . ( —t
So e.g. for event a we have —(_( y.—t, ) h '(u( .\‘))(p].( X)
O wl']'
derivative of
Chain rule gives all the needed derivatives. activation function




How much to train®

A complex network, heavily trained will
learn the statistical fluctuations of the
training examples.

training sample - independent test sample




Avoiding overtraining

optimum at minimum of
error rate for test sample

error
rate
l Increase 1n error rate

/ indicates overtraining

— test sample

training sample




More complex networks

Superscript for weights indicates  x,
layer number

I
- | )
Q. (x)=h{w, +Z W AJ)
j=1
7 n
N — 7| (2) (2 = ‘
y(x)=h """1O+Z Wi P; (X) , f hidden  output

layer ¢




How complex?

Essentially a functional fit with many parameters

Single layer
In theory any function
can be learned with
a single hidden layer.

But might require very
large hidden layer

Hidden 69




Neural Networks

Essentially a functional fit with many parameters

Problem:
Networks with > 1 layer are
very difficult to train.

Consequence:
Networks are not good
at learning non-linear functions.
(like invariant masses!)

In short:
Can’t just throw 4-vectors at NN.

Hidden 70




Can’t just use 4v

Can’t give it too
many inputs

Painstaking search
through input
feature space.

for Input

ATLAS-CONF-2013-108

Variable

TlepTlep

VBF

Tlep Thad

Thad Thad

Boosted

TlepTlep  TlepThad

Thad Thad

—  MMC
M

ARX('T. T)

An(j, j2)

mj

N X1j,

Total

P

sum pr

pr(T)/pr(r2)

ET™ ¢ centrality

xy; and xp»

Mer, jy

mg. 7o

Agy 2

sphericity
1
P

pr

E?“"",/p?

mr

min(Azz, ¢, jets)

Jj3 7 centrality

£) x £ i centrality

£ i centrality

T2 7 centrality

Table 3: Discriminating variables used for each channel and category. The filled circles identify which
variables are used in cach decay mode. Note that variables such as AR(7, 1) are defined either between
the two leptons, between the lepton and 1y,4, or between the two 7,4 candidates, depending on the decay
mode. 71




Deep networks

)
N
@520 \\;0‘

(/
P
ISP
O O O
. A4 AN X
\l

R AR
\ A\
HOR

How well

O O O O do they work?




Real world applications

g)

Head turn: DeepFace uses a 3-D model to rotate faces, virtually, so that they face the camera. Image (a)
shows the original image, and (g) shows the final, corrected version.

73




Paper

ARTICLE

Received 19 Feb 2014 | Accepted 4 Jun 2014 | Published 2 Jul 2014

Searching for exotic particles in high-energy
physics with deep learning

P. Baldi', P. Sadowski' & D. Whiteson?
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Benchmark problem

Signal

g ,@66666 a h0\< 5 Can deep networks

automatically discover

Background ” useful variables?
b

t
W-I—

W

b

75




4-vector inputs

o
[

5015 50.15
21 Low-level vars
. ||-+I i. 3 5 0.05} . . - 0.05}
iet+lepton mom. (3x
. . % S 00 3 go co 6?0 % B 700 go o \%)o
missing ET (2) | T
w 02 "
jet btags (4)
.g éms
© o
- % o0
0.05
Not mUCh % 6700 150200 % B0 T00 750200
Jet 3 P, [GeV] Jet 4 P, [GeV]
[ ]
separation
[ ] ° ) % %0.15
visible in 1D
[T [T
[ ] [ ]
projections
Q500 150 200 26100 150 200
Lepton p_ [GeV] Missing Trans. Mom [GeV]

76




4-vector inputs

/ High-level vars

) :Z;Zi@;ffzf

m(bb)

(b N
m(ji) -
il }m@ '
m(blv) 5




4-vector inputs

/ High-level vars g i
m(WWhbb) ~ .
m(Whb) }*5 |
m(bb) 5 <
m(bjj)- -
il ’/@
m(blv) —— \Q

78




-vector inputs

0.3F T T T |

/ High-level vars
m(WWhbb)
m(Whbb)
m(bb)

Fraction of Events
Fraction of Events

0
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5 5
g $
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5 5 0.15
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S ©
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m 0
100 200 0 400
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V So.1s} s 5 % y
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My [GEV] M, [GeV] Mo [GeV]
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0.9

0.8

0.7

0.6 —— NN lo+hi-level (AUC=0.81) _

0.5 —

0.4|- —— NN hi-level (AUC=0.78) B

0.3 —

0.2 —— NN lo-level (AUC=0.73) _
0 0.2 0.4 0.6 0.8 1

Signal gfficiency

Results

Adding hi-level
boosts performance
Better: lo+hi-level.

Conclude:

NN can’t find

hi-level vars.

Hi-level vars
do not have dall info




Background Rejection

—

0.9

0.2

Standard NNs

—— NN lo-level (AUC=0.73)

| Reelt
g hi-level

%O" \ performance

\o+hi-level.

e\C
NS, _aciude:
— NN can't find
hi-level vars.

l l | | Hi-level vars

0 0.2

04 08 08 1 do not have all info
Signal efficiency




Deep Networks

- [ I [ I |
o
— L] T .
O N s
QD
)
(C 08 N
©
-
o 06| -
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S 04 -
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0.2 .
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Signal efficiency

Results

Lo+hi = lo.

Conclude:

DN can find

hi-level vars.

Hi-level vars
do not have all info
are unnecessary




Deep Networks

- | | | | |
S | Results
3 DN > NN
o)
0 08 N
g Conclude:
o 06 1 DN does better
Aé 0al T DN lo- level (AUC=0.88) 1 than human
@ 04 1 -
0 ' assisted NN
0.2} i -
——— NN lo+hi-level (AUC=0.81) :
oL _
| | | | |
0 0.2 0.4 0.6 0.8 1

Signal gfficiency




The Als win




|dentified example benchmark where traditional
NN fail to discover all discrimination power.

Adding human insight helps traditional NNs.

Deep networks succeed without human insight.
Outperform human-boosted traditional NNss.
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What is possible?

Raw Sparsified  Reco Select Ana
le7 le3 100 50 ]




What is possible?

Raw Sparsified  Reco Select Ana
le/ le3 100 50 ]

oon o
iA}.;n ~
SIS U
F EW \\(, [Neuing) [ 9 °
4 o (J
° o
S 4 °
Gecromagnae &4 .. °
Solenoid magnet .. ®
-
Trackng { sk < AT AC o °
R et e
e o Wy /7atlas.ch ()

Skip more steps with ML?




Raw Sparsified  Reco Select Ana
le/ le3 100 50 ]

Improve each step with ML?




Jet tagging
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Light-quark Rejection

10*

10°

10°

10

b-tagging
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Optimization

55 160 165 170 175 180 185 190 195
M, (GeV/c")

How to select events which give a top
mass measurement with the smallest
uncertainty?

- Uncertainty is a property of the set
of events, not an individual event. No
truth labels for each event.

- Various background affect
measurement differently.

- Classifiers are not well suited.
Optimize directly!




Optimization

Step #1: Evaluate

Step #3: Breed new population

Crossover & Ses
Mutation

Step #2: Select Step #4: Repeat




NEAT

Using NEAT, we can search the space of topologies at the same time!

Add Node Mutation Add Link Mutation
S| S|
S2 d S2 } d
S3 S3
NEAT algorithm

[Stanley & Miikkulainen 2002]




Performance vs Purity
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Support Vector Machines




Linear problem

Consider a simple, linear separation
problem




Support Vector Machines

* To find the hyperplane that gives the highest separation
(lowest “energy’’), we maximize the Lagrangian w.r.t o.;:

L - Zai _%2 a0 yyX <X,

(x,y;) are training data
a, are positive Lagrange multipliers

The solution 1s:

W = Eaiyixi
;

Where a,=0 for non support vectors

©

(images from applet at http://svm.research.bell-labs.com/)

Daniel Whiteson




Support Vector Machines

But not many problems
of interest are linear.

Map data to higher dimensional
space where separation can be
made by hyperplanes

d
®:R—H
We want to work 1n our original space.

Replace dot product with kernel
function:

K(x,x)= X; X i

Daniel Whiteson




Support Vector Machines

Neither are entirely
separable problems
very difficult.

* Allow an imperfect
decision boundary, but
add a penalty.

e Training errors, points
on the wrong side of
the boundary, are
indicated by crosses.

Daniel Whiteson




Support Vector Machines

We are not limited to

linear or polynomial

kernels.

_ —Hxl-—)(J-Hz/ZG2

K(x;,x;)=e
Gives a highly
flexible SVM

» Gaussian kernel SVMs
outperformed PDEs in
recognizing handwritten
numbers from the USPS
database.

Daniel Whiteson




paaBeliin Compatisens

Algorithm  PaCGAERIETLE

INCI RN 7 © Very fast evaluation

Disadvantages

*Build structure by hand
* Black box

*Local optimization

* [ransparent operation

*Slow evaluation

* Requires high statistics

e Fast evaluation

* Kernel positions
chosen automatically

*Global optimization

* Complex

* Training can be time
intensive

* Kernel selection by hand

Daniel Whiteson

July 11, 2001







2D example

Joint and marginal distributions of x,, x,

~ 8 _ 1
x N )
= — signal

X . e background
6 [ background 075

05

025

a2 — signal

Distribution f(x,) same for s, b.

05 r

So does x, help discriminate
between the two event types?

0.25

G Cowan




2D Example

Consider two variables, x, and x,, and suppose we have formulas
for the joint pdfs for both signal (s) and background (b) events (in
real problems the formulas are usually not available).

f(x,|x,) ~ Gaussian, different means for s/b,
Gaussians have same g, which depends on x,,
f(x,) ~ exponential, same for both s and b,

Sxq, x5) = flxqlx,) fxy):

1 . 5 2, 1
. — —(z1—ps)?/202%(z3) + —xo/A
T1.Tols) = o .
He ) = ) X
f('rlﬂIQ“-)) = 1 e_(vrl_l-"b)g/QO"z('I.z) le_T‘Z/A
| V 27(0'(."1?2) A\
0(172) — 0’06—12/5
G Cowan




Likelihood Ratio

Neyman-Pearson lemma says best critical region 1s determined
by the likelihood ratio:

f(xq1,x9]8)
f(z1,z2|b)

t(z1,22) =

Equivalently we can use any monotonic function of this as
a test statistic, e.g.,
2

5(1E — p2) + (s — )y
Int = 2 5 S

Boundary of optimal critical region will be curve of constant In ¢,
and this depends on x,!
G Cowan




Contours of constant MV A output

T T T l T T T I T T T I T T T

S
T I 1 | 1 T I I I T 1 l T T T

Exact likelihood ratio Fisher discriminant

G Cowan




Contours of constant MV A output

«n 8 o 8
x i x 5
6 —— 6 __
4 4 i K;
L L N t‘:‘ "c§
2 —_ 2 —— ; é."{‘
ol of £ 305 S
4 4 2 0 2 4
. x1 « e X1
Multilayer Perceptron Boosted Decision Tree
1 hidden layer with 2 nodes 200 iterations (AdaBoost)

Training samples: 10° signal and 10° background events
G Cowan
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ROC = “receiver operating
characteristic” (term from
signal processing).

Shows (usually) background
rejection (1—¢,) versus
signal efficiency ..

Higher curve is better;

usually analysis focused on
a small part of the curve.

G Cowan




Machine Learning is powerful
main purpose is dimensional reduction

several tools: NN, SYM, KDE
others not discussed: BDT, PCA

Each have strengths and weaknesses




