Standard Model Measurements at the Energy Frontier

梁志均 (Zhijun Liang) 中国科学院高能物理研究所 IHEP

About myself

- Zhijun Liang
 - Experimental physicist at IHEP CAS
 - 2006-2010: PhD thesis in ATLAS experimental at LHC
 - 2012-2013: Convener for electroweak Physics in ATLAS

– Email : <u>liangzj@ihep.ac.cn</u>

Outline

- How a SM measurement is performed.
- SM Measurement
 - QCD
 - Electroweak
 - Тор

TeV Hadron Colliders

Tevatron @ Fermilab

FERMILAB'S ACCELERATOR CHAIN

Large Hadron Collider (LHC) @ CERN

A pp collider $\sqrt{s} = 7-8$ TeV (ramped up to 13 TeV this year) ⁴

Proton interactions: complex events

More than 1000 particles!

Only fraction interesting

Experimenters task:

- Identify those
- Classify events

Reveals picture of space time of 10⁻¹⁹ m

Are partons composite?

Rutherford all over again

$$\mathcal{L}_{CI} = \frac{g^2}{\Lambda^2} \eta_{LL} (\bar{\psi}_L \gamma^\mu \psi_L) (\bar{\psi}_L \gamma_\mu \psi_L) + (RR, LR)$$

$$\sigma_{ff} = |\mathcal{M}_{SM}|^2 + 2 \frac{1}{\Lambda^2} \mathcal{RE} (\mathcal{M}_{SM} \cdot \mathcal{M}_{CI}) + \frac{1}{\Lambda^4} |\mathcal{M}_{CI}|^2$$

Peter Mättig, CERN Summer Students 2014

Add-on 1: Parton distribution function

Parton energy: only fraction x of proton energy Statistical distribution: parton distribution function (pdf) F_f

$$\begin{array}{c} & \mathbf{x} = \mathbf{E_{parton}}/\mathbf{E_{proton}} \ \ for \ E \to \infty \\ & \Rightarrow \mathbf{M_{scatter}} \ = \sqrt{\mathbf{x_A} \cdot \mathbf{x_B}} \cdot \mathbf{E_{pp}} \end{array}$$

- F_f(x) depends on
- kind of parton f
- **Q**²

For X-section: all combinations $(x_1, x_2) \rightarrow M$ contribute Example:

 $M = 0.3 \text{ TeV from } (x_1 = 0.2, x_2 = 0.2), (0.25, 0.16), (0.4, 0.1), \dots$

$$\int_0^1 d\mathbf{x_1} \int_0^1 d\mathbf{x_2} \sum_{\mathbf{f}} \mathbf{F_f}(\mathbf{x_1}) \mathbf{F_{\overline{f}}}(\mathbf{x_2}) \sigma(\mathbf{q_1}(\mathbf{x_1P}) + \mathbf{q_2}(\mathbf{x_2P}) \to \mathbf{t\overline{t}})$$

hard scatter: two in \rightarrow two out e.g. gluon-gluon \rightarrow top-antitop From Peter Mättig

Three contributions only mildly related ('factorisation') but lead to higher uncertainties

Peter Mättig, CERN Summer Students 2014

underlying event Vs hard process Noise Vs Signal at the LHC

Noise: homogeneous distribution of low momentum hadrons: 'underlying event'

Signal hard process: two high energetic muons

Understand and 'subtract' noise

Energy is not everything

- Number of events observed from collisions $N_{evt} = \sigma \bullet A \bullet \int Ldt$
 - A: acceptance
 - σ: cross section of the process observed
 - L: luminosity of collisions
- Our capacity and reach in physics depend on N_{evt} which is directly proportional to the luminosity.
 - Luminosity is a parameter of extreme importance for a collider

$$L = \frac{f_{rev} n_{bunch} N_p^2}{4 \pi \sigma_x \sigma_y}$$

 f_{rev} : revolving frequency n_{bunch} : number of bunches N_p : number of protons per bunch $4πσ_x σ_y$: beam cross section

Peak luminosity achieved: LHC vs. Tevatron
 $7.7*10^{33}$ cm⁻²s⁻¹ vs. $4*10^{32}$ cm⁻²s⁻¹1-day data taking at LHC would
take 20 days at Tevatron, letting
alone the big energy difference.

We want colliders with high luminosity as well as high energy.

ATLAS detector @ LHC

Particle detector

Cameras at high energy experiments

General particle detection principles in modern high energy experiments

Tracking Electromagnetic Hadronic Muon detector calorimeter calorimeter Beam Pipe (center) Photons Tracking Photon Chamber Neutron Electrons Positrons Magnet Coil Muons E-M Calorimeter Charged. Bleetron hadrons Hadron 112, Proton Calorimeter collisions Neutral hadrons Magnetized Iron Neutrinos Muon Muon Chambers Innermost layer Outermost laver

- Exploit distinguishing characteristics of different particles in interactions with matter
 - EM ionization, EM showering, hadronic showering ...
- Employ multiple sub-detectors with different detection capabilities in a layer-by-layer structure.
- Achieve eventual detection goal (sensitive to all final state particles of interest to reconstruct the complete final state) by combining information from all sub-detectors.

A General purpose detector

Particle detector

- Photons
 - A compact electromagnetic cluster
 - No track matched
- Electrons
 - A compact electromagnetic cluster
 - Matched to a track
- Muons
 - hits in muon chambers
 - Matched to a track
- Taus
 - Clusters in both electromagnetic and hadronic calorimeters
 - Matched to one or three tracks

14

How to find a jet ?

Unambiguous connection to underlying partons → Comparison to theory

Anyway how many jets?
'broadness' of jets arbitrary
→ jet multiplicity depends on choice
→ defined according to physics

Predefine how broad a jet should be!

Standard jet finding at LHC: ,Anti – kt' $d_{ij} = min(p_{ti}^{-2}, p_{tj}^{-2}) \frac{\Delta R_{ij}^2}{R^2}$ $\Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$

© Gavin Salam

Select hard particles as ,seeds' for jets: favoured by min(p_t⁻²)

Hard particles separated in space are disctinct seeds: large ΔR_{ij}

,cut off' given by d_{ij} (steered by R)

Standard jet finding at LHC: ,Anti – kt'

The final jets

All particles assigned to jets

Close to circular in space good for experimental corrections

Note: special treatment of particles close to beam

Typical $\Delta R \approx 0.4 - 0.6$

Jet cross section

Excellent agreement theory <-> data

over huge range in phase space: 10 orders of magnitude

Jet p_T up to 2 TeV

Jet energy scale systematics

Jet energy determined from calorimeter (+ tracking information) How well is scale known? Jet energy scale (JES) uncertainty \rightarrow Effects on X-section magnified by steep slope Calibration: γ + jets data with p_T balance

Jet energy resolution systematics

sensitivity of measured cross section to energy resolution

Use p_T balance in 2 – jet events

Dijet mass measurement

Alphas_S measurement

- α_s measurement extended to much higher energy scales
- Test of α_s running

High pT jets : jet substructure

High p_T jets: important to explore TeV scale physics

Several partons merge into a single jet

I.e. single jet has higher mass Measure mass of high p_T jet:

Globally: models agree with expectation But details differ!

W/Z production

W/Z: CERN's first nobel prize new accelerator technology

Why study W/Z?

- Good testing ground for QCD
- Test and constraint of PDFs
- Detector calibration
- Simulation tuning and validation
- Important background to searches

$\label{eq:constraint} \begin{array}{c} Z \ production \\ \mbox{Detectable Z decays } e^+e^-, \ \mu^+\mu^-, \ (\tau^+\tau^-) \end{array}$

Just 3% of Z's decay in (each) lepton pair

Super – clean signal 1 million Z⁰s/1fb⁻¹ A lot of physics! Important calibration tool

W production

11% decay into lv (each)

$$MET_{x} = -\sum (p_{x})_{i}, MET_{y} = -\sum (p_{y})_{i}$$

Unbalanced transverse momentum = ,v '

Fairly clean signal, but no mass peak

Cross section ~ 10x higher than for Z⁰

Example : Performing a Z->II measurement

What to measure

 $pp \rightarrow Z \rightarrow II production cross section$

 $\sigma_{Z/\gamma^*} \times BR(Z/\gamma^* \to \ell\ell)$

How to measure

$$\sigma \times BR = \frac{N_{obs} - N_{bkg}}{A \times \int Ldt}$$

Event selection and trigger

- Main characteristics of $pp \rightarrow Z \rightarrow II$ events
 - Two high $p_{\rm T}\,$ and isolated leptons
 - Invariant mass of the two leptons: $m_{\parallel} \sim m_z$
- Event selection criteria are devised accordingly to retain pp→Z→II signal and reject background as much as possible
 - Triggers: e_E_T_15, mu_p_T_18
 - Lepton ID: "combined" muons, "medium" electron
 - p_T>20 GeV, $|\eta|$ <2.4 and $\sum p_T^{ID}/p_T < 0.2$
 - $|m_{\parallel} m_{z}| < 25 \text{ GeV}$

Integrated luminosity, $\int Ldt$, depends on the data sample being used

Run Period	Int.Luminosity (nb)
A-C: 152844-156682	16.65
D1: 158045-158392	26.89
D2: 158443-158582	29.03
D3: 158632-158975	32.85
D4: 158041-159086	79.49
D5: 159113	28.04
D6: 159179-159224	97.05
Total	310±34

N_{obs} = number of events in data that pass the event selection

Requirement	Number of	candidates
	$Z \rightarrow ee$	$Z ightarrow \mu \mu$
Trigger	$6.5 imes 10^6$	$5.1 imes 10^6$
Two leptons (<i>ee</i> or $\mu\mu$ with $E_{\rm T}(p_{\rm T}) > 20 {\rm GeV}$)	83	144
Muon isolation: $\sum p_T^{\text{ID}}/p_T < 0.2$	-	117
Opposite charge <i>ee</i> or $\mu\mu$ pair:	78	117
$66 < m_{\ell\ell} < 116 { m GeV}$	70	109

 $\sigma \times BR = \frac{N_{obs} - N_{bkg}}{A \times \int Ldt}$

Acceptance, A, is estimated using simulation

$A = N_{acc} / N_{all}$

N_{all}: total number of simulated events N_{acc}: number of simulated events that pass the event selection

MC	A_Z	A_Z
	$Z \rightarrow ee$	$Z \rightarrow \mu \mu$
PYTHIA MRSTLO*	0.446	0.486
MC@NLO HERAPDF1.0	0.440	0.479
MC@NLO CTEQ6.6	0.445	0.485

N_{bkg} = number of events from processes other than pp→Z →II that pass the event selection (background)

N_{bkg} is estimated using simulation or data driven approaches.

l	Observed candidates	Background $(EW+t\bar{t})$	Background (QCD)
e^{\pm}	70	$0.27 \pm 0.00 \pm 0.03$	$0.91 \pm 0.11 \pm 0.41$
μ^{\pm}	109	$0.21 \pm 0.01 \pm 0.01$	$0.04 \pm 0.01 \pm 0.04$

Cross Section

 Getting a cross section result now seems as simple as doing the following quick math

$$\sigma \times BR = \frac{N_{obs} - N_{bkg}}{A \times \int Ldt}$$

 But is this all? No! Any results without uncertainties make no sense! We need to estimate uncertainties on the measured cross section, particularly, the systematic uncertainties.

Uncertainties

- Statistic uncertainty : δN_{obs}
 - Comes from N_{obs} that follows a Possion distribution.
 Quite trivial.
- Systematic uncertainties (represent our lack of knowledge, need to be assessed on every aspect of the measurement)
 - Uncertainty on A : δA
 - Uncertainty on L : δL
 - Uncertainty on $N_{bkg}:\ \delta N_{bkg}$

$$\frac{\delta(\sigma \times Br)}{\sigma \times Br} = \sqrt{\frac{\left(\delta N_{obs}\right)^2 + \left(\delta N_{bkg}\right)^2}{\left(N_{obs} - N_{bkg}\right)^2} + \left(\frac{\delta A}{A}\right)^2 + \left(\frac{\delta L}{L}\right)^2}$$

Final Results

W/Z cross section

Note different cross sections for W⁺ and W⁻ at LHC

W/Z + jets production

- Can be "neatly" tagged by W/Z.
- Very important testing ground for pQCD

- Good description of data with N_{jets} up to 8, "deeply" testing QCD.
- A lot more derivative measurements performed: pT(j), Δφ(j,j), Δy(j,j), M(j,j), Wj/Zj ratio, (n+1)jets/njets ratio ...

VBF Z

- Two main Higgs production mechai
 - Gluon-gluon fusion
 - Vector boson fusion (VBF)
 - Important to confirm VBF production mechanism in VBF Z+2jets channel

JHEP 04 (2014) 031

VBF Z (ATLAS)

Background-only hypothesis Rejected at greater than

5σ significance

Object selections:

- two electron/muon
- two high- p_T forward jets

Kinematic selections:

- 81 < m_{II} < 101 GeV
- p_T" > 20 GeV
- $p_T^{\text{balance}} < 0.15$
- $N_{jet}^{gap} = 0$
- m_{jj} > 250 GeV

	Electron+muon
Data	32186
MC predicted $N_{\rm bkg}$	$32600 \pm 2600 {}^{+3400}_{-4000}$
MC predicted $N_{\rm EW}$	$1333\pm50\pm40$
Fitted $N_{\rm bkg}$	$30530 \pm 216 \pm 40$
Fitted $N_{\rm EW}$	$1657 \pm 134 \pm 40$

Measured EWK Zjj cross section

 $\sigma_{\rm EW} = 54.7 \pm 4.6 \,({\rm stat}) \,{}^{+9.8}_{-10.4} \,({\rm syst}) \,\pm 1.5 \,({\rm lumi}) \,{\rm fb}.$

Powheg Box predictions at next-to-leading-order (NLO) accuracy in perturbative QCD

 $46.1 \pm 0.2 \,(\text{stat}) \,{}^{+0.3}_{-0.2} \,(\text{scale}) \,\pm 0.8 \,(\text{PDF}) \,\pm 0.5 \,(\text{model}) \,{}^{40}_{\text{fb}}$

Parton distribution function and W production

Production of W⁺, W⁻ slightly different $\mathbf{u}\overline{d} \rightarrow \mathbf{W}^+ \rightarrow \mu^+ \overline{\nu}_\mu$ $\overline{\mathbf{u}}\mathbf{d} \rightarrow \mathbf{W}^- \rightarrow \mu^- \nu_\mu$

More valence u than d quarks in proton (at high x)

Sensitivity to different quark content
 → constraint for parton distribution function

W⁺ Vs W⁻ production

 $\mathbf{A}_{\mu} = \frac{\mathbf{N}_{\mu^{+}}(| \eta |) - \mathbf{N}_{\mu^{-}}(| \eta |)}{\mathbf{N}_{\mu^{+}}(| \eta |) + \mathbf{N}_{\mu^{-}}(| \eta |)}$

Valence quarks have high x! Sea quarks small x → high η W - bosons

Note different predictions by pdfs

Weak particle looking into mirror

Fundamental (classical) symmetry: left = right Laws of physics the same if (x,y,z) → (-x,-y,-z)

Ok for quantum mechanics: strong & electromagnetic interactions But not for weak interactions! Fermions: only one spin direction

Polarisation of W

Polarisation of W an important tool for top, Higgs etc. physics

Z forward and backward asymmetry

Z→4I

A relatively rare SM process, providing calibration for 4-lepton event topology.

First measurement of its kind at 8TeV

Diboson production

- Unique test of the electroweak sector of the SM
 - Triple gauge couplings (vector-boson selfcouplings) are fundamental prediction resulting from the non-Abelian structure of the Electroweak gauge symmetry group of SU(2)*U(1), and are completely fixed in the SM.
 - Anomalous triple gauge couplings (aTGCs) are indication of new physics
- Irreducible background to Higgs boson measurement.
- Sensitive to new resonances decaying to boson pairs.

Wy, Zy, WW, WZ, ZZ

(W and Z are selected in a similar way to the previous "QCD" W/Z selections).

W/Z+gamma production

- $W_{Y} \rightarrow I_{Y}$ and $Z_{Y} \rightarrow I_{Y}$
 - W/Z + isolated photon, $E_{T}(y) > 15 \text{ GeV}$
 - $\Delta R(I,\gamma) > 0.7$ (suppress FSR)
 - Background: W/Z/y+jets
- $Zv \rightarrow vvv$

1000

- Missing transverse energy + isolated photon
- $E_{T}(y) > 100 \text{ GeV} (ATLAS)$
- $E_{T}(\gamma) > 145 \text{ GeV}(\text{CMS})$
- Background: W, Wy, y+jets
 - Wγ: Data agrees with MCFM NLO prediction in low E_{τ} , but overshoots the prediction in high E_{T} .
 - Zy: Data agrees MCFM NLO prediction for exclusive (no jets)

Triple Gauge Couplings

- The s-channel diagrams contain the triple gauge coupling vertex
 - probe magnetic dipole moment of W/Z boson
- aTGCs modify the event kinematics
 - Effects of aTGCs increase with s[^]

- MCFM is used for NLO $W\gamma\gamma$ SM predicted cross section.
 - The measured cross section in inclusive case is 1.9 σ higher than predictions

WVγ (CMS) Phys. Rev. D 90, 032008 (2014)

- The selected data events is dominated by $W\gamma$ +jets
 - not enough signal statistics for measurements
- 95% CL cross section upper limit is set at 311 fb
 - The limit is 3.4 times larger than SM predictions

Event selection highlight

- One good lepton
- One good photon
- Two high pT jets
- □ 70GeV <Mjj<100GeV

Major BG in WVy

Wγ+jets WV +jet , jet fake as γ Multijets

Quartic Gauge Boson Couplings

- Reminder of Quartic Gauge Boson Couplings (QGCs)
 - SM model predicts gauge boson self coupling
 - Four gauge boson vertex:

- WWyy , WWZy , WWWW, WWZZ, \ldots

– QGCs can be studied in

- Tri-boson processes
- Vector boson scattering processes
- Exclusive γγ->WW process

Special interest: W pairs from VBF

1960s: event rate for $W_L W_L \rightarrow W_L W_L$ explodes at 1.2 TeV Higgs boson should cure this: theory works fine

Expected background: 16.9
Expected WWjj: 15.2
Observed nb. Events: 34
→ Evidence for VBF

The mysterious top quark

Top quark: no internal structure but heavy as a gold atom

 $\mathbf{M_t} = \mathbf{173.3} \pm \mathbf{1.1 GeV}$

i.e. coupling strength to Standard Model Higgs Boson

Suggests a special role of top quark?

Phenomenology of heavy top

For lighter quarks: strong interaction >> weak interactions → colour neutral hadrons

b

W

competing interactions: who's faster?

For top quark: strong interaction < weak interactions</p>
top quarks decay before hadrons formed, ,free quark'

Phenomenology of heavy top

Decay properties of top quark unambigously predicted by SM Decay fractions largely determined by fractions of W – decay

Top Pair Decay Channels

tt 🗲 (only) 6 quarks

largest fraction, very high background

- tt → 4 quarks, charged lepton, neutrino Some 30% ,usable', low background FAVOURED channel
- tt → 2 quarks, 2 charged I, 2 neutrinos Only 5% ,usable', very low background, difficult to reconstruct

99.1% of all top quarks decay into a bottom quark!

A semileptonic tt event

tt Cross Section

Test of QCD with massive quarks Measure coupling strength gtt

Cross section determination

Experimental precision depends on how well - background, efficiency, luminosity can be controlled

Key issue determine efficiency

Largest uncertainties:

- modelling of top
- parton distribution fct.
- Background yield
- Jet energy scale
- selection efficiencies e, $\boldsymbol{\mu}$

Experimental uncertainty ~ 2.3%Luminosity uncertainty~ 3.1 %Beam energy~ 1.7 %

Total uncertainty 4.3%

Improvement by factor 2 – 3 within a year!

Cross section measuremnt

Theoretical uncertainty <5 % (significant improvement last 10y) Theory & experiment uncertainty about equal

Very good agreement between data and expectation

Summary

- TeV hadron colliders put the SM to the test at the energy frontier.
- It's impressive to see agreement with the SM across orders of magnitude.
- In addition to testing the SM and indirectly searching for new physics, SM measurements lay groundwork for an experiment and are mandatory
 - reconstruction, calibration and performance
 - detector and physics simulation, MC tuning
 - Irreducible backgrounds to new physics searches

SM measurements are just important