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Outline

2

‣Jet algorithms

‣How are jets made

‣Jet substructure

‣What’s inside them
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What is a jet?

3
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Why jets

4

A jet is something that happens 
in high energy events: 

a collimated bunch of hadrons 
flying roughly in the 

same direction

We could eyeball the collimated 
bunches, but it becomes impractical 

with millions of events

The classification of particles into jets is best done 
using a clustering algorithm
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Why do jets happen?

5
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The pervasiveness of jets

6

‣ ATLAS and CMS have each published 400+ papers since 2010
‣ More than half of these papers make use of jets
‣ 60% of the searches papers makes use of jets

(Source: INSPIRE. 
Results may vary when 

employing different search 
keywords)

Why are jets so important?

Plot by G. Salam
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Taming reality

7

QCD predictions Real data

??

Jets

One purpose of a ‘jet clustering’ algorithm is to
reduce the complexity of the final state, simplifying many hadrons 

to simpler objects that one can hope to calculate

Multileg + PS
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Jets

821

Jets can serve two purposes

‣ They can be observables, that one can measure 
and calculate

‣ They can be tools, that one can employ to extract 
specific properties of the final state

Different clustering algorithms have different properties and characteristics 
that can make them more or less appropriate for each of these tasks
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Jet clustering algorithm

9

{pi} {jk}
jet algorithm

particles,
4-momenta,

calorimeter towers, ....

jets

A jet algorithm maps the momenta of the final state particles 
into the momenta of a certain number of jets:

Most algorithms contain a resolution parameter, R, 
which controls the extension of the jet
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Jet  Definition

10

A jet algorithm 
+

its parameters (e.g. R)
+

a recombination scheme
=

a Jet Definition

  /// define a jet definition
  JetDefinition jet_def(JetAlgorithm jet_algorithm, 
                        double R, 
                        RecombinationScheme rec_sch = E_scheme);
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Jet definitions as projections

11

NB: projections are NOT unique: 
a jet is NOT EQUIVALENT to a parton
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Reconstructing jets is an ambiguous task

7

Seeing v. defining jets[Introduction]

[Background knowledge]

Jets are what we see.
Clearly(?) 2 jets here

How many jets do you see?
Do you really want to ask yourself
this question for 109 events?

Gavin Salam (CERN) Jets and jet substructure (1) June 2013 6 / 35

2 clear jets 3 jets?
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Reconstructing jets is an ambiguous task

8

Seeing v. defining jets[Introduction]

[Background knowledge]

Jets are what we see.
Clearly(?) 2 jets here

How many jets do you see?
Do you really want to ask yourself
this question for 109 events?

Gavin Salam (CERN) Jets and jet substructure (1) June 2013 6 / 35

2 clear jets 3 jets? 
or 4 jets?
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Reconstructing jets must respect rules

14

Perturbative calculations of jet observable will 
only be possible with collinear (and infrared) safe 

jet definitions
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IRC safety

15

An observable is infrared and collinear safe if, 
in the limit of a  collinear splitting, or the emission of an 
infinitely soft particle, the observable remains unchanged:

O(X; p1, . . . , pn, pn+1 � 0) � O(X; p1, . . . , pn)
O(X; p1, . . . , pn ⇥ pn+1) � O(X; p1, . . . , pn + pn+1)

If we wish to be able to calculate a jet rate in perturbative QCD 
the jet algorithm that we use must be IRC safe: 

soft emissions and collinear splittings must not change the hard jets

This property ensures cancellation of real and virtual divergences 
in higher order calculations
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Two main classes of jet algorithms

16

‣ Sequential recombination algorithms 
 Bottom-up approach: combine particles starting from closest ones 

         How? Choose a distance measure, iterate recombination until     
                     few objects left, call them jets

Works because of mapping closeness ⇔ QCD divergence
Examples: Jade, kt, Cambridge/Aachen, anti-kt, …..

‣ Cone algorithms
  Top-down approach: find coarse regions of energy flow. 

        How? Find stable cones (i.e. their axis coincides with sum of momenta of particles in it)

Works because QCD only modifies energy flow on small scales
Examples: JetClu, MidPoint,  ATLAS cone, CMS cone, SISCone…...
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Two main classes of jet algorithms

17

‣ Sequential recombination algorithms 
 Bottom-up approach: combine particles starting from closest ones 

         How? Choose a distance measure, iterate recombination until     
                     few objects left, call them jets

Works because of mapping closeness ⇔ QCD divergence
Examples: Jade, kt, Cambridge/Aachen, anti-kt, …..

‣ Cone algorithms
  Top-down approach: find coarse regions of energy flow. 

        How? Find stable cones (i.e. their axis coincides with sum of momenta of particles in it)

Works because QCD only modifies energy flow on small scales
Examples: JetClu, MidPoint,  ATLAS cone, CMS cone, SISCone…...

Usually trivially made IRC safe, but their 
algorithmic complexity scales like N3

Can be programmed to be fairly fast, at the  
price of being complex and IRC unsafe
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A little history

18

‣Cone-type jets were introduced first in QCD in the 1970s 
(Sterman-Weinberg ’77)

‣In the 1980s cone-type jets were adapted for use in hadron 
colliders (SppS, Tevatron...) ➙ iterative cone algorithms

‣LEP was a golden era for jets: new algorithms and many 
relevant calculations during the 1990s
‣ Introduction of the ‘theory-friendly’ kt algorithm

‣  sequential recombination type algorithm, IRC safe
‣  it allows for all order resummation of jet rates

‣Several accurate calculations in perturbative QCD of jet 
properties: rates, jet mass, thrust, ....
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e+e- kt (Durham) algorithm

19

Distance:

In the collinear limit, the numerator reduces to the relative transverse 
momentum (squared) of the two particles, hence the name of the algorithm

[Catani, Dokshitzer, Olsson, Turnock, Webber ’91]

‣ Find the minimum ymin of all yij

‣ If ymin is below some jet resolution threshold ycut, recombine i and j 
into a single new particle (‘pseudojet’), and repeat

‣ If no ymin < ycut are left, all remaining particles are jets
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e+e- kt (Durham) algorithm in action 

20

Characterise events 
in terms of number of jets 

(as a function of ycut)

Resummed calculations for distributions of ycut doable with the kt algorithm

2-jet

3-jet

4-jet

5-jet
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e+e- kt (Durham) algorithm v. QCD

21

One key feature of the kt 
algorithm is its relation to the 
structure of QCD divergences:

kt is a sequential recombination type algorithm

The yij distance is the inverse of the emission probability

‣The kt algorithm roughly inverts the QCD branching sequence 
(the pair which is recombined first is the one with the largest 
probability to have branched)

‣The history of successive clusterings has physical meaning
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Jet challenges at the LHC 

22

The LHC environment differs from the LEP one 
(and even the Tevatron) under many respects

‣ Number of final state particles much larger (order 103)

‣ Many higher order calculations (NLO, NNLO) available

‣ Presence of background (underlying event and pileup)

‣ Jets often initiated by a large-momentum heavy particle

➙ needs a fast algorithm

➙ needs an IRC-safe algorithm

➙ needs small/known susceptibility 
and/or ability to subtract background

➙ needs capability to distinguish 
boosted objet jet from QCD jet
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hadron-collider kt algorithm

Two parameters, R and pt,min 
(These are the two parameters in essentially every widely 
used hadron-collider jet algorithm)

Sequential recombination algorithm
1. Find smallest of dij, diB 

2.  If ij, recombine them 
3.  If iB, call i a jet and remove from list of particles 
4.  repeat from step 1 until no particles left 

 Only use jets with pt > pt,min

13

Inclusive kt algorithm
S.D. Ellis & Soper, 1993 

Catani, Dokshitzer, Seymour & Webber, 1993

dij = min(p2ti, p
2
tj)

�R2
ij

R2
, �R2

ij = (yi � yj)
2 + (�i � �j)

2
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The kt algorithm and its siblings

24

p = 1    kt algorithm S. Catani, Y. Dokshitzer, M. Seymour and B.  Webber,  Nucl. Phys. B406 (1993)  187
S.D. Ellis and D.E. Soper,  Phys. Rev. D48 (1993) 3160

p = 0   Cambridge/Aachen algorithm
Y. Dokshitzer, G. Leder, S.Moretti and B.  Webber,  JHEP 08 (1997) 001

M. Wobisch and T. Wengler, hep-ph/9907280

p = -1  anti-kt algorithm MC, G. Salam and G. Soyez, arXiv:0802.1189

NB: in anti-kt pairs with a hard particle will cluster first: if no other 
hard particles are close by, the algorithm will give perfect cones

Quite ironically, a sequential recombination algorithm is the ‘perfect’ cone algorithm

dij = min(p2p
ti , p2p

tj )
�y2 + ��2

R2
diB = p2p

ti
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IRC safety of generalised-kt algorithms

25

p > 0
New soft particle (pt →0) means that d → 0   ⇒  clustered first, no effect on jets

New collinear particle (Δy2+ΔΦ2 → 0) means that d → 0   ⇒  clustered first, no effect on jets

p = 0
New soft particle (pt →0) can be new jet of zero momentum ⇒  no effect on hard jets

New collinear particle (Δy2+ΔΦ2 → 0) means that d → 0   ⇒  clustered first, no effect on jets

p < 0
New soft particle (pt →0) means d →∞  ⇒  clustered last or new zero-jet,  no effect on hard jets

New collinear particle (Δy2+ΔΦ2 → 0) means that d → 0   ⇒  clustered first, no effect on jets

dij = min(p2p
ti , p2p

tj )
�y2 + ��2

R2
diB = p2p

ti
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IRC safe algorithms

26

kt

SR
dij = min(pti2,ptj2)ΔRij2/R2

hierarchical in rel pt

Catani et al ‘91
Ellis, Soper ‘93 NlnN

Cambridge/
Aachen

SR
dij = ΔRij

2/R2

hierarchical in angle

Dokshitzer et al ‘97
Wengler, Wobish ‘98 NlnN

anti-kt

SR
dij = min(pti-2,ptj-2)ΔRij

2/R2

gives perfectly conical hard jets

MC, Salam, Soyez ’08
(Delsart, Loch) N3/2

SISCone
Seedless iterative cone 

with split-merge
gives ‘economical’ jets

Salam, Soyez ‘07 N2lnN

All are available in FastJet, http://fastjet.fr
‘second-generation’ algorithms

(As well as many IRC unsafe ones)

http://fastjet.fr
http://fastjet.fr
http://fastjet.fr
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  /// create a ClusterSequence, extract the jets
 ClusterSequence cs(input_particles, jet_def);
 vector<PseudoJet> jets = sorted_by_pt(cs.inclusive(jets));
 ...
 // pt of hardest jet
 double pt_hardest = jets[0].pt();
 ...
 // constituents of hardest jet
 vector<PseudoJet> constits = jets[0].constituents();

Jet clustering in FastJet

27

  /// define a jet definition
  JetDefinition jet_def(JetAlgorithm jet_algorithm, 
                        double R, 
                        RecombinationScheme rec_sch = E_scheme);

jet_algorithm can be any one of the four IRC safe algorithms, or also 
most of the old IRC-unsafe ones, for legacy purposes



Matteo Cacciari - LPTHE iSTEP Summer School  -  Beijing   -  July 2016 28Gavin Salam (CERN) QCD basics 4 ICTP-SAIFR school, July 2015

Anti-kt in action

16

dij =
1

max(p2ti, p
2
tj)

�R2
ij

R2
, diB =

1

p2ti

Clustering grows 
around hard cores
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Anti-kt in action

16

dij =
1

max(p2ti, p
2
tj)

�R2
ij

R2
, diB =

1

p2ti

Clustering grows 
around hard cores
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Anti-kt in action

16

dij =
1

max(p2ti, p
2
tj)

�R2
ij

R2
, diB =

1

p2ti

Clustering grows 
around hard cores
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Anti-kt in action

16

dij =
1

max(p2ti, p
2
tj)

�R2
ij

R2
, diB =

1

p2ti

Clustering grows 
around hard cores
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Anti-kt in action

16

dij =
1

max(p2ti, p
2
tj)

�R2
ij

R2
, diB =

1

p2ti

Clustering grows 
around hard cores
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Anti-kt in action

16

dij =
1

max(p2ti, p
2
tj)

�R2
ij

R2
, diB =

1

p2ti

Clustering grows 
around hard cores
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Anti-kt in action

16

dij =
1

max(p2ti, p
2
tj)

�R2
ij

R2
, diB =

1

p2ti

Clustering grows 
around hard cores
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Anti-kt in action

16

dij =
1

max(p2ti, p
2
tj)

�R2
ij

R2
, diB =

1

p2ti

Clustering grows 
around hard cores
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Anti-kt in action

16

dij =
1

max(p2ti, p
2
tj)

�R2
ij

R2
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p2ti

Clustering grows 
around hard cores
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Anti-kt in action

16
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1

max(p2ti, p
2
tj)

�R2
ij
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Clustering grows 
around hard cores



Matteo Cacciari - LPTHE iSTEP Summer School  -  Beijing   -  July 2016 38Gavin Salam (CERN) QCD basics 4 ICTP-SAIFR school, July 2015

Anti-kt in action

16

dij =
1

max(p2ti, p
2
tj)

�R2
ij

R2
, diB =

1

p2ti

Clustering grows 
around hard cores
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Anti-kt in action

16
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1

max(p2ti, p
2
tj)

�R2
ij
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Clustering grows 
around hard cores
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Anti-kt in action

16
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Anti-kt in action

16
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1

max(p2ti, p
2
tj)

�R2
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Clustering grows 
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Anti-kt in action

16

dij =
1

max(p2ti, p
2
tj)

�R2
ij

R2
, diB =

1

p2ti

Clustering grows 
around hard cores
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Anti-kt in action

16

Anti-kt gives 
circular jets  
(“cone-like”) 

in a way that’s 
infrared safe

dij =
1

max(p2ti, p
2
tj)

�R2
ij

R2
, diB =

1

p2ti

Clustering grows 
around hard cores



kt Cam/Aa

SISCone anti-kt
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Example of jet observable

45

Inclusive 
jet cross 
section

Excellent 
theory-data 

agreement over 
many orders of 

magnitude
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Background

46

Many ‘things’ can be clustered into (or lost from) a jet 
other than what we want (typically, perturbative 

radiation from a parton)

Ideally we’d like to be able to correct for these effects
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Pileup

47

78-vertices event 
from CMS

https://cds.cern.ch/record/1479324

Pileup can deposit several tens of GeV (or even 
hundreds, in a heavy ion collision) into a medium-sized jet
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Background subtraction

48

Many advanced tool have been developed in the past 
ten years to subtract background from jets

This can be done, with varying level of precision and 
bias, either at the observable level (measure a 

quantity, e.g. a jet pt, and then correct its value), or at 
the constituents level (select only the ‘good’ 

constituents of the jet before measuring the quantity)
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Comparisons of  pileup subtractions

49
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Why boosted objects

50

Heavy particle X at rest Boosted heavy particle X

X

X

Easy to resolve jets and 
calculate invariant mass, 

but signal very likely 
swamped by background 

(eg H→bb v. tt →WbWb)

Cross section very much 
reduced, but acceptance 

better and some 
backgrounds smaller/

reducible
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Mass of a single jet

51

A heavy object decaying 
into a single jet naturally 

gives it a mass...

... but pure QCD jets can be 
massive too:

G. Salam

Signal

Background
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This means that one can’t rely on the invariant mass only. 
An appropriate strategy must be found to reduce the background 

and enhance the signal

Mass of a single jet

52

Summing ‘signal’ and ‘background’ (with appropriate cross sections)
shows how much the background dominates

Background only Signal + background

Practically identical
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Tagging

53

X
How to tell this from this ?

Decay of a heavy 
(boosted) object

Light parton 
fragmentation
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Tagging and Grooming

54

‣The substructure of a jet can be exploited to
‣tag a particular structure inside the jet, i.e. a massive 

particle
‣ First examples: Higgs (2-prong decay), top (3-prong decay)

‣remove background contamination from the jet or its 
components, while keeping the bulk of the perturbative 
radiation (often generically denoted as grooming)

‣ First examples: filtering,  trimming, pruning
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Why substructure

55

Scales: m ~ 100 GeV, pt ~ 500 GeV
(e.g. electroweak particle from decay of ~ 1TeV BSM particle)

Possible strategies
‣ Use large R, get a single jet : background large
‣ Use small R, resolve the jets : what is the right scale?
‣Also: small jets lead to huge combinatorial issues

‣ need small R (< 2m/pt ~ 0.4) to resolve two prongs
‣ need large R (>~ 3m/pt ~ 0.6) to cluster into a single jet

 Let an algorithm find the ‘right’ substructure
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What jets to use for substructure?

56

Different jet algorithms will give different ‘pictures’ 
of what’s inside a jet
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Dendrogram

57

Distance between two objects 
is given by the height of the 
lowest internal node that they 

share.

Internal node

Order of clustering here is 1,2,3,4

1
2

3
4

Used to represent graphically the sequence of clustering steps 
in a sequential recombination algorithm

Distance

The clustering sequence is 4-5 (1), 2-3 (2), 23-45 (3), 1-2345 (4)

1 2 3 4 5



Matteo Cacciari - LPTHE iSTEP Summer School  -  Beijing   -  July 2016

First try

58

anti-kt
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 3.57137e−05

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.000496598

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.000688842

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.000805103

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.000773759

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.0014577

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is diB = 0.00147749

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is diB = 1.96

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Second try

76

kt
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.318802

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.977453

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 1.48276

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 2.34277

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 13.5981

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 30.8068

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 717.825

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering

Its last step is to merge two hard

pieces. Easily undone to identify un-

derlying kinematics
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering

Its last step is to merge two hard

pieces. Easily undone to identify un-

derlying kinematics
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is diB = 11432

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering

Its last step is to merge two hard

pieces. Easily undone to identify un-

derlying kinematics
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering

Its last step is to merge two hard

pieces. Easily undone to identify un-

derlying kinematics

This meant it was the first algorithm
to be used for jet substructure.

Seymour ’93

Butterworth, Cox & Forshaw ’02
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Third try

94

Cambridge/Aachen
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} = 0.142857

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} = 0.214286

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1



Matteo Cacciari - LPTHE iSTEP Summer School  -  Beijing   -  July 2016 100

Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} = 0.415037

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} = 0.686928

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} = 1.20645

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} = 1.93202

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining
soft junk

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV
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20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining
soft junk

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} > 2

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining
soft junk

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining
soft junk

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} > 2

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining
soft junk

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining
soft junk

The interesting substructure is buried
inside the clustering sequence — it’s
less contamined by soft junk, but
needs to be pulled out with special
techniques

Butterworth, Davison, Rubin & GPS ’08
Kaplan, Schwartz, Reherman & Tweedie ’08

Butterworth, Ellis, Rubin & GPS ’09
Ellis, Vermilion & Walsh ’09

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Hierarchical substructure

112

Slide by 
Gavin Salam

Undo the last 
clustering step(s)
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The IRC safe algorithms

113

Speed Regularity UE
contamination

Backreaction Hierarchical
substructure

kt ☺☺☺ ☂ ☂☂ ☁☁ ☺☺

Cambridge
/Aachen

☺☺☺ ☂ ☂ ☁☁ ☺☺☺

anti-kt ☺☺☺ ☺☺ ☁/☺ ☺☺ ✘

SISCone ☺ ☁ ☺☺ ☁ ✘

Array of tools with different characteristics. 
Pick the right one for the job
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QCD v. heavy decay

114

A possible approach for reducing the QCD background is to identify the two 
prongs of the heavy particle decay, and put a cut on their momentum fraction

Signal: Background: 
P (z) ⇥ 1 + z2

1� z
P (z) ⇥ 1 + (1� z)2

z
P (z) � 1

Will split mainly 
symmetrically

Will split mainly 
asymmetrically

Will split mainly 
symmetrically
Will split mainly 

symmetrically

Potential tagger: asymmetric splitting

y = min(p2
ti, p

2
tj)

�R2
ij

m2
� min(pti, ptj)

max(pti, ptj)
Possibly 

implemented 
via a cut on
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Splittings and distances
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Quasi-collinear 
splitting (ptj < pti)

pt
pti = (1-z)pt

m ptj = zpt

m2 ⇥ ptiptj�R2
ij = (1� z)zp2

t �R2
ijInvariant mass:

dij = z2p2
t �R2

ij ⇥
z

1� z
m2

kt distance:

For a given mass, the background will have smaller distance dij than the signal, 
i.e.  it will tend to cluster earlier in the kt algorithm

(ptj < pti)

Potential tagger: last clustering in kt algorithm
This is where the hierarchy of the kt algorithm becomes relevant. 

QCD radiation is clustered first, and only at the end the symmetric, 
large-angle splittings due to decays are reclustered
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‘Jet substructure’ papers in INSPIRE
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More than 100 papers since 2008
(+ some background noise)

Number of papers containing the words ‘jet substructure’
M

ike
 S

ey
m

ou
r

Bu
tte

rw
or

th
, C

ox
, F

or
sh

aw

Pioneered by M. Seymour in the early 
‘90s,  rebooted by BDRS paper

 0

 1

 2

 3

 4

 5

 6

 7

 1990  1995  2000  2005  2010  2015

pa
pe

rs
 / 

m
on

th

year

Papers containing "jet substructure"
+ pioneering papers by Mike Seymour in 1991 and 1994
(Source: INSPIRE)
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The BDRS tagger/groomer
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‣A two-prong tagger/groomer for boosted Higgs, which
‣ Uses the Cambridge/Aachen algorithm (because it’s ‘physical’)

‣ Employs a Mass-Drop condition, as well as an asymmetry cut to 
find the relevant splitting (i.e. ‘tag’ the heavy particle)

‣ Includes a post-processing step, using ‘filtering’ (introduced in the same paper) 
to clean as much as possible the resulting jets of UE contamination 
(‘grooming’)

Butterworth, Davison, Rubin, Salam, 2008

pp →ZH → ννbb--
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pp →ZH → ννbb

Start with the 
hardest jet

Use C/A with 
large R=1.2

mj = 150 GeV
G

. S
al

am

- -
BDRS: tagging
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pp →ZH → ννbb

Undo last step of 
clustering

Check how the mass splits 
between the two subjets

(m1 = 139 GeV, m2 = 5 GeV)
and how asymmetric the 

splitting is

If repeator
min(p2

t1, p
2
t2)

m2
j

�R2
12 < ycut

max(m1,m2)
mj

> µ

BDRS: tagging
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pp →ZH → ννbb

m1 = 52 GeV, m2 = 28 GeV

Stop when a large mass 
drop is observed 

(and recombine these
 two jets)

[NB. Parameters used μ = 0.67 and ycut = 0.09]
G

. S
al

am

BDRS: tagging
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BDRS: filtering
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Start with the 
recombined jet

pp →ZH → ννbb

G
. S

al
am
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Recluster the 
contituents with Rfilt

pp →ZH → ννbb

G
. S

al
am

BDRS: filtering
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Only keep the nfilt 
hardest jets

The low-momentum stuff surrounding the hard particles has been removed

pp →ZH → ννbb

G
. S

al
am

BDRS: filtering
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Visualisation of BDRS
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Cluster with a large R
Undo the clustering into subjets,

until a large asymmetry/mass drop 
is observed: tagging step

Re-cluster with smaller R, 
and keep only 3 hardest 

jets: grooming step

pp →ZH → ννbb--
Butterworth, Davison, Rubin, Salam, 2008
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BDRS in FastJet
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#include “fastjet/tools/MassDropTagger.hh”
#include “fastjet/tools/Filter.hh”

JetDefinition jet_def(cambridge_algorithm, 1.2);
ClusterSequence cs(input_particles, jet_def);

// define the tagger and use it
MassDropTagger md_tagger(0.667, 0.09);
PseudoJet tagged = md_tagger(jets[0]);

// define the filter and use it
Filter filter(0.3,SelectorNHardest(3));
Pseudojet higgs = filter(tagged);     // this is the Higgs!!

In FastJet

The real analysis is slightly more refined (b-tagging, dynamical filter radius, etc) 
but the main features are already present here
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First taggers/groomers
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‣ Mass Drop + Filtering

‣ Jet ‘trimming’  

‣ Jet ‘pruning’ 

Butterworth, Davison, Rubin, Salam, 2008

Krohn, Thaler, Wang, 2009

S. Ellis, Vermilion, Walsh, 2009

Aim: limit contamination from QCD background while 
retaining bulk of perturbative radiation

Decluster with mass drop and asymmetry conditions
Recluster constituents into subjets at distance scale Rfilt,  retain nfilt hardest subjets 

Recluster constituents into subjets at distance scale Rtrim,  
retain subjets with pt,subjet > εtrim pt,jet 

While building up the jet, discard softer subjets when ΔR > Rprune 
and min(pt1,pt2) < εprune (pt1+pt2)

Trimming and pruner are a priori groomers, but can become taggers 
when combined with an invariant mass window test 

(if you can groom everything then there’s no heavy particle in the jet)
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The jet substructure maze

127

Slide by G. Salam, now a few years old
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Conclusion part 1
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‣ A number of different IRC-safe jet algorithms exist
‣ They all try to be good proxies for hard partons, but they have 

different characteristics, especially with respect to soft particles

‣ Jets from all algorithms inevitably suffer from pileup contamination
‣ Techniques exist to subtract it, either at jet-level, or at particle-level

‣ Both the jet algorithms and many pileup subtraction techniques are 
packaged aither in FastJet or in fjcontrib contributions
‣Use of standard algorithms and packages (either directly or 

through interfaces) should be privileged, as it ensures 
reproducibility

http://fastjet.fr http://fastjet.hepforge.org/contrib/
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Conclusions part 2
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The big news of the past few years has been the 
emergence of jet-based taggers and groomers
‣ They have proven their worth in ‘Standard Model’ analyses

‣ They are being implemented in BSM searches

The tutorial will offer you the opportunity to play 
with clustering and substructure


