Impedance and collective effects for CEPC double ring

2016-4-1

N. Wang, H. J. Zheng, Y. Zhang, Y.S. Sun, Y. W. Wang, D. Wang, G. Xu, Q. Qin (IHEP, Beijing), W. Chou (Fermilab) D. M. Zhou, K. Ohmi (KEK, Ibaraki)

Outline

- Impedance budget
- Single-bunch effects
- Multi-bunch effects
- Electron cloud instability
- Beam ion instability

wangdou20160325

Main parameters of CEPC

Parameter	Symbol, unit	H-High lumi.	H-low power	Z
Beam energy	<i>E</i> , GeV	120	120	45.5
Circumference	C, km	54	54	54
Beam current	<i>I</i> ₀ , mA	16.9	10.5	45.4
Bunch number	n _b	67	44	1100
Bunch Population	N _e	2.85×10 ¹¹	2.67×10 ¹¹	0.46×10 ¹¹
Natural bunch length	$\sigma_{\!\scriptscriptstyle /\!0}^{},{\sf mm}$	4.1	4.0	4.0
Emittance (horz./vert.)	$\varepsilon_x/\varepsilon_y$, nm	2.45/0.0074	2.06/0.0062	0.62/0.002
RF frequency	<i>f_{rf}</i> , GHz	0.65	0.65	0.65
Harmonic number	h	117081	117081	117081
Natural energy spread	$\sigma_{\! m e0}$	1.3E-3	1.3E-3	5.0E-4
Momentum compaction factor	α_{p}	2.5E-5	2.2E-5	3.5E-5
Betatron tune	v_{χ}/v_{χ}	319.21/318.42	319.21/318.42	?
Synchrotron tune	v _s	0.08	0.08	0.04
Damping time (H/V/s)	$\tau_{\rm x}/\tau_{\rm y}/\tau_{\rm z}$, ms	14/14/7?	?	?

1. Impedance budget

Resistive wall

- Copper beam pipe with NEG coating will be used. The beam pipe has an elliptical cross section with half height of $a_x/a_y=52/28$ mm.
- Resistive wall impedance in a two layer cylindrical beam pipe

$$Z_{\parallel}^{RW}(\omega) = \frac{iZ_{0}ck_{r}}{2\pi\omega a_{2}} \frac{I_{0}(k_{r}a_{1})I_{0}(k_{r}r)}{I_{0}(k_{r}a_{2})} \left[\frac{\kappa M}{\kappa M I_{1}(k_{r}a_{2}) + I_{0}(k_{r}a_{2})}\right]$$

where $I_n(x)$ are the modified Bessel functions, κ and M are determined by the parameters of the beam pipe.

- RF cavities
 - A five cell SC RF cavity structure with RF frequency of 650 MHz will be used.
 - Given a design accelerating gradient of ~20MV/m, 384 cavities are needed.
 - The wake of the RF cavities is calculated with ABCI.

• CEPC ring wake and impedance budget

Object	Contributions			
	R [kΩ]	L [nH]	k _{loss} [V/pC]	$ Z_{//}/n _{\mathrm{eff}}[\Omega]$
Resistive wall	6.1	154.7	146.8	0.017
RF cavities (N=384)	14.9	-132.7	307.5	0.005
Total	21.0	22.0	454.3	0.022

- The loss factor is dominated by the RF cavities.
- A more complete impedance budget will be obtained as the vacuum components are designed.

Longitudinal wake at nominal bunch length (σ_z =4.1mm)

2. Single-bunch effects

- Longitudinal microwave instability
 - The longitudinal microwave instability is estimated according to the Boussard or Keil-Schnell criterion:

$$I_{th} = \frac{\sqrt{2\pi}\alpha_p \frac{E}{e}\sigma_{e0}^2 \sigma_l}{R \left|\frac{Z}{n}\right|_{eff}}$$

- The threshold of the longitudinal impedance is $|Z_{II}/n| < 0.024 \Omega$.
- LEP:

Threshold current for turbulent bunch lengthening was measured. And the stability criterion gives effective longitudinal impedance of about 30 m Ω . (B. Zotter, EPAC'92, p.273)

- Bunch lengthening
 - Steady-state bunch shape is obtained by numerically solving the Haissinski equation.

$$\rho(z) = \rho(0) \exp\left[-\frac{1}{2} \left(\frac{\omega_s z}{\eta c \sigma_\delta}\right)^2 + \frac{r_0}{\eta \sigma_\delta^2 \gamma C} \int_0^z dz'' \int_{z''}^\infty dz' \rho(z') W_0'(z'' - z')\right]$$

- The Pseudo-Green function wake with bunch length of 0.25mm is used in the calculation.
- Bunch is shortened due to the capacitive property of the RF cavities (Here, only resistive wall and RF cavities are considered)

- Bunch lengthening with scaled SuperKEKB's geometry wake
 - The scaling factor is Cir (CEPC)/Cir(SuperKEKB)

- Difference of the impedance models between SuperKEKB LER and HER:
 - There is ante-chamber in the LER, but not in the HER. Without ante-chamber, the SR masks, pumping ports, and bellows contribute more impedances.

• Coherent synchrotron radiation

(K. Bane, Y. Cai, G. Stupakov, PRST-AB, 2010)

- The beam is assumed to be moving in a circle of radius ρ between two parallel plates at locations $y = \pm h$.
- The threshold of bunch population for CSR is given by

$$S^{\text{th}} = 0.50 + 0.12\Pi \qquad S = \frac{r_e N_b \rho^{1/3}}{2\pi v_s \gamma \sigma_\delta \sigma_z^{4/3}}, \qquad \Pi = \frac{\sigma_z \rho^{1/2}}{h^{3/2}}$$

- For CEPC, $\sigma_{z} \rho^{1/2} / h^{3/2}$ =68.9 (=> CSR shielded)
- The CSR threshold in CEPC is $N_{b,Th} = 1.7 \times 10^{13} >> N_b = 2.85 \times 10^{11}$.
- Space charge tune shift

$$\Delta v_{x,y} = -\frac{r_e N_b}{(2\pi)^{3/2} \gamma^3 \sigma_z} \oint \frac{\beta_{x,y}(s)}{\sigma_{x,y}(s)(\sigma_x(s) + \sigma_y(s))} ds$$

$$\Delta v_y = -3.6e-4$$
, $\Delta v_x = -2.0e-5$

- Transverse mode coupling instability (TMCI)
 - For Gaussian bunch, the threshold of the instability can be expressed with the transverse loss factor:

$$I_0^{th} = \frac{2Q_s\omega_0 E / e}{\sum_j \beta_{\perp,j}\kappa_{y,j}} \Theta$$

- The total kick factor is 10.2kV/pC/m, which gives the threshold bunch current is 1.7 mA ($N_b^{th} = 1.9 \times 10^{12}$)

- Tune shift due to transverse impedance
 - With transverse tune of (319.21, 318.42), beam could become unstable at lower current than that for transverse mode coupling instability.

$$\Delta \nu_{\beta} = -i \frac{N_e r_e}{4\pi^{3/2} \gamma} \frac{L}{\nu_{\beta} \sigma_z} \frac{Z_{\text{eff}}}{Z_0}$$

- The tune shift is given by

$$\Delta v_{\beta} = -2.22 \times \frac{N_e}{3.77 \times 10^{11}} Z_{eff} \left(\frac{M\Omega}{m}\right)$$

- When the tune approaches to integer, the tune variation is larger than that given by the above equation.
- The effective impedance for Δv_{β} =0.21 is Z_{eff}=12.5MΩ/m
- Effective impedance:

 Z_{eff} = 468 k Ω /m (CEPC resistive wall)

 Z_{eff} = 26 k Ω /m (CEPC RF cavities)

 Z_{eff} =895 k Ω /m (KEKB, bunch shape taken into account)

 Z_{eff} =409 k Ω /m (LEP, bunch shape taken into account)

- Beam tilt due to the transverse wake fields
 - When a beam passes through a impedance with a transverse offset, the tail particles will receive transverse kicks

$$\Delta y'(z) = \frac{Ne^2}{E} \int_0^\infty dz' \rho(z'+z) W_{\perp}(y_b,z')$$

• This will lead to a transverse displacement of the bunch tail at IP

$$\Delta y = \sqrt{0.5\beta_y^*\beta_y}\Delta y'$$

- CEPC case:
 - Closed orbit of 1mm in vertical

- Beam tilt due to the RF cavity wake
 - Transverse wake for one RF cavity with σ_{z} =0.25mm

As there are 384 cavities located in 8 positions in the ring, the displacements at IP are $\Delta x^*=48\sqrt{8}*62.0$ nm=8.3µm $\Delta y^*=48\sqrt{8}*0.48$ nm=0.065µm (beam size at IP: $\sigma_x^*/\sigma_v^*=69.97/0.15$ µm)

KEKB's impedance model(D. Zhou, K. Ohmi, A.

$$\frac{\omega_r}{c} = 400 \text{m}^{-1}$$

$$R_s^1 = 4 \times 10^8 \Omega/\text{m}^2$$

$$Q = 1$$

$$\Delta x' = 100.3 \mu rad, \quad \Delta x^* = 442.3 \mu m$$

 $\Delta y' = 20.1 \mu rad, \quad \Delta y^* = 3.4 \mu m$

LEP's impedance model (B. Zotter, EPAC1992, p.273)

$$\Delta x' = 58.1 \mu rad, \quad \Delta x^* = 256.2 \mu m$$

$$\Delta y' = 11.6 \mu rad, \quad \Delta y^* = 2.0 \mu m$$

 The impedance is assumed to be localized at one point in the ring → Distributed impedance will reduce this effect.

IDAC2011 = (01)

- Average beta function is used instead of that at the location of impedance → Smaller beta function can reduce this effect.
- Transverse impedance should be carefully studied and well controlled.

3. Multi-bunch effects

• Transverse resistive wall instability

$$\frac{1}{\tau_{\perp}} = -\frac{n_b I_b c}{4\pi (E/e) v_{x,y}} \sum_{p=-\infty}^{\infty} e^{-(\omega_{pn} - \xi \omega_0 / \alpha_p)^2 \sigma_\tau^2} \operatorname{Re} Z_{\perp}(\omega_{pn})$$
$$\omega_{pn} = 2\pi f_{rev} \times (pn_b + n + v_{x,y})$$

> With bunch space of 159.3ns, the growth rate for the most dangerous instability mode is 2.7 Hz (τ =0.4s) in the vertical plane with mode number of μ = 20.

with

The growth time is much higher than the transverse radiation damping time.

• Coupled bunch instability induced by the RF HOM's

Monopole Mode	f(GHz)	<i>R/Q</i> (Ω) *
TM011	1.173	84.8
TM020	1.427	54.15
Dipole Mode	f(GHz)	<i>R/Q</i> (Ω/m)**
TE111	0.824	832.23
TM110	0.930	681.15
TE122	1.232	544.5
TM112	1.440	101.53

* $k_{//mode} = 2\pi f \cdot (R/Q)/4 [V/pC]$ ** $k_{\perp mode} = 2\pi f \cdot (R/Q)/4 [V/(pC \cdot m)]$

- To keep the beam stable, the radiation damping time should be less than the rise time of any of the oscillation modes.
- In the resonant condition, the threshold shunt impedances are

Longitudinal impedance threshold

- Considering the whole RF system, there will be finite tolerances in the cavity construction.
- To find the total effects of all the RF cavities, we need to take into account the spread in the resonance frequencies of different cavities.
- For small frequency spread, this will result in an "effective" quality factor Q of the whole RF system.
- With large frequency spread, there will be separate resonances.

 f_R =1.173GHz, Q=2.54×10⁵, 384 RF cavities

Monopole Mode	f(GHz)	<i>R/Q</i> (Ω) *	Q_{limit} $\sigma_{f_{\text{R}}}=0.5\text{MHz}$	$Q_{\text{limit}} \sigma_{f_{\text{R}}} = 5 \text{MHz}$
TM011	1.173	84.8	2.9×10 ⁷	5.8×10 ⁷
TM020	1.427	54.15	3.7×10 ⁷	7.5×10 ⁷
Dipole Mode	f(GHz)	<i>R/Q</i> (Ω/m) ^{**}		
TE111	0.824	832.23	1.2×10 ⁶	2.4×10^{6}
TM110	0.930	681.15	1.5×10^{6}	3.0×10^{6}
TE122	1.232	544.5	1.9×10 ⁶	3.7×10^{6}
TM112	1.440	101.53	1.0×10 ⁷	2.0×10^{7}

* $k_{// \text{mode}} = 2\pi f \cdot (R/Q)/4 [V/pC]$ ** $k_{\perp \text{mode}} = 2\pi f \cdot (R/Q)/4 [V/(pC \cdot m)]$

• The threshold value of Q largely depends on the actual tolerance of the cavity construction.

4. Electron cloud instability

• The threshold value of the volume density of the electron cloud for the head-tail instability

$$\rho_{e,th} = \frac{2\gamma v_s \omega_e \sigma_z / c}{\sqrt{3} K Q r_0 \beta L} \qquad \begin{array}{l} K = \omega_e \sigma_z / c \\ Q = \min(Q_{nl}, \omega_e \sigma_z / c) \\ Q_{nl} \text{ depends on the nonlinear interaction} \end{array}$$

- We take $Q_{nl} = 7$ for analytical estimation, and get the threshold density for the single bunch instability is $7.5 \times 10^{11} \text{ m}^{-3}$
- For the multi-bunch instability, the electron cloud is considered as a rigid Gaussian with the chamber size. The characteristic frequency is

$$\omega_{G,y}^2 = \frac{2\lambda_b r_e c^2}{(\sum_x + \sum_y)\sum_y}$$

The phase angle between adjacent bunches is $\omega_G L_{SP}/c = 5.9$, which means the electrons are not supposed to accumulate and the multipacting effects are low.

	KEKB	SuperKEKB	SuperB	CEPC		
Beam energy <i>E</i> , GeV	3.5	4.0	6.7	120		
Circumference <i>L</i> , m	3016	3016	1370	54752		
Number of e ⁺ /bunch, 10 ¹⁰	3.3	9	5.74	37.9		
Emittance H/V $\varepsilon_x/\varepsilon_y$, nm	18/0.36	3.2/0.01	1.6/0.004	6.12/0.018		
Bunch length σ_{z} , mm	4	6	5	2.88		
Bunch space Lsp, ns	2	4	4	3653		
Single bunch effect						
Electron freq. $\omega_e/2\pi$, GHz	35.1	150	272	287		
Phase angle $\omega_e \sigma_z/c$	2.94	18.8	28.5	24.7		
Threshold density $\rho_{e,th}$, $10^{12}m^{-3}$	0.7	0.27	0.4	0.75		
Multi-bunch effect						
p-e per meter n_{γ} , p/(m)	5.0E8	1.5E9	3.6E9	8.2E9		
Characteristic freq. ω_{G} , MHz	62.8	87.2	69.6	36.7		
Phase angle $\omega_{\rm G} L_{\rm sp}/c$	0.13	0.35	0.28	5.9		

- Threshold density for the single bunch effect is considerably high.
- The phase angle for the multi-bunch effect is about two orders higher.

5. Beam ion instability

• Ion trapping

- With uniform filling pattern, the ions with a relative molecular mass larger than $A_{x,y}$ will be trapped.

$$A_{x,y} = \frac{N_b r_p S_b}{2(\sigma_x + \sigma_y)\sigma_{x,y}}$$

The critical mass number is quite high, so the ions will not be trapped by the beam.

- Fast beam ion instability
 - The phase angle between adjacent bunches is $\omega_i L_{sep}/c=42$. So the ions will not accumulate due to the overfocus inside the bunch train.

Summary

Beam instability	H-High lumi.	H-low power	Z
Microwave instability, $ Z_{ }/n _{th}$ [m Ω]	24		
Bunch lengthening	10~20%		
CSR threshold N _{bth} [E11]	170		
Space charge tune shift $\Delta v_{x,y}$	-2E-5/-4E-4		
Transverse impedance tune shift $\Delta v_{x,y}$	-8E-3/-8E-3		
Transverse Mode Coupling, N _{bth} [E11]	19		
Beam tilt	?		
Transverse resistive wall instability, t [ms]	?		
Coupled bunch instability of HOM	?		
Electron cloud instability, N _{bth} [E11]	7.5		
Fast beam ion instability, t [ms]	?		23