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Introduction
.



Hadron Physics

Hadron physics is mainly focused on hadron scatterings, spectra,
structures, interactions, etc.

• Hadron spectra are obtained from experimental
Hadron scattering.

• Hadron structures and interactions 

Hadron spectra and scattering.

Two main data sources:

• Scattering data from experiment

• Spectra simulated by lattice QCD (LQCD)
• From the first principle of QCD, LQCD gives at finite volume

hadron spectra and quark distribution functions.
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Connection between Scattering Data and Lattice QCD Data

Lattice QCD

• large pion mass: extrapolation
• finite volume
• discrete space

Lattice QCD Data � Physical Data

• Lüscher Formalisms and extensions:
Model independent; efficient in single-channel problems

Spectrum → Phaseshifts; mKL −mKS etc.
• Effective Field Theory (EFT)

at infinite volume: well known
at finite volume:
• analytic extension to the physical pion mass

• discretization: eg. discretize the momentum in the loop

• Lagrangian modification based on new symmetry of discrete space

• Models , etc
3



Hamiltonian Effective Field Theory

Hamiltonian Effective Field Theory (HEFT)
analyses both experimental data at infinite volume
and lattice QCD results at finite volume at the same time.

• at infinite volume
Lagrangian (via 2-particle irreducible diagrams) →

potentials (via Betha-Salpeter Equation) →
phaseshifts and inelasticities , etc.

• at finite volume
potentials discretized (via Hamiltonian Equation)→ spectra , etc.

• finite-volume and infinite-volume results
are connected by the coupling constants etc.
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This Work

We use Hamiltonian effective field theory to analyse the scatterings
data at experiment and spectra of lattice QCD which are related to

• N∗(1535)
• N∗(1440)
• Λ(1405)

By our analyses, we try to better understand the structures of those
resonances and relevant interactions.
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Hamiltonian effective field theory
study of the N∗(1535) resonance
in lattice QCD
.



N∗(1535) with πN Scattering

N∗(1535) is the lowest resonance with I(JP) = 1
2 (

1
2
−
).

• One needs to consider the interactions
among the bare baryon N∗

0 , πN channel, and ηN channel.
• Phase shifts and inelasticities
are obtained by solving Bethe-Salpeter equation with the interactions.
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• Pole position for N∗(1535): 1531 ± 29 − i 88 ± 2 MeV.
Particle Data Group (PDG): 1510±20 − i 85 ± 40 MeV. 6



Spectra at Finite Volumes

3 sets of lattice data at different pion masses and finite volumes
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Spectra at Finite Volumes

3 sets of lattice QCD data at different pion masses and finite volumes
Non-interacting energies of the two-particle channels
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Spectra at Finite Volumes

3 sets of lattice QCD data at different pion masses and finite volumes
Non-interacting energies of the two-particle channels
Eigenenergies of Hamiltonian effective field theory
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Spectra at Finite Volumes

3 sets of lattice data at different pion masses and finite volumes
Eigenenergies of Hamiltonian effective field theory
Coloured lines indicating most probable states observed in LQCD
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Components of Eigenstates with L ≈ 3 fm
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• The 1st eigenstate at light quark masses is mainly πN scattering
states.

• The most probable state at physical quark mass is the 4th
eigenstate.
It contains about 60% bare N∗(1535), 20% πN and 20% ηN.
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Components of Eigenstates with L ≈ 3 fm
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Lattice Results→ Experimental Results

• Experimental Data → Lattice Data We have shown that.
• Lattice Data → Experimental Data We show it here.
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By fitting lattice data, the pole position for N∗(1535) at infinite
volume is 1602 ± 48 − i 88.6+0.7

−2.8 MeV. PDG: 1510±20 − i 85 ± 40. 9



Hamiltonian effective field theory
study of the N∗(1440) resonance
in lattice QCD
.



N∗(1440) Resonance

• N∗(1440), usually called Roper , is the excited state I(JP) = 1
2 (

1
2
+
)

• Naive quark model predicts mN∗(1440) > mN∗(1535)
if they are both dominated by 3-quark core. But contrary to experiment.

To check whether a 3-quark core largely exists in Roper, we consider models

• with a bare Roper

• without any bare baryons

• including the effect of the bare nucleon
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N∗(1440) Resonance
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• with a bare Roper

• without any bare baryons

• including the effect of the bare nucleon
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Results of the Model with a Bare Roper
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At low pion masses, the 2nd state contains more than 20% bare
Roper, so this state should be observed with a 3-quark interpolating
operators on the lattice.

But it is not. 11



Results of the Model without Bare Baryons
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• The lattice data sit on the eigenenergy spectrum of this model;
• ALTHOUGH it is hard to predict which state is easier to observe
on the lattice,

• we notice that lattice QCD prefers to extract eigenstates with
non-trivial mixing of scattering states.
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Including the Effect of the Bare Nucleon
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• The bare nucleon does not affect the spectrum very much
compared to the results of the model without any bare baryons;

• We can plot the probability based on the distribution of the
bare nucleon;

• It can explain both the experimental data and lattice data.
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Structure of the Λ(1405) from
Hamiltonian effective field theory
.



Λ(1405) with K−p scattering

• The well-known Weinberg-Tomozawa potentials are used.
momentum-dependent, non-separable

• We can fit the cross sections of K−p well
both with and without a bare baryon.

50 100 150 200 250
|~plab|/MeV

0

50

100

150

200

250

300

350

σ
/m

b

with bare baryon

without bare baryon

K−p → K−p
50 100 150 200 250

|~plab|/MeV

0

10

20

30

40

50

60

σ
/m

b

with bare baryon

without bare baryon

K−p → K̄0n
50 100 150 200 250

|~plab|/MeV

0

10

20

30

40

50

60

70

80

90

σ
/m

b

with bare baryon

without bare baryon

K−p → π−Σ+

50 100 150 200 250
|~plab|/MeV

0

20

40

60

80

100

120

140

σ
/m

b

with bare baryon

without bare baryon

K−p → π0Σ0
50 100 150 200 250

|~plab|/MeV

0

50

100

150

200

250

σ
/m

b

with bare baryon

without bare baryon

K−p → π+Σ−
50 100 150 200 250

|~plab|/MeV

0

5

10

15

20

25

30

35

40

σ
/m

b

with bare baryon

without bare baryon

K−p → π0Λ

• Two-pole structure of Λ(1405)
1430− i 22 MeV, 1338− i 89 MeV
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Spectrum on the Lattice
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Spectra with S = −1, I(JP) = 0( 12

−
) in the finite volume.

• The bare baryon is important for interpreting the lattice QCD
data at large pion masses.

• Λ(1405) is mainly a K̄N molecular state
containing very little of bare baryon at physical pion mass.
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Summary
.



Summary

We have analysed the scattering data at experiment and the lattice
spectra on the lattice relevant to N∗(1440), N∗(1535), and Λ(1405)
with Hamiltonian effective field theory

• N∗(1535) contains a 3-quark core;

• N∗(1440) should contain little of 3-quark consistent;

• Λ(1405) is mainly a K̄N molecular state at physical quark mass,
while a 3-quark core dominates at large quark masses.
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