

Heavy flavor physics at LHCb

Liming Zhang(张黎明) 清华大学 On behalf of LHCb collaboration Nov. 03, 2016 全国第十四届重味物理与CP破坏研讨会

- Motivation and introduction of LHCb experiment
- Personal selected recent LHCb highlights
 CP violation (CPV) measurements
 Rare decays
 - Exotics
- Summary

LHCbPrecision measurements of CPV and
rare decays: why important?

 Instead of searching for NP particles directly produced, look for their indirect effects to low energy processes (e.g. b-hadron decays)

- NP may be more visible in these SM suppressed processes
- Studying CPV and flavor-changing processes => two fundamental tasks can be accomplished
 - Identify new symmetries (and their breaking) beyond the SM
 - Probe mass scales not accessible directly at nowadays colliders

LHCbPrecision measurements of CPV and
rare decays: why important?

 Instead of searching for NP particles directly produced, look for their indirect effects to low energy processes (e.g. b-hadron decays)

Generic bounds on New Physics scale (for gx~1)

The LHCb Experiment

- LHCb is a dedicated B and charm physics upper experiment at LHC
 - Large b production rate
 - □ Access to all b-hadrons: B^+ , B^0 , B_s , B_c , b-baryons $_{10}$
 - Forward single arm spectrometer $1.9 < \eta < 4.9$

LHCb Integrated Luminosity in pp collisions 2010-2016

Fantastic progress for LHC this year

The effective dataset almost double with respect to Run-I at the end of 2016

Results reported here based on RUN-I

RUN-II analysis is getting there

LHCb Production cross section

- The *b* production cross section $\sigma(pp \rightarrow H_b X)$ has been measured in the forward region $2 < \eta < 5$
- For sensitive test of QCD & constraints for PDFs
- Measured with b semileptonic decays
- Actually cross-section is larger than expected

Preliminary LHCb-PAPER-2016-031 in preparation

Deviate from the FONLL prediction at central region, while in experimental side, Validations ongoing to ensure reconstruction & trigger efficiencies are well understood

LHCb Detector

Heb Detector performance

Vertexing

Impact parameter: Proper time: Momentum: Mass : RICH $K - \pi$ separation: Muon ID: ECAL: Int. J. Mod. Phys. A 30 (2015) 1530022 $\sigma_{IP} = 20 \,\mu\text{m}$ $\sigma_{\tau} = 45 \,\text{fs} \,\text{for} \, B_s^0 \rightarrow J/\psi \phi \,\text{or} \, D_s^+ \pi^ \Delta p/p = 0.4 \sim 0.6\% \,(5 - 100 \,\text{GeV}/c)$ $\sigma_m = 8 \,\text{MeV}/c^2 \,\text{for} \, B \rightarrow J/\psi X \,(\text{constrainted } \mathbf{m}_{J/\psi})$ $\epsilon(K \rightarrow K) \sim 95\% \,\text{mis-ID} \,\epsilon(\pi \rightarrow K) \sim 5\%$ $\epsilon(\mu \rightarrow \mu) \sim 97\% \,\text{mis-ID} \,\epsilon(\pi \rightarrow \mu) \sim 1 - 3\%$ $\Delta E/E = 1 \oplus 10\%/\sqrt{E(\text{GeV})}$

LHCb and LHCb Chinese group

1151 Members, from 69 Institutes in 16 Countries

2000年 清华大学

2013年 华中师范加入 2015年 国科大加入 2016年 武汉大学加入

CP violation measurements

LHCb Semi-leptonic asymmetries

Semi-leptonic asymmetry a_{sl}^q quantifies *CPV* in mixing.

 a_{sl}^q is precisely predicted to be tiny in SM: ~ $O(10^{-4})$, can be enhanced by NP

$$a_{\rm sl} = \frac{N(\bar{B} \to B \to f) - N(B \to \bar{B} \to \bar{f})}{N(\bar{B} \to B \to f) + N(B \to \bar{B} \to \bar{f})}$$

(1) Measure time-integrated raw asymmetry

$$A_{\rm raw} = \frac{N(D_s^-\mu^+) - N(D_s^+\mu^-)}{N(D_s^-\mu^+) + N(D_s^+\mu^-)}$$

(2) Correct for detection asymmetry and background effect

$$a_{\rm sl}^s = \frac{2}{1 - f_{\rm bkg}} (A_{\rm raw} - A_{\rm det} - f_{\rm bkg} A_{\rm bkg})$$

For B_d , also correct for production asymmetry

LHCb results of a_{sl}^q

 $B_s \rightarrow D_s \mu^+ \overline{v}: a_{sl}^s = (0.39 \pm 0.26 \pm 0.20) \%$

LHCb, PRL 117 (2016) 061803

 $B_d \rightarrow D^{(*)} \mu^+ \overline{\nu} : a_{sl}^d = (-0.02 \pm 0.19 \pm 0.30) \%$

LHCb, PRL 114 (2014) 041601

CKM: before & after LHC

CKM: before & after LHC

γ combination at LHCb

- **Current one syst.** ~2° from CLEO strong phase measurements
- 15-20 fb⁻¹ ψ (3370) data from BESIII are desired to avoid syst. limitation for upgrade scenario

LHCD Baryon decays $\Lambda_b^0 \rightarrow p\pi^-h^+h^-$

- CPV has never been observed in baryon sector
- A_{CP} ~ 20% expected in charmless Λ⁰_b decays in SM
 Y. K. Hsiao et al., PRD 91 (2015) 116007
- $\Lambda_b^0 \rightarrow p \pi^- h^+ h^-$ has comparable tree and loops contributions

Tree $\propto |V_{ub}| \sim \lambda^3$

$\frac{LHCb}{LHCb} \Lambda_{b} \rightarrow p\pi^{-}h^{+}h^{-}: signal yields$

(full run-1 sample) arXiv:1609.05216 (submitted to Nature Phys.)

Triple product asymmetry

Search for CPV using triple product asymmetry (TPA)

Triple products in the Λ_b rest frame:

 $\frac{C_{\hat{T}} = \vec{p}_{p} \cdot (\vec{p}_{h^{-}} \times \vec{p}_{h^{+}}) \propto \sin \Phi}{\overline{C}_{\hat{T}} = \vec{p}_{\overline{p}} \cdot (\vec{p}_{h^{+}} \times \vec{p}_{h^{-}}) \propto \sin \overline{\Phi}}$

CP-violating observable:

$$a_{CP}^{\hat{T}-odd} = \frac{1}{2}(A_{\hat{T}} - \overline{A}_{\hat{T}})$$

P-violating observable: $a_{P}^{\hat{T}-odd} = \frac{1}{2}(A_{\hat{T}} + \overline{A}_{\hat{T}})$

CPV in baryon decays

Measurements integrated over phase space

No significant CPV

Λ_b^0 decay	$A_{\widehat{T}}$ [%]	$\overline{A}_{\widehat{T}}$ [%]	$a_{C\!P}^{\widehat{T} ext{-odd}} \; (a_{P}^{\widehat{T} ext{-odd}}) \; [\%]$
$p\pi^{-}\pi^{+}\pi^{-}$	$-2.56 \pm 2.06 \pm 0.45$	$-4.86 \pm 2.06 \pm 0.44$	$1.15(-3.71)\pm1.45\pm0.32$
$p\pi^-K^-K^+$	$+2.68 \pm 6.76 \pm 0.85$	$+4.55 \pm 6.07 \pm 0.52$	$-0.93(+3.62)\pm4.54\pm0.42$

Local Measurements

- –Binning in $I\Phi I$
- -3.3σ significance of localized CPV in
- $\Lambda_b \rightarrow p\pi^- \pi^+ \pi^-$
- -Compatible with SM

arXiv:1609.05216 (submitted to Nature Phys.)

First evidence of CPV in baryon decays!

LHCD CPV in baryon other decays

JHEP 05 (2016) 081

• First observations of $\Lambda_h^0 \to \Lambda K^+ \pi^-$ and $\Lambda K^+ K^-$ Candidates / ($20 \text{ MeV}/c^2$ 60 Candidates / ($20 \text{ MeV}/c^2$ LHCb LHCb 80 50 40 $N_{\rm sig} = 97 \pm 14$ $N_{\rm sig} = 185 \pm 15$ 30 20 2010 0 5400 5600 5400 5800 6000 5600 5800 6000 $m(\Lambda K^{\pm}\pi^{\mp})$ [MeV/c²] $m(\Lambda K^+K^-)$ [MeV/c²] $\mathcal{A}_{CP}(\Lambda_b^0 \to \Lambda K^+ \pi^-) = -0.53 \pm 0.23 \pm 0.11$ $\mathcal{A}_{CP}(\Lambda_b^0 \to \Lambda K^+ K^-) = -0.28 \pm 0.10 \pm 0.07$

Flavor anomalies

$R_{D^{(*)}} = \frac{\overline{\mathcal{B}}(B \to D^{(*)} \mu \nu)}{\mathcal{B}(B \to D^{(*)} \mu \nu)}$

 $\mathcal{B}(B \rightarrow D^{(*)} \tau \nu)$

- Sensitive e.g. to charged Higgs
- Combined result from Babar, Belle and LHCb shows 4_o discrepancy from the SM
- LHCb working on R_D and other τ modes

Ratio
$$R_K = \frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ e^+ e^-)}$$

- Expected to be unity in the SM
- Observation of LFU violation would be a clear sign of NP
- LHCb observed a 2.6σ deviation from SM in the low q² region
- New results expected soon, e.g. R_{K^*}

Angular analysis of $B^0 \to K^* \mu^+ \mu^-$

- Angular distributions provide many observables sensitive to different sources of NP JHEP 05 (2013) 137
- Belle first angular analysis supports the deviation from SM expectation

New results of rare decays

- $\Sigma^+ \rightarrow p \mu^+ \mu^-$
- $\blacksquare B_S^0 \to \phi \gamma$
- $\blacksquare B_s^0 \to \tau^+ \tau^-$

• Hint of a intermediate particle, $\Sigma^+ \rightarrow pP^0$, $P^0 \rightarrow \mu^+ \mu^-$ with mass 214.3 MeV

 $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{$

PRL 94, 021801 (2005)

HyperCP (E871)

LHCb has search for decay from prompt Σ⁺

 A challenge due to the small Q value of the decay and long lifetime of Σ^+ LHCb-CONF-2016-013

DU

A clear signal is seen with 12.9^{+5.1}_{-4.2} events.
 Significance 4 σ

Background subtracted data is fitted

No sign for a narrow peak

p-value of continuum-liked hypothesis

LHCb-CONF-2016-013

Fit with 214.3 MeV peak: N = 1.6 ± 1.9

Lifetime distribution can in principle reveal of the presence of right handed currents in the decay

$$\mathcal{P}(t) \propto e^{-\Gamma_s t} \{ \cosh\left(\Delta\Gamma_s t/2\right) - \mathcal{A}^{\Delta} \sinh\left(\Delta\Gamma_s t/2\right) \}$$

with $\mathcal{A}^{\Delta} \propto 2 \frac{\gamma_R}{\gamma_L}$. $\mathcal{A}^{\Delta}_{SM} = 0.05 \pm 0.03$

• $B^0 \rightarrow K^{*0}\gamma$ as control chancel for *t* acceptance

$\mathcal{B}(B^0_q o \mu^+ \mu^-)$	B ⁰ _s (×10 ⁻⁹)	$B_d^0(imes 10^{-10})$
SM prediction	(3.7 ± 0.2)	(1.06 ± 0.09)
CMS& LHCb	$(2.8^{+0.7}_{-0.6})$	$(3.9^{+1.6}_{-1.4})$
ATLAS	$(0.9^{+1.1}_{-0.8})$	< 4.2 @ 95% CL

- In the SM, $B_{(s)}^0 \rightarrow \tau^+ \tau^-$ is not helicity suppressed
- SM predicted \mathscr{D} is ~200 larger than $B^0_{(s)} \rightarrow \mu^+\mu^-$
 - $\begin{aligned} \mathcal{B}(B^0_s \to \tau^+ \tau^-)_{SM} &= (7.73 \pm 0.49) \times 10^{-7} \\ \mathcal{B}(B^0 \to \tau^+ \tau^-)_{SM} &= (2.22 \pm 0.19) \times 10^{-8} \end{aligned}$
- Senhanced in many NP scenarios
- Current best limit from Babar

 $\mathcal{B}(B^0
ightarrow au^+ au^-) < 4.1 imes 10^{-3}$ at 90% C.L.

- τ 's reconstructed through hadronic $\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu$ mode
 - Fewer neutrinos in signal but more bkg from D^+ and D_s^+ decays
- Signal shape of NN is flat, bkg shape from control region
- Fit to $\tau^+\tau^- \in (5,5)$, the signal region

Pentaquarks

- In $\Lambda_b^0 \rightarrow J/\psi p K^-$, amplitude fits revealed two $J/\psi p$ states, consistent with $uudc\bar{c}$ pentaquarks
- Model-independent method confirmed the observations
- Amplitude fits to Cabibbo-suppressed $\Lambda_b^0 \to J/\psi p \pi^-$
 - Significance of the two P_c^+ and $Z_c(4200)^-$ together is 3.1 σ ; if assume production of $Z_c(4200)^-$ is negligible, significance of two P_c^+ is 3.3 σ
 - The two P_c^+ production rates is consistent with expectation

$J/\psi\phi$ states in $B^+ \to J/\psi\phi K^+$

arXiv: 1606.07898

- Observed four $X \rightarrow J/\psi\phi$ states
- J^{PC} are useful for interpretations of the states
 - First two identified as 1^{++} at >5 σ
 - Last two as 0^{++} at >4 σ

	Contri-	sign .			Fit results
	bution	or Ref.	$M_0 \; [\mathrm{MeV}]$	$\Gamma_0 \; [\mathrm{MeV}]$	$\mathrm{FF}~\%$
-	All $X(1^+)$				$16\pm3 \ ^{+6}_{-2}$
	X(4140)	8.4σ	$4146.5 \pm 4.5 {}^{+4.6}_{-2.8}$	$83 \pm 21^{+21}_{-14}$	$13 \pm 3.2 {}^{+4.8}_{-2.0}$
Ave	rage other expe	eriments	4143.4 ± 1.9	15.7 ± 6.3	`substantially larger
	X(4274)	6.0σ	$4273.3 \pm 8.3 {}^{+17.2}_{-3.6}$	$56 \pm 11^{+8}_{-11}$	$7.1 \pm 2.5 {}^{+3.5}_{-2.4}$
	CDF	[28]	$4274.4^{+8.4}_{-6.7} \pm 1.9$	$32^{+22}_{-15} \pm 8$	
	CMS	[25]	$4313.8 \pm 5.3 \pm 7.3$	$38^{+30}_{-15}\pm16$	
	All $X(0^+)$				$28\pm$ 5± 7
	$\operatorname{NR}_{J/\psi\phi}$	6.4σ			$46 \pm 11 {}^{+11}_{-21}$
	X(4500)	6.1σ	$4506 \pm 11 {}^{+12}_{-15}$	$92\pm21{}^{+21}_{-20}$	$6.6 \pm 2.4 {}^{+3.5}_{-2.3}$
	X(4700)	5.6σ	$4704 \pm 10 {}^{+14}_{-24}$	$120\pm31_{-33}^{+42}$	$12\pm 5^{+9}_{-5}$

 $X(5568)^{\pm} \rightarrow B_s^0 \pi^{\pm}$ state?

- Claimed by DØ in pp
 collision
 - $M = 5567.8 \pm 2.9^{+0.9}_{-1.9} \text{ MeV}$ PRL 117, 022003 (2016)
 - $\Gamma = 21.9 \pm 6.4^{+5.0}_{-2.5} \text{ MeV}$
 - $\rho_X^{D\emptyset} = (8.6 \pm 1.9 \pm 1.4) \%$
- No evidence seen by LHCb and CMS in pp collision
 - 20x larger and much cleaner B_s^0 sample

PRL 117 (2016) 152003

Summary

- LHCb has performed many measurements with unprecedented sensitivity in various aspects: CPV, rare decays... Generally agree with SM well
- A handful of 2 4 σ deviations from SM observed, and further investigations needed from both theory and experimental sides

Best fit has J^P=(3/2⁻, 5/2⁺), also (3/2⁺, 5/2⁻) & (5/2⁺, 3/2⁻) are preferred for low and high P⁺_c

Resonan ce	Mass (MeV)	Width (MeV)	Significan ce	Fit fraction(%)
$P_c(4380)^+$	4380 ± 8 ± 29	205±18±86	9σ	$8.4 \pm 0.7 \pm 4.2$
$P_c(4450)^+$	4449.8 ± 1.7 ± 2.5	39±5±19	12 σ	4.1 ± 0.5 ± 1.1
	[Pf			

For $P_c(4380)^+$, $\mathcal{B}(\Lambda_b^0 \to P_c^+ K^-) \mathcal{B}(P_c^+ \to J/\psi p) = (2.66 \pm 0.22 \pm 1.33^{+0.48}_{-0.38}) \times 10^{-5}$ For $P_c(4450)^+$, $\mathcal{B}(\Lambda_b^0 \to P_c^+ K^-) \mathcal{B}(P_c^+ \to J/\psi p) = (1.30 \pm 0.16 \pm 0.35^{+0.23}_{-0.18}) \times 10^{-5}$

Chin. Phys. C40 (2016) 011001

Legendre moments

$$\frac{dN}{d\cos\theta} = \sum_{l=0}^{l_{\max}} \left\langle P_l^U \right\rangle P_l(\cos\theta) \quad \theta = \theta_{K^*} \quad \text{or} \quad \theta_{\Lambda^*}$$

$$\left\langle P_l^U \right\rangle = \int_{-1}^{+1} \frac{dN}{d\cos\theta} P_l(\cos\theta) d\cos\theta \propto \sum_{i=1}^{n_{events}} \frac{1}{\varepsilon_i} P_l(\cos\theta_i)$$

Λ* can contribute only to low-order moments

 Λ^* -only hypothesis called H₀

$$l_{\rm max} = 2J_{\rm max}$$

 J_{max} is the highest spin of Λ^* resonance possible

Reflections of exotic hadrons can contribute to low **and high** order moments:

 $P_n(\mathbf{x})$

- Detecting non-zero moments above $2J_{max}$ signals presence of exotics

Moments coefficients as function of m_{Kπ}

From know Λ^* resonances, quark model predictions as a guide

LHCD Possible exotic contributions

- P_c(4380)⁺ and P_c(4450)⁺ observed in the favored mode by LHCb
- $Z_c(4200)^- \rightarrow J/\psi\pi^-$ observed in $B^0 \rightarrow J/\psi\pi^-K^+$ by Belle

N k **resonance models**

State	J^P	Mass (MeV)	Width (MeV)	RM	$\mathbf{E}\mathbf{M}$	\leftarrow LS couplings
NR $p\pi$	$1/2^{-}$	-	-	4	4	
N(1440)	$1/2^{+}$	1430	350	3	4	allow for
N(1520)	$3/2^{-}$	1515	115	3	3	reduction of
N(1535)	$1/2^{-}$	1535	150	4	4	the number
N(1650)	$1/2^{-}$	1655	140	1	4	of free
N(1675)	$5/2^{-}$	1675	150	3	5	parameters
N(1680)	$5/2^{+}$	1685	130	-	3	by excluding
N(1700)	$3/2^{-}$	1700	150	-	3	high L values
N(1710)	$1/2^{+}$	1710	100	-	4	
N(1720)	$3/2^+$	1720	250	3	5	
N(1875)	$3/2^{-}$	1875	250	-	3	
N(1900)	$3/2^{+}$	1900	200	-	3	
N(2190)	$7/2^{-}$	2190	500	-	3	
N(2300)	$1/2^{+}$	2300	340	-	3	
N(2570)	$5/2^{-}$	2570	250	-	3	} RF2-III
Free para	meters			40	106	

Reduce Model for central value, Extended model for significance and syst.

Further results

- Individual exotic hadron contributions are not significant More data are needed
- If assume production of $Z_c(4200)^-$ is negligible, significance of two P_c^+ is 3.3σ

State	Fit fraction (%)	$\boldsymbol{R}_{\boldsymbol{\pi}/\boldsymbol{K}} \equiv \mathcal{B}(\boldsymbol{\Lambda}_{b}^{0} \to \boldsymbol{P}_{c}^{+}\boldsymbol{\pi}^{-})/\mathcal{B}(\boldsymbol{\Lambda}_{b}^{0} \to \boldsymbol{P}_{c}^{+}\boldsymbol{K}^{-})$
$Z_c(4200)^-$	$7.7 \pm 2.8^{+3.4}_{-4.0}$	—
$P_{c}(4380)^{+}$	$5.1 \pm 1.5^{+2.1}_{-1.6}$	$0.050 \pm 0.016^{+0.020}_{-0.016} \pm 0.025$
$P_{c}(4450)^{+}$	$1.6^{+0.8}_{-0.6}{}^{+0.6}_{-0.5}$	$0.033^{+0.016}_{-0.014}$ $^{+0.011}_{-0.009}$ \pm 0.025

[H.-Y Cheng and C.-K Chua, PRD92 (2015) 096009]: $R_{\pi/K} = 0.07 \sim 0.08$ [Y. K. Hsiao and C. Q. Geng, PLB751 (2015) 572]: $R_{\pi/K} = 0.58 \pm 0.05$

 $\Lambda_b^0 \rightarrow J/\psi p\pi^-$ are consistent with $\Lambda_b^0 \rightarrow J/\psi pK^-$ results

Synopsis: Pentaquark Discovery Confirmed

August 18, 2016

New results from the LHCb experiment confirm the 2015 discovery that quarks can combine into groups of five.

CERN

Pentaquarks are here to stay. Two new studies from the LHCb collaboration at CERN's Large Hadron Collider quash any remaining doubts about the discovery of the exotic five-quark particles that was announced last year (see 12 August 2015 Viewpoint). One study demonstrates that the evidence for pentaquarks in the discovery data is model independent. Another reports evidence for exotic hadronic particles—whose properties are consistent with those of

Evidence for Exotic Hadron Contributions to $\Lambda_b^0 \rightarrow J/\psi p\pi$ Decays R. Aaij *et al.* (LHCb Collaboration) Phys. Rev. Lett. 117, 082003 (2016) Published August 18, 2016

Model-Independent Evidence for $J/\psi p$ Contributions to $\Lambda_b^0 \rightarrow J/\psi p K$ -Decays R. Aaij *et al.* (LHCb Collaboration) Phys. Rev. Lett. 117, 082002 (2016) Published August 18, 2016

Announcements

Neutrinos

Find out more about research on neutrinos in this collection of articles from the archive of *Physics*.

More Announcements »

 $\begin{array}{c} \textbf{ICD} \textbf{$

 $\phi_{s} = -0.010 \pm 0.039 \text{ rad}$

In agreement with, much less precise than

 $\phi_s^{SM} = -0.038 \pm 0.001$ rad

LHCb result most precise but still statistically limited

	Exp.	Mode	Dataset	$\phi_s^{c\overline{c}s}$	$\Delta\Gamma_s \ (\mathrm{ps}^{-1})$	Ref.
	CDF	$J/\psi \phi$	$9.6{\rm fb}^{-1}$	[-0.60, +0.12], 68% CL	$+0.068\pm0.026\pm0.009$	Phys. Rev. Lett. 109, 171802 (2012)
	D0	$J/\psi \phi$	$8.0{\rm fb}^{-1}$	$-0.55^{+0.38}_{-0.36}$	$+0.163^{+0.065}_{-0.064}$	Phys. Rev. D85 , 032006 (2012)
m_{KK}	ATLAS	$J/\psi \phi$	$4.9{\rm fb}^{-1}$	$+0.12\pm 0.25\pm 0.05$	$+0.053\pm0.021\pm0.010$	Phys. Rev. D90 , 052007 (2014)
< 1.05	ATLAS	$J/\psi \phi$	$14.3{\rm fb}^{-1}$	$-0.123 \pm 0.089 \pm 0.041$	$+0.096\pm0.013\pm0.007$	arXiv:1601.03297
GeV	ATLAS	above 2	combined	$-0.098 \pm 0.084 \pm 0.040$	$+0.083\pm0.011\pm0.007$	arXiv:1601.03297
× -	CMS	$J/\psi \phi$	$19.7{\rm fb}^{-1}$	$-0.075 \pm 0.097 \pm 0.031$	$+0.095 \pm 0.013 \pm 0.007$	Phys. Lett. B757 , 97–120 (2016)
	LHCb	$J/\psi K^+K^-$	$3.0{\rm fb}^{-1}$	$-0.058 \pm 0.049 \pm 0.006$	$+0.0805 \pm 0.0091 \pm 0.0033$	Phys. Rev. Lett. 114, 041801 (2015)
	LHCb	$J/\psi \pi^+\pi^-$	$3.0{\rm fb}^{-1}$	$+0.070 \pm 0.068 \pm 0.008$	_	Phys. Lett. B736 , 186 (2014)
	LHCb	above 2	combined	$-0.010 \pm 0.039(tot)$	_	Phys. Rev. Lett. 114 , 041801 (2015)
	LHCb	$D_s^+ D_s^-$	$3.0{\rm fb}^{-1}$	$+0.02\pm 0.17\pm 0.02$	_	Phys. Rev. Lett. 113 , 211801 (2014)
	All comb	ined		-0.033 ± 0.033	$+0.084 \pm 0.007$	

Penguin pollution in ϕ_s

- $\phi_s^{\text{meas}} = \phi_s^{\text{SM}} + \Delta \phi_s^{\text{peng}} + \delta^{\text{NP}}$
- Penguin contribution is small, but cannot can't be calculated reliably from QCD
- To reveal NP, necessary to know $\Delta \phi_s^{\text{peng}}$
- Penguin in $B_s^0 \rightarrow J/\psi\phi$ is doubly-suppressed; can be study in enhanced process: $B^0 \rightarrow J/\psi\rho^0$

 $\lambda = |V_{us}| = 0.22$

Measurement in $B^0 \rightarrow J/\psi \pi^+ \pi^-$

- Time-dependent full amplitude analysis
- Large ρ^0 fraction ~65%

$$\phi_d^{J/\psi\rho^0} = (41.7 \pm 9.6^{+2.8}_{-6.3})^\circ,$$

$$\Rightarrow \Delta \phi_d \equiv \phi_d^{J/\psi \rho^0} - \phi_d^{c\bar{c}s}$$
$$= \left(-0.9 \pm 9.7^{+2.8}_{-6.3}\right)^\circ$$

$$\Delta \phi_s^{\text{peng}} = -\frac{\lambda^2}{1-\lambda^2} \Delta \phi_d$$

Including theoretical uncertainty, $\Delta \phi_s^{peng}$ is limited in ±18 mrad @ 68.3% CL. Better than $\sigma(\phi_s) =$ ± 33 mrad

It becomes an important benchmark channel for LHCb upgrade

Measurement in $B^0 \rightarrow J/\psi \pi^+ \pi^-$

- Time-dependent full amplitude analysis
- Large ρ^0 fraction ~65%

$$\phi_d^{J/\psi\rho^0} = (41.7 \pm 9.6^{+2.8}_{-6.3})^\circ,$$

$$\Rightarrow \Delta \phi_d \equiv \phi_d^{J/\psi \rho^0} - \phi_d^{c\bar{c}s}$$
$$= \left(-0.9 \pm 9.7^{+2.8}_{-6.3}\right)^\circ$$

$$\Delta \phi_s^{\text{peng}} = -\frac{\lambda^2}{1-\lambda^2} \Delta \phi_d$$

Including theoretical uncertainty, $\Delta \phi_s^{peng}$ is limited in ±18 mrad @ 68.3% CL. Better than $\sigma(\phi_s) =$ ± 33 mrad

It becomes an important benchmark channel for LHCb upgrade

LHCb goals

- Find or establish limits on physics beyond the standard model using CP violating & rare beauty & charm decays
- Rare: $B_{(s)} \rightarrow \mu^+ \mu^-$, $B^0 \rightarrow K^* \mu^+ \mu^-$, $B^- \rightarrow Ke^+ e^-/K\mu^+ \mu^-$
- **CP** violation: determine \angle 's: γ , β , ϕ_s
 - □ γ measured with B⁻→D⁰ K⁻ decays
 - □ ϕ_s measured with $B_s \rightarrow J/\psi \phi \& J/\psi \pi^+ \pi^-$ decays
 - □ All $B \rightarrow J/\psi \pi^+\pi^- \& J/\psi K^+K^-$ studied
 - □ In study of $B^0 \rightarrow J/\psi K^+K^-$ [arXiv:1308.5916], $\Lambda_b \rightarrow J/\psi K^-p$ was suggested as a potential background