

TWO-BODY D TO VP DECAYS

Cheng-Wei Chiang (蔣正偉) National Taiwan University Academia Sinica National Center for Theoretical Sciences

> HY Cheng and CWC, PRD **81**, 074021(2010) HY Cheng, CWC and AL Kuo, PRD **93**, 114010 (2016)

OUTLINE OF OUR WORK

- An update of previous work $D \rightarrow VP$ decays
- Use of SU(3) symmetry as working assumption
- A global χ^2 fit to Cabibbo-favored modes
- Extraction of weak annihilation amplitudes for the first time and seeing their importance
- Predictions for all $D \rightarrow VP$ branching fractions
- A test of flavour SU(3) symmetry

PECULIARITIES OF CHARM SYSTEMS

- Resides at an awkward place in mass spectrum
 no suitable effective theory to work with, particularly for hadronic decays
- Too light to grant reliable heavy-quark expansions; yet too heavy to use chiral perturbation theory
- Strong QCD coupling regime
 perturbative QCD calculations expected to fail
- Many resonances around
 monperturbative rescattering effects kicking in
- Flavor SU(3) symmetry for decays to light mesons
- Good realm to test all these approaches

DOMINANT CHARM DECAYS

- D mesons decay dominantly (~84%) into hadronic final states, 3/4 of which are two-body modes.
 - m cf. B meson decays

		=
Mode	BR	_
PP	$\sim 10\%$	_
VP	$\sim 28\%$	—most dominant ones
VV	$\sim 10\%$	
SP	$\sim 4.2\%$	
AP	$\sim 10\%$	
TP	$\sim 0.3\%$	
2-body	$\sim 63\%$	P: pseudoscalar meson
hadronic	$\sim 84\%$	- V: vector meson A: axial vector meson
semileptonic	$\sim 16\%$	_ T: tensor meson

TWO-BODY HADRONIC CHARM DECAYS

- Cabibbo-favored (CF): involving $V_{ud}^*V_{cs} \sim 1 \lambda^2 \sim 0.95$
- Singly Cabibbo-suppressed (SCS): involving Vus*Vcs / Vud*Vcd ~ λ ~ 0.22
- Doubly Cabibbo-suppressed (DCS): involving $V_{us}^*V_{cd} \sim \lambda^2 \sim 0.05$

• Only SCS decays can possibly involve diagrams with different CKM phases and thus possibly have CPA's: $Amp = V_{cd}^* V_{ud} (trees + penguins) + V_{cs}^* V_{us} (trees + penguins)$

FLAVOR DIAGRAMS

Tree-type

 Diagrams for 2-body hadronic D meson decays can be classified according to flavor topology into the tree- and loop-types: Zeppenfeld 1981 Chau and Cheng 1986, 1987, 1991 Savage and Wise 1989 Grinstein and Lebed 1996 Gronau et. al. 1994, 1995, 1995 Cheng and Oh 2011

(a) T

(b) C

(e) E

(f) A

(c) P, P_{EW}^C

FLAVOR DIAGRAMS

- Penguin diagrams negligible for BR's because of GIM $V_{cd}V_{ud}^* = -V_{cs}V_{us}^*$ and $V_{cb}V_{ub}^* \sim A^2\lambda^5$.
- For current analysis, we only need to consider the treetype diagrams:

- Because the spectator quark may end up in P or V meson in the final state, these two kinds of diagrams of the same flavor topology have no relation a priori and should be distinguished.
- For example, $T \rightarrow T_P$ or T_V .

OUR APPROACH

- We perform a x² fit to the branching fractions of all Cabibbo-favored (CF) modes, extracting magnitudes and phases of all flavor diagrams.
- Since what are fitted are branching fractions, there are degeneracies in χ^2 -minimum solutions when all the strong phases simultaneously flip signs.
- Using the extracted information, we make predictions of branching fractions for singly Cabibbo-suppressed (SCS) and doubly Cabibbo-suppressed (DCS) modes.
 check against available data to test SU(3)_F

PARTIAL WIDTH

 The partial decay width of D → VP can be expressed in two different ways:

$$\frac{p_c^3}{8\pi m_D^2} |\tilde{\mathcal{M}}|^2 \quad \text{or} \quad \frac{p_c}{8\pi m_D^2} \sum_{\text{pol.}} |\mathcal{M}|^2$$
scheme A
scheme S

with the relation

$$\tilde{\mathcal{M}}(\epsilon \cdot p_D) = \frac{m_D}{m_V} \mathcal{M}$$

• Although the amplitudes obtained in the two schemes apparently have different magnitudes, they are expected to have similar strong phases.

QUARK CONTENTS IN MESONS

• Phase convention of quark contents in light pseudoscalar and vector mesons are taken as follows:

π^+	π^0	π^-	K^+	K^0	$ar{K}^0$	K^{-}	η_q	η_s
$u \overline{d}$	$\frac{d\bar{d} - u\bar{u}}{\sqrt{2}}$	$-d\bar{u}$	$u\overline{s}$	$d\overline{s}$	$sar{d}$	$-s\bar{u}$	$\frac{u\bar{u} + d\bar{d}}{\sqrt{2}}$	$s\overline{s}$
ρ^+	$ ho^0$	$ ho^-$	K^{*+}	K^{*0}	$ar{K}^{*0}$	K^{*-}	ω	ϕ
$u \overline{d}$	$\frac{d\bar{d} - u\bar{u}}{\sqrt{2}}$	$-d\bar{u}$	$u\overline{s}$	$d\overline{s}$	$sar{d}$	$-s\bar{u}$	$\frac{u\bar{u} + d\bar{d}}{\sqrt{2}}$	$s\bar{s}$

• The physical η and η ' mesons are related to η_q and η_s via a mixing angle:

$$\begin{pmatrix} \eta \\ \eta' \end{pmatrix} = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} \eta_q \\ \eta_s \end{pmatrix}$$

with $\phi = 43.5^{\circ}$ in our numerical calculations.

LHCb 2015

PREVIOUS ANALYSIS

Cheng and CWC 2010

With only CF D^{0,+} decays, there are two disjoint amplitude sets: {T_V, C_P, E_P} and {T_P, C_V, E_V}.
 a connection in the D_s⁺ decays (and CS modes)

Meson	Mode	Representation	\mathcal{B}_{exp} (%)	$\mathcal{B}_{\mathrm{fit}}$ (A, A1) (%)	$\mathcal{B}_{\mathrm{fit}}$ (S, S1) (%)
D^0	$K^{*-}\pi^+$	$V_{cs}^* V_{ud}(T_V + E_P)$	5.91 ± 0.39	5.91 ± 0.70	5.91 ± 0.66
	$K^- \rho^+$	$V_{cs}^*V_{ud}(T_P+E_V)$	10.8 ± 0.7	10.8 ± 2.2	10.7 ± 2.3
	$ar{K}^{*0}\pi^0$	$\frac{1}{D}V_{cs}^*V_{ud}(C_P-E_P)$	2.82 ± 0.35	2.82 ± 0.34	2.82 ± 0.28
	$\bar{K}^0 \rho^0$	$\frac{\sqrt{2}}{\sqrt{2}}V_{cs}^*V_{ud}(C_V-E_V)$	1.54 ± 0.12	1.54 ± 1.15	1.55 ± 0.34
	$ar{K}^{*0}\eta$	$V_{cs}^* V_{ud} (\frac{1}{\sqrt{2}} (C_P + E_P) \cos \phi - E_V \sin \phi)$	0.96 ± 0.30	0.96 ± 0.32	1.12 ± 0.26
	$ar{K}^{*0} \eta'$	$V_{cs}^* V_{ud} \left(\frac{\gamma_2}{\sqrt{2}} (C_P + E_P) \sin \phi + E_V \cos \phi \right)$	< 0.11	0.012 ± 0.003	0.020 ± 0.003
	$\bar{K}^0\omega$	$\frac{\sqrt{2}}{\sqrt{2}} V_{cs}^* V_{ud} (C_V + E_V)$	2.26 ± 0.40	2.26 ± 1.38	2.34 ± 0.41
	$ar{K}^0 oldsymbol{\phi}$	$V_{cs}^{*}V_{ud}E_{P}$	0.868 ± 0.060	0.868 ± 0.139	0.868 ± 0.110
D^+	$ar{K}^{*0}\pi^+$	$V_{cs}^* V_{ud}(T_V + C_P)$	1.83 ± 0.14	1.83 ± 0.49	1.83 ± 0.46
	$ar{K}^0 ho^+$	$V_{cs}^* V_{ud} (T_P + C_V)$	9.2 ± 2.0	9.2 ± 6.7	9.7 ± 5.2
D_s^+	$\bar{K}^{*0}K^+$	$V_{cs}^* V_{ud}(C_P + A_V)$	3.91 ± 0.23^{a}		
	$\bar{K}^0 K^{*+}$	$V_{cs}^* V_{ud} (C_V + A_P)$	5.3 ± 1.2		
	$ ho^+ \pi^0$	$\frac{1}{\sqrt{2}}V_{cs}^*V_{ud}(A_P-A_V)$			
	$ ho^+\eta$	$V_{cs}^* V_{ud} \left(\frac{1}{\sqrt{2}} (A_P + A_V) \cos \phi - T_P \sin \phi \right)$	8.9 ± 0.8^{b}		
	$ ho^+\eta'$	$V_{cs}^* V_{ud} \left(\frac{\gamma_L}{\sqrt{2}} (A_P + A_V) \sin \phi + T_P \cos \phi \right)$	12.2 ± 2.0		
	$\pi^+ ho^0$	$\sqrt{\frac{1}{\sqrt{2}}} V_{cs}^* V_{ud} (A_V - A_P)$			
	$\pi^+\omega$	$\frac{\sqrt{2}}{\sqrt{2}}V_{cs}^*V_{ud}(A_V+A_P)$	$0.21 \pm 0.09^{\circ}$		
	$\pi^+\phi$	$V_{cs}^2 V_{ud}^* T_V$	4.38 ± 0.35	4.38 ± 0.35	4.38 ± 0.35

PREVIOUS ANALYSIS

6 years ago, A_{P,V} could not be fixed by available data.
 many of the D⁺ and D_s⁺ decays involving these amplitudes could not be predicted within the framework

Meson	Mode	Representation	\mathcal{B}_{exp} (%)	$\mathcal{B}_{\mathrm{fit}}$ (A, A1) (%)	$\mathcal{B}_{\mathrm{fit}}$ (S, S1) (%)
D^0	$K^{*-}\pi^+$	$V_{cs}^*V_{ud}(T_V+E_P)$	5.91 ± 0.39	5.91 ± 0.70	5.91 ± 0.66
	$K^- \rho^+$	$V_{cs}^*V_{ud}(T_P+E_V)$	10.8 ± 0.7	10.8 ± 2.2	10.7 ± 2.3
	$ar{K}^{st 0}\pi^0$	$\frac{1}{D}V_{cs}^*V_{ud}(C_P-E_P)$	2.82 ± 0.35	2.82 ± 0.34	2.82 ± 0.28
	$\bar{K}^0 ho^0$	$\frac{\sqrt{2}}{\sqrt{2}}V_{cs}^*V_{ud}(C_V-E_V)$	1.54 ± 0.12	1.54 ± 1.15	1.55 ± 0.34
	$ar{K}^{*0}\eta$	$V_{cs}^* V_{ud} (\frac{1}{\sqrt{2}} (C_P + E_P) \cos \phi - E_V \sin \phi)$	0.96 ± 0.30	0.96 ± 0.32	1.12 ± 0.26
	$ar{K}^{*0}\eta'$	$V_{cs}^* V_{ud} \left(\frac{\gamma_1}{\sqrt{2}} (C_P + E_P) \sin \phi + E_V \cos \phi \right)$	< 0.11	0.012 ± 0.003	0.020 ± 0.003
	$ar{K}^0 \omega$	$\frac{\sqrt{2}}{\sqrt{2}} V_{cs}^* V_{ud} (C_V + E_V)$	2.26 ± 0.40	2.26 ± 1.38	2.34 ± 0.41
	$ar{K}^0 oldsymbol{\phi}$	$V_{cs}^* V_{ud} E_P$	0.868 ± 0.060	0.868 ± 0.139	0.868 ± 0.110
D^+	$ar{K}^{*0}\pi^+$	$V_{cs}^* V_{ud} (T_V + C_P)$	1.83 ± 0.14	1.83 ± 0.49	1.83 ± 0.46
	$ar{K}^0 ho^+$	$V_{cs}^* V_{ud} (T_P + C_V)$	9.2 ± 2.0	9.2 ± 6.7	9.7 ± 5.2
D_s^+	$\bar{K}^{*0}K^+$	$V_{cs}^* V_{ud}(C_P + A_V)$	3.91 ± 0.23^{a}		
	$ar{K}^0 K^{*+}$	$V_{cs}^* V_{ud} (C_V + A_P)$	5.3 ± 1.2		
	$ ho^+ \pi^0$	$\frac{1}{\sqrt{2}}V_{cs}^*V_{ud}(A_P-A_V)$		among CF	decays,
	$ ho^+\eta$	$V_{cs}^* V_{ud} \left(\frac{1}{\sqrt{2}} (A_P + A_V) \cos \phi - T_P \sin \phi \right)$	8.9 ± 0.8^{b}		
	$ ho^+\eta'$	$V_{cs}^* V_{ud} \left(\frac{\gamma}{\sqrt{2}} (A_P + A_V) \sin \phi + T_P \cos \phi \right)$	12.2 ± 2.0		
	$\pi^+ ho^0$	$\sqrt{\frac{1}{\sqrt{2}}}V_{cs}^*V_{ud}(A_V-A_P)$		in these m	odes
	$\pi^+\omega$	$\frac{\sqrt{1}}{\sqrt{2}}V_{cs}^*V_{ud}(A_V+A_P)$	$0.21 \pm 0.09^{\circ}$		
	$\pi^+\phi$	$V_{cs}^* V_{ud} T_V$	4.38 ± 0.35	4.38 ± 0.35	4.38 ± 0.35

RECENT MEASUREMENTS

- It is now possible to fix $A_{P,V}$, thanks particularly to the recent measurement of $BR(D_s^+ \rightarrow \pi^+ \rho^0)$ which involves the combination $A_P A_V$.
- In addition to new measurements, several modes have better determinations than before.
 implication time for an updated SU(3)_F analysis
- For example, BR(D_s⁺ \rightarrow $\rho^+\eta'$) = (12.2±2.0)% by CLEO had long been conjectured to be overestimated and problematic

updated measurement is (5.80±1.46)% by BES-III is significantly smaller
BES-III 2015

CF MODES

Meson	Mode	Representation	\mathcal{B}_{exp}	compared to
D^0	$K^{*-}\pi^+$	$Y_{sd}(T_V + E_P)$	5.43 ± 0.44	2010 data
	$K^- \rho^+$	$Y_{sd}(T_P + E_V)$	11.1 ± 0.9	
	$ar{K}^{*0}\pi^0$	$\frac{1}{\sqrt{2}}Y_{sd}(C_P-E_P)$	3.75 ± 0.29	
	$ar{K}^0 ho^0$	$\frac{1}{\sqrt{2}}Y_{sd}(C_V-E_V)$	$1.28^{+0.14}_{-0.16}$	
	$ar{K}^{*0}\eta$	$Y_{sd}(\frac{1}{\sqrt{2}}(C_P+E_P)c_{\phi}-E_Vs_{\phi})$	0.96 ± 0.30	— not updated
	$ar{K}^{*0}\eta'$	$-Y_{sd}(\frac{1}{\sqrt{2}}(C_P+E_P)s_{\phi}+E_Vc_{\phi})$	< 0.11	— not updated
	$\bar{K}^0 \omega$	$-\frac{1}{\sqrt{2}}Y_{sd}(C_V+E_V)$	2.22 ± 0.12	
	$ar{K}^0 \phi$	$-Y_{sd}^2 E_P$	$0.847^{+0.066}_{-0.034}$	
D^+	$ar{K}^{*0}\pi^+$	$Y_{sd}(T_V+C_P)$	1.57 ± 0.13	
	$ar{K}^0 ho^+$	$Y_{sd}(T_P + C_V)$	$12.08^{+1.20}_{-0.68}$	- somewhat increased
D_s^+	$\bar{K}^{*0}K^+$	$Y_{sd}(C_P + A_V)$	3.92 ± 0.14	
	$\bar{K}^0 K^{*+}$	$Y_{sd}(C_V + A_P)$	5.4 ± 1.2	
	$ ho^+\pi^0$	$\frac{1}{\sqrt{2}}Y_{sd}(A_P-A_V)$		
	$ ho^+\eta$	$-Y_{sd}(\frac{1}{\sqrt{2}}(A_P+A_V)c_{\phi}-T_Ps_{\phi})$	8.9 ± 0.8	— not updated
	$ ho^+\eta'$	$Y_{sd}(\frac{1}{\sqrt{2}}(A_P + A_V)s_{\phi} + T_P c_{\phi})$	5.80 ± 1.46^{a}	- significantly reduced
	$\pi^+ ho^0$	$\frac{1}{\sqrt{2}}Y_{sd}(A_V - A_P)$	0.020 ± 0.012	- new
	$\pi^+\omega$	$\frac{1}{\sqrt{2}}Y_{sd}(A_V + A_P)$	0.24 ± 0.06	
	$\pi^+ \phi$	$Y_{sd}T_V$	4.5 ± 0.4	

SOME REMARKS

- We have found many possible solutions with local χ² minima; some of them are not well separated by sufficiently high "χ² barriers" to render good 1σ ranges.
 in such cases, we stop the 1σ range scan at the obvious boundary
- We only present those whose predicted BFs for SCS modes have better agreement with data.
- In particular, in the effort of discarding irrelevant solutions, the SCS $D^0 \rightarrow \pi^0 \omega$ mode plays a significant role.

SOLUTIONS IN SCHEME A

TABLE V. Fit results using Eq. (3) and $\phi = 43.5^{\circ}$. The amplitude sizes are quoted in units of 10^{-6} , and the strong phases in units of degrees. Only those solutions which can sufficiently well accommodate the singly Cabibbo-suppressed modes are shown.

	$\begin{array}{c} T_V \\ E_P \end{array}$	$egin{array}{c c} T_P \ \delta_{E_P} \end{array}$	$\left. egin{array}{c} \delta_{T_P} \ A_P \end{array} ight.$	$ C_V \ \delta_{A_P}$	$\delta_{C_V} \ A_V $	$egin{array}{c c_P } \delta_{A_V} \end{array}$	$rac{\delta_{C_P}}{\chi^2_{ m min}}$	$ E_V $ quality	δ_{E_V}
(A1)	$\begin{array}{c} 4.21^{+0.18}_{-0.19} \\ 3.06\pm0.09 \end{array}$	$\begin{array}{c} 8.46^{+0.22}_{-0.25} \\ 98 \pm 5 \end{array}$	$57^{+35}_{-41} \\ 0.64^{+0.14}_{-0.27}$	$\begin{array}{r} 4.09\substack{+0.16\\-0.25}\\152\substack{+48\\-50}\end{array}$	-145^{+29}_{-39} $0.52^{+0.24}_{-0.19}$	$\begin{array}{r} 4.08\substack{+0.37\\-0.36}\\122\substack{+70\\-42}\end{array}$	-157 ± 2 5.22	${}^{1.19\substack{+0.64\\-0.46}}_{-0.46}$	-85^{+42}_{-39}
(A2)	$\begin{array}{c} 4.26\substack{+0.18\\-0.19}\\ 3.06\pm0.09\end{array}$	$\begin{array}{c} 8.13\substack{+0.61\\-0.47}\\ 100\pm5 \end{array}$	$\begin{array}{r} 69^{+30}_{-56} \\ 0.71^{+0.08}_{-0.36} \end{array}$	$\begin{array}{r} 4.20 \pm 0.12 \\ -32^{+64}_{-82} \end{array}$	$-82^{+36}_{-26}\\0.40^{+0.35}_{-0.10}$	$\begin{array}{r}4.34\substack{+0.41\\-0.40}\\-42\substack{+99\\-55}\end{array}$	$\begin{array}{r} -158\pm2\\ 6.23\end{array}$	$\begin{array}{c} 0.61\substack{+0.78\\-0.12}\\ 0.0126\end{array}$	-90^{+78}_{-60}
(A3)	$\begin{array}{c} 4.26\substack{+0.17\\-0.18}\\ 3.06\pm0.09\end{array}$	$\begin{array}{c} 8.43\substack{+0.24\\-0.53}\\100\pm5\end{array}$	$\begin{array}{r} 34\substack{+87\\-40}\\ 0.53\substack{+0.25\\-0.21}\end{array}$	$\begin{array}{r} 4.07\substack{+0.22\\-0.42}\\-79\substack{+64\\-32}\end{array}$	-168^{+154}_{-26} $0.62^{+0.16}_{-0.30}$	$\begin{array}{r} 4.36\substack{+0.32\\-0.34}\\-48\substack{+60\\-31}\end{array}$	-158 ± 2 7.25	$\frac{1.26^{+0.92}_{-0.72}}{0.0071}$	-106^{+43}_{-37}
(A4)	$\begin{array}{c} 4.21\substack{+0.18\\-0.19}\\ 3.06\pm0.09\end{array}$	$\begin{array}{c} 8.01\substack{+0.52\\-0.58}\\98\substack{+5\\-6}\end{array}$	$31^{+26}_{-57} \\ 0.61^{+0.16}_{-0.25}$	$\begin{array}{r} 4.20\substack{+0.13\\-0.16}\\156\substack{+55\\-50}\end{array}$	-119^{+34}_{-107} $0.54^{+0.21}_{-0.22}$	${}^{+.06^{+0.44}_{-0.50}}_{-123^{+125}_{-48}}$	-157 ± 2 7.98	$\begin{array}{c} 0.66\substack{+0.51\\-0.17}\\ 0.0047\end{array}$	-96±79
(A5)	$\begin{array}{c} 3.84\pm0.17\\ 3.03\pm0.09\end{array}$	$\begin{array}{c} 8.48^{+0.21}_{-0.25} \\ -85\pm4 \end{array}$	$-54^{+28}_{-23}\\0.43^{+0.13}_{-0.09}$	$\begin{array}{r} 4.09\substack{+0.17\\-0.27\\30\substack{+29\\-34}\end{array}$	$104^{+28}_{-23}\\0.76^{+0.07}_{-0.10}$	$\begin{array}{c} 5.00\substack{+0.10\\-0.12}\\ 18\pm19 \end{array}$	-165^{+2}_{-3} 14.24	$\begin{array}{c} 1.22\substack{+0.66\\-0.47}\\ 0.0002\end{array}$	164^{+25}_{-27}

 $\frac{p_c^3}{8\pi m_D^2} |\tilde{\mathcal{M}}|^2$

SOLUTIONS IN SCHEME A

TABLE V. Fit results using Eq. (3) and $\phi = 43.5^{\circ}$. The amplitude sizes are quoted in units of 10^{-6} , and the strong phases in units of degrees. Only those solutions which can sufficiently well accommodate the singly Cabibbo-suppressed modes are shown.

	$\begin{array}{c} T_V \\ E_P \end{array}$	$egin{array}{c c} T_P \ \delta_{E_P} \end{array}$	$\left. egin{array}{c} \delta_{T_P} \ A_P \end{array} ight.$	$ C_V \ \delta_{A_P}$	$rac{\delta_{C_V}}{ A_V }$	$egin{array}{c c_P } & \delta_{A_V} \end{array}$	$\delta_{C_P} \chi^2_{ m min}$	$ E_V $ quality	δ_{E_V}
(A1)	$\begin{array}{c} 4.21^{+0.18}_{-0.19} \\ 3.06\pm0.09 \end{array}$	$\begin{array}{c} 8.46^{+0.22}_{-0.25} \\ 98 \pm 5 \end{array}$	$57^{+35}_{-41} \\ 0.64^{+0.14}_{-0.27}$	$\begin{array}{r} 4.09\substack{+0.16\\-0.25}\\152\substack{+48\\-50}\end{array}$	-145^{+29}_{-39} $0.52^{+0.24}_{-0.19}$	$4.08^{+0.37}_{-0.36}$ 122^{+70}_{-42}	-157 ± 2 5.22	${}^{1.19\substack{+0.64\\-0.46}}_{-0.46}$	-85^{+42}_{-39}
(A2)	$\begin{array}{c} 4.26\substack{+0.18\\-0.19}\\ 3.06\pm0.09\end{array}$	$\begin{array}{c} 8.13\substack{+0.61\\-0.47}\\ 100\pm5 \end{array}$	$\begin{array}{r} 69^{+30}_{-56} \\ 0.71^{+0.08}_{-0.36} \end{array}$	$\begin{array}{r} 4.20 \pm 0.12 \\ -32^{+64}_{-82} \end{array}$	-82^{+36}_{-26} $0.40^{+0.35}_{-0.10}$	$\begin{array}{r} 4.34\substack{+0.41\\-0.40}\\-42\substack{+99\\-55}\end{array}$	-158 ± 2 6.23	$\begin{array}{c} 0.61\substack{+0.78\\-0.12}\\ 0.0126\end{array}$	-90^{+78}_{-60}
(A3)	$\begin{array}{c} 4.26\substack{+0.17\\-0.18}\\ 3.06\pm0.09\end{array}$	$\begin{array}{c} 8.43\substack{+0.24\\-0.53}\\ 100\pm5 \end{array}$	$\begin{array}{r} 34\substack{+87\\-40}\\ 0.53\substack{+0.25\\-0.21}\end{array}$	$\begin{array}{r} 4.07\substack{+0.22\\-0.42}\\-79\substack{+64\\-32}\end{array}$	-168^{+154}_{-26} $0.62^{+0.16}_{-0.30}$	$\begin{array}{r} 4.36\substack{+0.32\\-0.34}\\-48\substack{+60\\-31}\end{array}$	-158 ± 2 7.25	$\frac{1.26^{+0.92}_{-0.72}}{0.0071}$	-106^{+43}_{-37}
(A4)	$\begin{array}{c} 4.21\substack{+0.18\\-0.19}\\ 3.06\pm0.09\end{array}$	$\begin{array}{c} 8.01\substack{+0.52\\-0.58}\\98\substack{+5\\-6}\end{array}$	$31^{+26}_{-57} \\ 0.61^{+0.16}_{-0.25}$	$\begin{array}{r} 4.20\substack{+0.13\\-0.16}\\156\substack{+55\\-50}\end{array}$	-119^{+34}_{-107} $0.54^{+0.21}_{-0.22}$	$\begin{array}{r} 4.06\substack{+0.44\\-0.50}\\123\substack{+125\\-48}\end{array}$	-157 ± 2 7.98	$\begin{array}{c} 0.66\substack{+0.51\\-0.17}\\ 0.0047\end{array}$	-96 ± 79
(A5)	$\begin{array}{c} 3.84\pm0.17\\ 3.03\pm0.09 \end{array}$	$\begin{array}{c} 8.48\substack{+0.21\\-0.25}\\-85\pm4\end{array}$	$-54^{+28}_{-23}\\0.43^{+0.13}_{-0.09}$	$\begin{array}{r} 4.09\substack{+0.17\\-0.27\\30\substack{+29\\-34}\end{array}$	$104^{+28}_{-23}\\0.76^{+0.07}_{-0.10}$	$\begin{array}{c} 5.00\substack{+0.10\\-0.12}\\ 18\pm19 \end{array}$	-165^{+2}_{-3} 14.24	$\begin{array}{c} 1.22\substack{+0.66\\-0.47}\\ 0.0002\end{array}$	164^{+25}_{-27}

 $\frac{p_c^3}{8\pi m_D^2} |\tilde{\mathcal{M}}|^2$

SOLUTIONS IN SCHEMES

	$\begin{array}{c} T_V \\ E_P \end{array}$	$egin{array}{c} T_P \ \delta_{E_P} \end{array}$	$\delta_{T_P} \ A_P $	$ C_V \ \delta_{A_P}$	$\delta_{C_V} \ A_V $	$egin{array}{c c c c c c c c c c c c c c c c c c c $	$\delta_{C_p} \ \chi^2_{ m min}$	$ E_V $ quality	δ_{E_V}
(S1)	$\begin{array}{c} 2.19 \pm 0.09 \\ 1.67 \pm 0.05 \end{array}$	$\begin{array}{c} 3.40\substack{+0.17\\-0.18}\\ 108\pm4 \end{array}$	$57^{+30}_{-53} \\ 0.26^{+0.06}_{-0.11}$	${}^{+0.05}_{-0.09}\\-31^{+65}_{-59}$	$-94^{+36}_{-28}\\0.20^{+0.10}_{-0.07}$	$2.09^{+0.11}_{-0.17}\\-1^{+68}_{-58}$	-159 ± 1 5.558	$\begin{array}{c} 0.27\substack{+0.34\\-0.07}\\ 0.0184\end{array}$	-116^{+77}_{-58}
(S2)	$\begin{array}{c} 2.19\pm0.09\\ 1.67\pm0.05 \end{array}$	$\begin{array}{c} 3.40\substack{+0.16\\-0.19}\\ 108\pm4 \end{array}$	${}^{64^{+30}_{-60}}_{0.26^{+0.05}_{-0.12}}$	$1.76^{+0.05}_{-0.09} \\ -23^{+63}_{-68}$	$-88^{+35}_{-26}\\0.20^{+0.10}_{-0.07}$	$2.10\substack{+0.11\\-0.17}\\6\substack{+71\\-66}$	-159 ± 1 5.564	$\begin{array}{c} 0.28\substack{+0.33\\-0.07}\\ 0.0183\end{array}$	-114^{+78}_{-61}
(S3)	$\begin{array}{c} 2.17^{+0.09}_{-0.10} \\ 1.67 \pm 0.05 \end{array}$	$\begin{array}{c} 3.47\substack{+0.11\\-0.34}\\ 107\substack{+5\\-4}\end{array}$	$\begin{array}{r} 33^{+47}_{-28} \\ 0.23^{+0.07}_{-0.09} \end{array}$	$1.75^{+0.06}_{-0.10}\\109^{+46}_{-51}$	-172^{+26}_{-37} $0.23^{+0.07}_{-0.09}$	$2.03\substack{+0.18\\-0.17}\\77\substack{+47\\-50}$	-159 ± 1 5.90	$\begin{array}{c} 0.39\substack{+0.29\\-0.17}\\ 0.0152\end{array}$	-123^{+46}_{-117}
(S4)	$\begin{array}{c} 2.18^{+0.11}_{-0.10} \\ 1.67 \pm 0.05 \end{array}$	$\begin{array}{c} 3.38\substack{+0.27\\-0.28}\\108\pm5\end{array}$	$9^{+83}_{-82} \\ 0.19^{+0.10}_{-0.07}$	$\begin{array}{c} 1.77 \pm 0.05 \\ 100^{+51}_{-79} \end{array}$	-142^{+81}_{-147} $0.26^{+0.05}_{-0.10}$	$2.06^{+0.17}_{-0.19} \\72^{+45}_{-38}$	-159^{+1}_{-2} 8.08	$\begin{array}{c} 0.25\substack{+0.18\\-0.05}\\ 0.0045\end{array}$	-146^{+65}_{-114}
(\$5)	$\begin{array}{c} 1.81 \pm 0.11 \\ 1.65 \pm 0.05 \end{array}$	$\begin{array}{c} 3.50\substack{+0.10\\-0.11}\\-86\pm4 \end{array}$	$-32^{+34}_{-25}\\0.17^{+0.05}_{-0.03}$	$1.73^{+0.06}_{-0.09}\\30^{+28}_{-31}$	$125^{+35}_{-26}\\0.31^{+0.03}_{-0.04}$	$2.25^{+0.04}_{-0.05}\\20^{+18}_{-17}$	-162^{+2}_{-3} 33.78	$\begin{array}{c} 0.46\substack{+0.24\\-0.17}\\ 0.0000\end{array}$	-179^{+35}_{-33}
(S6)	$\begin{array}{c} 1.81^{+0.12}_{-0.11} \\ 1.64 \pm 0.05 \end{array}$	$\begin{array}{c} 3.50^{+0.10}_{-0.11} \\ -86\pm4 \end{array}$	$-34^{+37}_{-23}\\0.17^{+0.05}_{-0.03}$	$1.73^{+0.06}_{-0.09}\\29^{+29}_{-31}$	$122^{+33}_{-24}\\0.31^{+0.03}_{-0.04}$	$2.25^{+0.04}_{-0.05}\\19^{+19}_{-16}$	-162^{+2}_{-3} 33.79	$\begin{array}{c} 0.46\substack{+0.24\\-0.17}\\ 0.0000\end{array}$	179^{+37}_{-31}

TABLE VI. Same as Table V except that Eq. (4) is employed for the fit. The amplitude sizes are quoted in units of $10^{-6}(\epsilon \cdot p_D)$.

 $\frac{p_c}{8\pi m_D^2} \sum_{\text{pol.}} |\mathcal{M}|^2$

SOLUTIONS IN SCHEMES

	$\begin{array}{c} T_V \\ E_P \end{array}$	$egin{array}{c} T_P \ \delta_{E_P} \end{array}$	$\delta_{T_P} \ A_P $	$ C_V \ \delta_{A_P}$	$\delta_{C_V} \ A_V $	$egin{array}{c c c c c c c c c c c c c c c c c c c $	$\delta_{C_p} \ \chi^2_{ m min}$	$ E_V $ quality	δ_{E_V}
(S1)	$\begin{array}{c} 2.19 \pm 0.09 \\ 1.67 \pm 0.05 \end{array}$	$\begin{array}{c} 3.40^{+0.17}_{-0.18} \\ 108 \pm 4 \end{array}$	$57^{+30}_{-53} \\ 0.26^{+0.06}_{-0.11}$	${\begin{array}{r} 1.76\substack{+0.05\\-0.09}\\-31\substack{+65\\-59\end{array}}$	$-94^{+36}_{-28}\\0.20^{+0.10}_{-0.07}$	$2.09^{+0.11}_{-0.17}\\-1^{+68}_{-58}$	$\begin{array}{c} -159\pm1\\ 5.558\end{array}$	$\begin{array}{c} 0.27\substack{+0.34\\-0.07}\\ 0.0184\end{array}$	-116^{+77}_{-58}
(S2)	$\begin{array}{c} 2.19\pm0.09\\ 1.67\pm0.05 \end{array}$	$\begin{array}{c} 3.40\substack{+0.16\\-0.19}\\ 108\pm4 \end{array}$	${}^{64^{+30}_{-60}}_{0.26^{+0.05}_{-0.12}}$	${}^{+0.05}_{-0.09}\\-23{}^{+63}_{-68}$	$-88^{+35}_{-26}\\0.20^{+0.10}_{-0.07}$	$2.10\substack{+0.11\\-0.17}\\6\substack{+71\\-66}$	-159 ± 1 5.564	$\begin{array}{c} 0.28\substack{+0.33\\-0.07}\\ 0.0183\end{array}$	-114^{+78}_{-61}
(S3)	$\begin{array}{c} 2.17\substack{+0.09\\-0.10}\\ 1.67\pm0.05\end{array}$	$3.47^{+0.11}_{-0.34}\\107^{+5}_{-4}$	$\begin{array}{r} 33^{+47}_{-28} \\ 0.23^{+0.07}_{-0.09} \end{array}$	${}^{1.75^{+0.06}_{-0.10}}_{109^{+46}_{-51}}$	-172^{+26}_{-37} $0.23^{+0.07}_{-0.09}$	$2.03\substack{+0.18\\-0.17}\\77\substack{+47\\-50}$	$\begin{array}{c} -159\pm1\\ 5.90\end{array}$	$\begin{array}{c} 0.39\substack{+0.29\\-0.17}\\ 0.0152 \end{array}$	-123^{+46}_{-117}
(S4)	$2.18^{+0.11}_{-0.10}$ 1.67 ± 0.05	$\begin{array}{c} 3.38\substack{+0.27\\-0.28}\\108\pm5\end{array}$	$9^{+83}_{-82} \\ 0.19^{+0.10}_{-0.07}$	$\begin{array}{r} 1.77 \pm 0.05 \\ 100^{+51}_{-79} \end{array}$	-142^{+81}_{-147} $0.26^{+0.05}_{-0.10}$	$2.06^{+0.17}_{-0.19}$ 72^{+45}_{-38}	-159^{+1}_{-2} 8.08	$\begin{array}{c} 0.25\substack{+0.18\\-0.05}\\ 0.0045\end{array}$	-146^{+65}_{-114}
(S5)	$\begin{array}{c} 1.81 \pm 0.11 \\ 1.65 \pm 0.05 \end{array}$	$\begin{array}{c} 3.50^{+0.10}_{-0.11} \\ -86\pm4 \end{array}$	$-32^{+34}_{-25}\\0.17^{+0.05}_{-0.03}$	$1.73^{+0.06}_{-0.09}\\30^{+28}_{-31}$	$125^{+35}_{-26}\\0.31^{+0.03}_{-0.04}$	$2.25^{+0.04}_{-0.05}\\20^{+18}_{-17}$	-162^{+2}_{-3} 33.78	$\begin{array}{c} 0.46\substack{+0.24\\-0.17}\\ 0.0000\end{array}$	-179^{+35}_{-33}
(S6)	$\begin{array}{c} 1.81^{+0.12}_{-0.11} \\ 1.64\pm0.05 \end{array}$	$\begin{array}{c} 3.50^{+0.10}_{-0.11} \\ -86 \pm 4 \end{array}$	$-34^{+37}_{-23}\\0.17^{+0.05}_{-0.03}$	$1.73^{+0.06}_{-0.09}\\29^{+29}_{-31}$	$122^{+33}_{-24}\\0.31^{+0.03}_{-0.04}$	$2.25^{+0.04}_{-0.05}\\19^{+19}_{-16}$	-162^{+2}_{-3} 33.79	$\begin{array}{c} 0.46\substack{+0.24\\-0.17}\\ 0.0000\end{array}$	179^{+37}_{-31}

TABLE VI. Same as Table V except that Eq. (4) is employed for the fit. The amplitude sizes are quoted in units of $10^{-6}(\epsilon \cdot p_D)$.

 $\frac{p_c}{8\pi m_D^2} \sum_{\text{pol.}} |\mathcal{M}|^2$

GENERAL OBSERVATIONS

- Among all the theory parameters, the uncertainties associated with IE_PI, δ E_P, IC_PI and δ C_P are much smaller than the others. Moreover, their best-fit values are quite stable across different solutions.
- The flavor amplitudes generally $T = 3.08 \pm 0.06$, $C = (2.46^{+0.06}_{-0.07})e^{-i(152\pm1)^{\circ}}$, respect the following hierarchy $E = (1.66 \pm 0.06)e^{i(120\pm2)^{\circ}}$, $A = (0.34^{+0.17}_{-0.18})e^{i(70^{+10}_{-27})^{\circ}}$ pattern: $|T_P| > |T_V| \sim |C_{P,V}| > |E_P| > |E_V| \sim |A_{P,V}|$.

■ large $|T_P|$ driven by large rates of $D^0 \rightarrow K^-\rho^+$ and $\underline{K}^0\rho^+$

- The relation $E_V \approx -E_P$ advocated by some analysis is disfavored by the data. Rosner 1999
- Though with large uncertainties, A_P and A_V are only about one order of magnitude smaller than T and C amplitudes.

Meson	Mode	Representation	\mathcal{B}_{exp}	$\mathcal{B}_{\text{theory}}(A1)$	$\mathcal{B}_{\text{theory}}(S4)$	$\mathcal{B}(pole)$	B(FAT[mix])
D^0	$K^{*-}\pi^+$	$Y_{sd}(T_V + E_P)$	5.43 ± 0.44	5.45 ± 0.64	5.43 ± 0.70	3.1 ± 1.0	6.09
	$K^- \rho^+$	$Y_{sd}(T_P + E_V)$	11.1 ± 0.9	11.3 ± 2.70	11.4 ± 2.78	8.8 ± 2.2	9.6
	$\bar{K}^{*0}\pi^0$	$\frac{1}{\sqrt{2}}Y_{sd}(C_P-E_P)$	3.75 ± 0.29	3.72 ± 0.49	3.72 ± 0.50	2.9 ± 1.0	3.25
	$ar{K}^0 ho^0$	$\frac{1}{\sqrt{2}}Y_{sd}(C_V - E_V)$	$1.28\substack{+0.14\\-0.16}$	1.30 ± 0.78	1.31 ± 0.23	1.7 ± 0.7	1.17
	$ar{K}^{*0}\eta$	$Y_{sd}(\frac{1}{\sqrt{2}}(C_P+E_P)c_{\phi}-E_Vs_{\phi})$	0.96 ± 0.30	0.92 ± 0.36	0.82 ± 0.34	0.7 ± 0.2	0.57
	$ar{K}^{*0}\eta'$	$-Y_{sd}(\frac{1}{\sqrt{2}}(C_P+E_P)s_{\phi}+E_Vc_{\phi})$	< 0.11	0.003 ± 0.002	0.006 ± 0.002	0.016 ± 0.005	0.018
	$\bar{K}^0 \omega$	$-\frac{1}{\sqrt{2}}Y_{sd}(C_V+E_V)$	2.22 ± 0.12	2.24 ± 0.84	2.24 ± 0.29	2.5 ± 0.7	2.22
	$ar{K}^0 \phi$	$-Y_{sd}E_P$	$0.847^{+0.066}_{-0.034}$	0.848 ± 0.050	0.850 ± 0.050	0.80 ± 0.2	0.800
D^+	$ar{K}^{*0}\pi^+$	$Y_{sd}(T_V + C_P)$	1.57 ± 0.13	1.57 ± 0.25	1.57 ± 0.25	1.4 ± 1.3	1.70
	$ar{K}^0 ho^+$	$Y_{sd}(T_P + C_V)$	$12.08^{+1.20}_{-0.68}$	12.15 ± 11.69	12.03 ± 41.92	15.1 ± 3.8	6.0
D_s^+	$\bar{K}^{*0}K^+$	$Y_{sd}(C_P + A_V)$	3.92 ± 0.14	3.92 ± 1.13	3.93 ± 1.00	4.2 ± 1.7	4.07
	$\bar{K}^0 K^{*+}$	$Y_{sd}(C_V + A_P)$	5.4 ± 1.2	4.38 ± 1.19	3.11 ± 1.49	1.0 ± 0.6	3.1
	$ ho^+\pi^0$	$\frac{1}{\sqrt{2}}Y_{sd}(A_P - A_V)$		0.021 ± 0.087	0.022 ± 0.082	0.4 ± 0.4	0
	$ ho^+\eta$	$-Y_{sd}(\frac{1}{\sqrt{2}}(A_P+A_V)c_{\phi}-T_Ps_{\phi})$	8.9 ± 0.8	8.85 ± 1.69	8.93 ± 3.12	8.3 ± 1.3	8.8
	$ ho^+\eta'$	$Y_{sd}(\frac{1}{\sqrt{2}}(A_P + A_V)s_{\phi} + T_Pc_{\phi})$	5.80 ± 1.46^a	2.75 ± 0.46	2.89 ± 0.86	3.0 ± 0.5	1.6
	$\pi^+ ho^0$	$\frac{1}{\sqrt{2}}Y_{sd}(A_V - A_P)$	0.020 ± 0.012	0.021 ± 0.087	0.022 ± 0.082	0.4 ± 0.4	0.004
	$\pi^+\omega$	$\frac{1}{\sqrt{2}}Y_{sd}(A_V + A_P)$	0.24 ± 0.06	0.24 ± 0.15	0.24 ± 0.14	0	0.26
	$\pi^+ \phi$	$\tilde{Y}_{sd}T_V$	4.5 ± 0.4	$\textbf{4.49} \pm \textbf{0.40}$	4.51 ± 0.43	4.3 ± 0.6	3.4

Meson	Mode	Representation	\mathcal{B}_{exp}	$\mathcal{B}_{\text{theory}}(A1)$	$\mathcal{B}_{\text{theory}}(S4)$	$\mathcal{B}(pole)$	$\mathcal{B}(FAT[mix])$
D^0	$K^{*-}\pi^+$	$\frac{Y_{sd}(T_V + E_P)}{T_V + T_V}$	5.43 ± 0.44	5.45 ± 0.64	5. pole mo	del and fac	torization-
	$K^{-}\rho^{+}$ $\bar{K}^{*0}\pi^{0}$	$\frac{Y_{sd}(T_P + E_V)}{\frac{1}{\sqrt{2}}Y_{sd}(C_P - E_P)}$	11.1 ± 0.9 3.75 ± 0.29	11.3 ± 2.70 3.72 ± 0.49	3. assisted	topological	-amplitude
	$\bar{K}^0 \rho^0$	$\frac{1}{\sqrt{2}}Y_{sd}(C_V - E_V)$	$1.28\substack{+0.14 \\ -0.16}$	1.30 ± 0.78	1. (FAT) a	pproach wit	h ρ-ω mixing
	$\bar{K}^{*0}\eta$	$Y_{sd}(\frac{1}{\sqrt{2}}(C_P + E_P)c_{\phi} - E_V s_{\phi})$	0.96 ± 0.30	0.92 ± 0.36	0.	Qin, Li, Lu	and Yu 2014
	$K^{*0}\eta'$	$-Y_{sd}(\frac{1}{\sqrt{2}}(C_P+E_P)s_{\phi}+E_Vc_{\phi})$	<0.11	0.003 ± 0.002	0.0		
	$\bar{K}^0\omega$	$-\frac{1}{\sqrt{2}}Y_{sd}(C_V+E_V)$	2.22 ± 0.12	2.24 ± 0.84	2.24 ± 0.29	2.5 ± 0.7	2.22
	$ar{K}^0 \phi$	$-Y_{sd}E_P$	$0.847^{+0.066}_{-0.034}$	0.848 ± 0.050	0.850 ± 0.050	0.80 ± 0.2	0.800
D^+	$ar{K}^{*0}\pi^+$	$Y_{sd}(T_V+C_P)$	1.57 ± 0.13	1.57 ± 0.25	1.57 ± 0.25	1.4 ± 1.3	1.70
	$ar{K}^0 ho^+$	$Y_{sd}(T_P + C_V)$	$12.08^{+1.20}_{-0.68}$	12.15 ± 11.69	12.03 ± 41.92	15.1 ± 3.8	6.0
D_s^+	$\bar{K}^{*0}K^+$	$Y_{sd}(C_P + A_V)$	3.92 ± 0.14	3.92 ± 1.13	3.93 ± 1.00	4.2 ± 1.7	4.07
	$\bar{K}^0 K^{*+}$	$Y_{sd}(C_V + A_P)$	5.4 ± 1.2	4.38 ± 1.19	3.11 ± 1.49	1.0 ± 0.6	3.1
	$ ho^+\pi^0$	$\frac{1}{\sqrt{2}}Y_{sd}(A_P-A_V)$		0.021 ± 0.087	0.022 ± 0.082	0.4 ± 0.4	0
	$ ho^+\eta$	$-Y_{sd}(\frac{1}{\sqrt{2}}(A_P + A_V)c_{\phi} - T_P s_{\phi})$	8.9 ± 0.8	8.85 ± 1.69	8.93 ± 3.12	8.3 ± 1.3	8.8
	$ ho^+\eta'$	$Y_{sd}(\frac{1}{\sqrt{2}}(A_P+A_V)s_{\phi}+T_Pc_{\phi})$	$5.80 \pm 1.46^{\rm a}$	2.75 ± 0.46	2.89 ± 0.86	3.0 ± 0.5	1.6
	$\pi^+ ho^0$	$\frac{1}{\sqrt{2}}Y_{sd}(A_V - A_P)$	0.020 ± 0.012	0.021 ± 0.087	0.022 ± 0.082	0.4 ± 0.4	0.004
	$\pi^+\omega$	$\frac{1}{\sqrt{2}}Y_{sd}(A_V + A_P)$	0.24 ± 0.06	0.24 ± 0.15	0.24 ± 0.14	0	0.26
	$\pi^+ \phi$	$Y_{sd}T_V$	4.5 ± 0.4	$\textbf{4.49} \pm \textbf{0.40}$	4.51 ± 0.43	4.3 ± 0.6	3.4

Meson	Mode	Representation	\mathcal{B}_{exp}	$\mathcal{B}_{\text{theory}}(A1)$	$\mathcal{B}_{\text{theory}}(S4)$	$\mathcal{B}(pole)$	B(FAT[mix])
D^0	$K^{*-}\pi^+$	$Y_{sd}(T_V + E_P)$	5.43 ± 0.44	5.45 ± 0.64	5.43 ± 0.70	3.1 ± 1.0	6.09
	$K^- \rho^+$	$Y_{sd}(T_P + E_V)$	11.1 ± 0.9	11.3 ± 2.70	11.4 ± 2.78	8.8 ± 2.2	9.6
	$ar{K}^{*0}\pi^0$	$\frac{1}{\sqrt{2}}Y_{sd}(C_P-E_P)$	3.75 ± 0.29	3.72 ± 0.49	3.72 ± 0.50	2.9 ± 1.0	3.25
	$ar{K}^0 ho^0$	$\frac{1}{\sqrt{2}}Y_{sd}(C_V - E_V)$	$1.28^{+0.14}_{-0.16}$	1.30 ± 0.78	1.31 ± 0.23	1.7 ± 0.7	1.17
	$ar{K}^{*0}\eta$	$Y_{sd}(\frac{1}{\sqrt{2}}(C_P+E_P)c_{\phi}-E_Vs_{\phi})$	0.96 ± 0.30	0.92 ± 0.36	0.82 ± 0.34	0.7 ± 0.2	0.57
	$ar{K}^{*0}\eta'$	$-Y_{sd}(\frac{1}{\sqrt{2}}(C_P+E_P)s_{\phi}+E_Vc_{\phi})$	< 0.11	0.003 ± 0.002	0.006 ± 0.002	0.016 ± 0.005	0.018
	$\bar{K}^0 \omega$	$-\frac{1}{\sqrt{2}}Y_{sd}(C_V+E_V)$	2.22 ± 0.12	2.24 ± 0.84	2.24 ± 0.29	2.5 ± 0.7	2.22
	$ar{K}^0 \phi$	$-Y_{sd}E_P$	$0.847^{+0.066}_{-0.034}$	0.848 ± 0.050	0.850 ± 0.050	0.80 ± 0.2	0.800
D^+	$ar{K}^{*0}\pi^+$	$Y_{sd}(T_V+C_P)$	1.57 ± 0.13	1.57 ± 0.25	1.57 ± 0.25	1.4 ± 1.3	1.70
	$ar{K}^0 ho^+$	$Y_{sd}(T_P + C_V)$	$12.08^{+1.20}_{-0.68}$	12.15 ± 11.69	12.03 ± 41.92	15.1 ± 3.8	6.0
D_s^+	$\bar{K}^{*0}K^+$	$Y_{sd}(C_P + A_V)$	3.92 ± 0.14	3.92 ± 1.13	3.93 ± 1.00	4.2 ± 1.7	4.07
	$\bar{K}^0 K^{*+}$	$Y_{sd}(C_V + A_P)$	5.4 ± 1.2	4.38 ± 1.19	3.11 ± 1.49	1.0 ± 0.6	3.1
	$ ho^+\pi^0$	$\frac{1}{\sqrt{2}}Y_{sd}(A_P - A_V)$		0.021 ± 0.087	0.022 ± 0.082	0.4 ± 0.4	0
	$ ho^+\eta$	$-Y_{sd}(\frac{1}{\sqrt{2}}(A_P+A_V)c_{\phi}-T_Ps_{\phi})$	8.9 ± 0.8	8.85 ± 1.69	8.93 ± 3.12	8.3 ± 1.3	8.8
	$ ho^+\eta'$	$Y_{sd}(\frac{1}{\sqrt{2}}(A_P + A_V)s_{\phi} + T_P c_{\phi})$	5.80 ± 1.46^{a}	2.75 ± 0.46	2.89 ± 0.86	3.0 ± 0.5	1.6
	$\pi^+ ho^0$	$\frac{1}{\sqrt{2}}Y_{sd}(A_V - A_P)$	0.020 ± 0.012	0.021 ± 0.087	0.022 ± 0.082	0.4 ± 0.4	0.004
	$\pi^+\omega$	$\frac{1}{\sqrt{2}}Y_{sd}(A_V + A_P)$	0.24 ± 0.06	0.24 ± 0.15	0.24 ± 0.14	0	0.26
	$\pi^+ \phi$	$\tilde{Y}_{sd}T_V$	4.5 ± 0.4	4.49 ± 0.40	4.51 ± 0.43	4.3 ± 0.6	3.4

- While the predicted BR($D_{s^+} \rightarrow \rho^+\eta$) is close to CLEO's (8.9±0.8)%, the predicted BR($D_{s^+} \rightarrow \rho^+\eta'$) is substantially below the recent BES-III's (5.80±1.46)%.
- All existing model calculations yield around 3%.

Buccella, Lusignoli, Miele, Pugliese and Santorelli 1995 Cheng and CWC 2010 Bhattacharya and Rosner 2010 Qin, Li, Lu and Yu 2014

- If BR(D_s⁺ $\rightarrow \rho^+\eta'$) still remains to be Qin, Li, Lu and Yu 2014 of order 6% in the future experiments, this may hint at a sizeable flavor singlet contribution unique to the η_0 production.
- This issue should be clarified both experimentally and theoretically.

DISTINGUISHING SCHEMES

- It is noted that IC_PI and IC_VI are comparable in solutions
 (A), but have a small hierarchy in solutions (S).
- As a way to tell which scheme is preferred, one can resort to the $D_{s^+} \rightarrow \underline{K}^{*0}K^+$ decay, dominated by C_P , and the \underline{K}^0K^{*+} decay, dominated by C_V .

D_s^+	$\bar{K}^{*0}K^+$	$Y_{sd}(C_P + A_V)$	3.92 ± 0.14	3.92 ± 1.13	3.93 ± 1.00
	$\bar{K}^0 K^{*+}$	$Y_{sd}(C_V + A_P)$	5.4 ± 1.2	4.38 ± 1.19	3.11 ± 1.49

- Current data slightly favor (A1) over (S4).
- Since the <u>K</u>*⁰K⁺ decay has been measured several times with similar results before and the <u>K</u>⁰K*⁺ decay was last measured in 1989, it is obvious that the latter should be updated.

Mesor	n Mode	Representation	\mathcal{B}_{exp}	$\mathcal{B}_{\text{theory}}(A1)$	$\mathcal{B}_{\text{theory}}(S4)$	$\mathcal{B}(pole)$	$\mathcal{B}(FAT[mix])$
D^0	$\pi^+ \rho^-$	$Y_d(T_V' + E_P')$	5.09 ± 0.34	3.61 ± 0.43	4.76 ± 0.61	3.5 ± 0.6	4.66
	$\pi^- o^+$	$Y_{d}(T'_{P}+E_{V}')$	10.0 ± 0.6	8.73 ± 2.09	8.82 ± 2.15	10.2 ± 1.5	10.0
	$\pi^0 ho^0$	$\frac{1}{2}Y_d(C_P' + C_V' - E_P' - E_V')$	3.82 ± 0.29	3.06 ± 0.63	3.90 ± 1.62	1.4 ± 0.6	3.83
	$K^{+}K^{*-}$	$Y_s(T_V'+E_P')$	1.62 ± 0.15	1.84 ± 0.22	1.83 ± 0.24	1.6 ± 0.3	1.73
	$K^{-}K^{*+}$	$Y_s(T'_P + E'_V)$	4.50 ± 0.30	4.44 ± 1.07	3.39 ± 0.83	4.7 ± 0.8	4.37
	$K^0 \overline{K}^{*0}$	$Y_s E'_P + Y_d E'_V$	<1.5	1.374 ± 0.361	1.028 ± 0.430	0.16 ± 0.05	1.1
	$\bar{K}^{0}K^{*0}$	$Y_s E'_V + Y_d E'_P$	< 0.54	1.374 ± 0.361	1.028 ± 0.430	0.16 ± 0.05	1.1
	$\pi^0 \omega$	$\frac{1}{2}Y_d(C'_V - C'_P + E'_P + E'_V)$	0.117 ± 0.035^{a}	0.043 ± 0.156	0.272 ± 1.509	0.08 ± 0.02	0.18
	$\pi^0 \phi$	$\frac{1}{\sqrt{2}}Y_sC_P'$	1.35 ± 0.10	0.77 ± 0.14	0.66 ± 0.11	1.0 ± 0.3	1.11
	$\eta\omega$	$Y_{d_2}(C'_V+C'_P+E'_V+E'_P)c_{\phi}-Y_s\frac{1}{\sqrt{2}}C'_Vs_{\phi}$	2.21 ± 0.23^{b}	2.09 ± 0.49	2.67 ± 2.54	1.2 ± 0.3	2.0
	$\eta'\omega$	$-Y_{d\frac{1}{2}}(C'_{\nu}+C'_{\rho}+E'_{\nu}+E'_{\rho})s_{\phi}-Y_{s\frac{1}{\sqrt{2}}}C'_{\nu}c_{\phi}$		0.012 ± 0.012	0.046 ± 0.067	0.0001 ± 0.0001	0.02
	ηφ	$Y_{s}(\frac{1}{\sqrt{2}}C'_{P}c_{\phi} - (E'_{V} + E'_{P})s_{\phi})$	0.14 ± 0.05	0.29 ± 0.12	0.29 ± 0.08	0.23 ± 0.06	0.18
	$\eta \rho^0$	$-Y_{d\frac{1}{2}}(C'_{V}-C'_{P}-E'_{V}-E'_{P})c_{\phi}+Y_{s\frac{1}{\sqrt{2}}}C'_{V}s_{\phi}$		0.60 ± 0.40	0.80 ± 2.63	0.05 ± 0.01	0.45
	$\eta' \rho^0$	$Y_{d\frac{1}{2}}(C'_{V}-C'_{P}-E'_{V}-E'_{P})s_{\phi}+Y_{s\frac{1}{\sqrt{2}}}C'_{V}c_{\phi}$		0.055 ± 0.021	0.105 ± 0.075	0.08 ± 0.02	0.27
D^+	$\pi^+ ho^0$	$\frac{1}{\sqrt{2}}Y_d(T'_V + C'_P - A'_P + A'_V)$	0.84 ± 0.15	0.51 ± 0.28	0.68 ± 0.35	0.8 ± 0.7	0.58
	$\pi^0 \rho^+$	$\frac{1}{\sqrt{2}}Y_d(T'_P + C'_V + A'_P - A'_V)$		4.35 ± 5.01	4.27 ± 16.51	3.5 ± 1.6	2.5
	$\pi^+\omega$	$\frac{1}{2}Y_d(T'_V + C'_P + A'_P + A'_V)$	$0.279\pm0.059^{\text{a}}$	0.165 ± 0.269	0.208 ± 0.240	0.3 ± 0.3	0.80
	$\pi^+\phi$	$Y_s C'_P$	$5.66^{+0.19}_{-0.21}$	3.92 ± 0.69	3.37 ± 0.59	5.1 ± 1.4	5.65
	$\eta \rho^+$	$-Y_{d}\frac{1}{\sqrt{2}}(T'_{P}+C'_{V}+A'_{V}+A'_{P})c_{\phi}+Y_{s}C'_{V}s_{\phi}$	<6.8 ^c	1.43 ± 4.60	0.95 ± 10.05	0.4 ± 0.4	2.2
	$\eta' \rho^+$	$Y_{d}\frac{1}{\sqrt{2}}(T'_{P}+C'_{V}+A'_{V}+A'_{P})s_{\phi}+Y_{s}C'_{V}c_{\phi}$	<5.2 [°]	0.964 ± 0.168	0.958 ± 0.507	0.8 ± 0.1	0.8
	$K^{+}\bar{K}^{*0}$	$Y_{i}A'_{i} + Y_{i}T'_{i}$	3 84+0.14	4.00 ± 0.82	3.86 ± 0.78	4.1 ± 1.0	3.60
	$\bar{K}^0 K^{*+}$	$Y_d A'_P + Y_s T'_P$	34 ± 16	14.45 ± 2.45	10.03 ± 2.62	12.4 ± 2.4	11
D_s^+	$\pi^{+}K^{*0}$	$Y_d T_V' + Y_s A_V'$	2.13 ± 0.36	3.51 ± 0.72	3.76 ± 0.76	1.5 ± 0.7	2.35
	$\pi^0 K^{*+}$	$\frac{1}{\sqrt{2}}(Y_d C'_V - Y_s A'_V)$		1.47 ± 0.45	1.04 ± 0.48	0.1 ± 0.1	1.0
	$K^+ \rho^0$	$\frac{1}{\sqrt{2}}(Y_dC'_P - Y_sA'_P)$	2.5 ± 0.4	1.58 ± 0.38	2.07 ± 0.57	1.0 ± 0.6	2.5
	$K^0 \rho^+$	$Y_d T'_P + Y_s A'_P$		11.25 ± 1.90	11.45 ± 2.99	7.5 ± 2.1	9.6
	ηK^{*+}	$-\frac{1}{\sqrt{2}}(Y_dC'_V+Y_sA'_V)c_{\phi}+Y_s(T'_P+C'_V+A'_P)s_{\phi}$		0.59 ± 2.26	0.64 ± 6.09	1.0 ± 0.4	0.2
	$\eta' K^{*+}$	$\frac{1}{\sqrt{2}}(Y_dC'_V+Y_sA'_V)s_{\phi}+Y_s(T'_P+C'_V+A'_P)c_{\phi}$		0.42 ± 0.15	0.32 ± 0.14	0.6 ± 0.2	0.2
	$K^+\omega$	$\frac{1}{\sqrt{2}}(Y_dC'_P+Y_sA'_P)$	<2.4	1.05 ± 0.34	2.15 ± 0.56	1.8 ± 0.7	0.07
	$K^+\phi$	$\overline{Y_s}(T_V'+C_P'+A_V')$	0.164 ± 0.041	0.111 ± 0.060	0.112 ± 0.068	0.3 ± 0.3	0.166

- Measurements of SCS decay modes are useful in distinguishing different solutions:
 - Among solutions (A), (A1) is more preferred.
 - Among solutions (S), (S4) is more preferred.
- We tried a fit to only SCS modes. Not only did we obtain more solutions, we also could not get small χ² results.
 These data present inconsistency within the framework
- In contrast, all the solutions can explain DCS decay data sufficiently well.

Meson	Mode	Representation	\mathcal{B}_{exp}	$\mathcal{B}_{\text{theory}}(A1)$	$\mathcal{B}_{\text{theory}}(S4)$	$\mathcal{B}(pole)$	$\mathcal{B}(FAT[mix])$
D^0	$K^{*+}\pi^{-}$	$Y_{ds}(T_P'' + E_V'')$	$3.45^{+1.80}_{-1.02}$	3.77 ± 0.90	2.88 ± 0.70	2.7 ± 0.6	4.72
	$K^{*0}\pi^0$	$\frac{1}{\sqrt{2}}Y_{ds}(C_P''-E_V'')$		0.49 ± 0.23	0.47 ± 0.12	0.8 ± 0.3	0.9
	ϕK^0	$-Y_{ds}E_V''$		0.04 ± 0.03	0.01 ± 0.01	0.20 ± 0.06	0.2
	ρ^-K^+	$Y_{ds}(T_V'' + E_P'')$		1.34 ± 0.16	1.76 ± 0.23	0.9 ± 0.3	1.5
	$\rho^0 K^0$	$\frac{1}{\sqrt{2}}Y_{ds}(C''_V - E''_P)$		1.06 ± 0.38	1.30 ± 1.80	0.5 ± 0.2	0.3
	ωK^0	$-\frac{1}{\sqrt{2}}Y_{ds}(C_V''+E_P'')$		0.40 ± 0.37	0.61 ± 1.74	0.7 ± 0.2	0.6
	$K^{*0}\eta$	$Y_{ds}(\frac{1}{\sqrt{2}}(C_P'' + E_V'')c_{\phi} - E_P'')s_{\phi}$		0.53 ± 0.10	0.46 ± 0.08	0.08	0.2
	$K^{*0}\eta'$	$Y_{ds}(\frac{1}{\sqrt{2}}(C_P'' + E_V'')s_{\phi} + E_P''c_{\phi})$		0.001 ± 0.0004	0.002 ± 0.001	0.004 ± 0.001	0.005
D^+	$K^{*0}\pi^{+}$	$Y_{ds}(\tilde{C}_P'' + A_V'')$	3.9 ± 0.6	2.94 ± 0.85	2.66 ± 0.68	2.2 ± 0.9	3.33
	$K^{*+}\pi^0$	$\frac{1}{\sqrt{2}}Y_{ds}(T_P'' - A_V'')$		5.76 ± 0.85	3.98 ± 1.17	4.0 ± 0.9	3.9
	ϕK^+	$Y_{ds}A_V''$		0.02 ± 0.02	0.02 ± 0.01	0.2 ± 0.2	0.02
	$\rho^+ K^0$	$Y_{ds}(C_V''+A_P'')$		2.81 ± 0.76	2.39 ± 1.14	0.5 ± 0.4	3.3
	$ ho^0 K^+$	$\frac{1}{\sqrt{2}}Y_{ds}(T_V''-A_P'')$	2.1 ± 0.5	1.66 ± 0.24	2.09 ± 0.44	0.5 ± 0.4	2.4
	ωK^+	$\frac{1}{\sqrt{2}}Y_{ds}(T_V''+A_P'')$		0.95 ± 0.20	1.90 ± 0.42	1.8 ± 0.5	0.7
	$K^{*+}\eta$	$-Y_{ds}(\frac{1}{\sqrt{2}}(T_P''+A_V'')c_{\phi}-A_P''s_{\phi})$		1.89 ± 0.40	1.33 ± 0.33	1.4 ± 0.2	1.0
	$K^{*+}\eta'$	$Y_{ds}(\frac{1}{\sqrt{2}}(T_P'' + A_V'')s_{\phi} + A_P''c_{\phi})$		0.02 ± 0.01	0.02 ± 0.01	0.020 ± 0.007	0.01
D_s^+	$K^{*+}K^{0}$	$Y_{ds}(\tilde{T}_{P}''+C_{V}'')$		1.55 ± 1.49	1.29 ± 4.48	2.3 ± 0.6	1.1
_	$K^{*0}K^{+}$	$Y_{ds}(T_V''+C_P'')$	0.90 ± 0.51	0.17 ± 0.03	0.19 ± 0.03	0.2 ± 0.2	0.23

- For observed modes, our predictions are consistent with data within 1 σ , except for $D_s^+ \rightarrow K^{*0}K^+$ whose measured value is significantly larger than theory predictions, though its error bar is also large.
- The D⁺ \rightarrow K^{*0} π ⁺ and ρ ⁰K⁺ modes involve respectively A_V and A_P, without which their predicted BFs are smaller than the measured values.
 - location the necessity of A_{P,V}

SU(3) BREAKING

• If we assume for factorizable amplitudes (T and C) that the effective Wilson coefficients a_{1,2} are the same, their sizes will differ mode by mode due to differences in the final-state meson masses, decay constants, and form factors.

$$\frac{T'_{P,\bar{K}^{0}K^{*+}}}{T_{P,\bar{K}^{0}\rho^{+}}} = \frac{f_{K^{*}}}{f_{\rho}} \frac{F_{1}^{DK}(m_{K^{*+}}^{2})}{F_{1}^{DK}(m_{\rho^{+}}^{2})} \simeq 1.09$$
$$\frac{C'_{P,\pi^{+}\phi}}{C_{P,\bar{K}^{*0}\pi^{+}}} = \frac{f_{\phi}}{f_{K^{*}}} \frac{F_{1}^{D\pi}(m_{\phi}^{2})}{F_{1}^{D\pi}(m_{K^{*0}}^{2})} \simeq 1.07$$

 Although some of the modes have better agreement with data after the above-mentioned symmetry breaking is included, some others deviate from measurements even more regardless of which solution we take.

SUMMARY

- Using SU(3)_F symmetry as a working assumption along with latest data, we have updated a global χ^2 fit to CF decay BFs.
- Thanks to recent measurement of BR(D_s⁺ → π⁺ρ⁰), we have determined for the first time A_{P,V}.
 a determination of BR(D_s⁺ → π⁰ρ₊) useful in confirming the information and reducing uncertainties associated with A_{P,V}
- Though serious SU(3)_F violation is seen, we have used SCS data and our predictions to find favored solutions.
- We have tried by including SU(3)_F breaking in T and C to see if there is a better agreement with data. However, the conclusion is mixed, and the exact SU(3)_F approach is still sufficiently adequate to provide an overall explanation for the current data.

Thank You!