Interpretation of Positive Parity, J/Ψ- φ Resonances at LHCb Luciano Maiani, Roma University and INFN Roma LHCb Workshop, CERN, Oct. 13, 2016 Jiao Tong University, Shanghai, Nov. 4, 2016

CERN, Oct.13-Shanghai, Nov. 4, 2016 L. Maiani. Parity plus, J/Ψ - ϕ resonances

1. Old and new structures observed by LHCb arXiv:1606.07895

28 Recontres de Blois, June 2, 2016

36

- Four structures
- positive parity, J=0 and 1, positive charge conjugation
- X(4140) seen previously by CDF, D0, CMS and by BELLE

	Resu	lts	of	fit
^o also n	neasured all w	ith >4 c	r sianifi	cances

• J⁻ also measured all with >4 σ significances

Particle	J٩	Signif- Mass icance (MeV)		Г (MeV)	Fit Fraction (%)
X(4140)	1+	8.4 σ	$4146.5 \pm 4.5^{\rm +4.6}_{\rm -2.8}$	$83 \pm 21^{+21}_{-14}$	$13.0 \pm 3.2^{+4.8}_{-2.0}$
X(4274)	1+	6.0 σ	$4273.3 \pm 8.3^{+17.2}_{-3.6}$	$56 \pm 11^{+ 8}_{-11}$	$7.1 \pm 2.5^{+3.5}_{-2.4}$
X(4500)	0+	6.1 σ	$4506 \pm 11^{+12}_{-15}$	$92 \pm 21^{+21}_{-20}$	$6.6 \pm 2.4^{+3.5}_{-2.3}$
X(4700)	0+	5.6 σ	$4704 \pm 10^{+14}_{-24}$	$120 \pm 31^{+42}_{-33}$	$12 \pm 5^{+9}_{-5}$
NR	0+	6.4 σ			$46 \pm 11^{+11}_{-21}$
28 Recontr	es de	BIOIS, June	2, 2016		37

1. Old and new structures observed by LHCb arXiv:1606.07895

Results of tit										
• J ^P also measured all with >4 σ significances										
Particle	J٩	Signif- icance	Mass (MeV)	Г (MeV)	Fit Fractior (%)					
X(4140)	1+	8.4 σ	$4146.5 \pm 4.5^{\rm +4.6}_{\rm -2.8}$	$83 \pm 21^{+21}_{-14}$	$13.0 \pm 3.2^{+4.}_{-2.}$					
X(4274)	1+	6.0 σ	$4273.3 \pm 8.3^{+17.2}_{-3.6}$	$56 \pm 11^{+ 8}_{-11}$	$7.1 \pm 2.5^{+3}_{-2}$					
X(4500)	0+	6.1 σ	$4506 \pm 11^{+12}_{-15}$	$92 \pm 21^{+21}_{-20}$	$6.6 \pm 2.4^+_{-}$					
X(4700)	0+	5.6 σ	$4704 \pm 10^{+14}_{-24}$	$120 \pm 31^{+42}_{-33}$	$12 \pm 5^{+9}_{-5}$					
NR	0+	6.4 σ			$46 \pm 11^{+}_{-}$					

28 Recontres de Biois, June 2, 2016

- Four structures
- positive parity, J=0 and 1, positive charge conjugation
- X(4140) seen previously by CDF, D0, CMS and by BELLE

We suggest to fit the structures in two tetraquark multiplets, S-wave ground state and the first radial excitation, with composition $[cs][\bar{cs}]$. With the previously identified $[cq][\bar{cq}]$ (q = u, d) multiplet, the new resonances would make a step towards a full nonet of S-wave tetraquarks made by c c-bar with a pair of light (u, d,

s) quarks.

A surprise and a proposal.

CERN, Oct.13-Shanghai, Nov. 4, 2016

L. Maiani. Parity plus, J/Ψ - ϕ resonances

37

2. Forces between colored objects (Han-Nambu)

• Interaction proportional to:

D:
$$\frac{g^2}{q^2} \times 2\langle R | \mathbf{T} \cdot \mathbf{T} | R \rangle = \frac{g^2}{q^2} \left[C_2(R) - C_2(A) - C_2(B) \right]$$

- quark-antiquark
 - singlet: attractive (-8/3)
 - octet: repulsive (+1/3)
- quark-quark
 - three bar: attractive (-4/3)
 - six: repulsive (+2/3)
- quark-antiquark pairs bind in color singlet mesons;
- diquarks bind:

to another quark, to make a color singlet baryon to an antidiquark, to make a color singlet tetraquark.

R	$C_2(R)$
1	0
8	3
$3, \mathbf{\bar{3}}$	4/3
6	10/3

Constituent quark model

Old days: Sakharov&Zeldovich

In QCD: De Rujula, Georgi and Glashow, PRL 38 (1977) 317

Revisited & applied to tetraquarks: L.M., A. Polosa, V. Riquer, F, Piccinini, PRD 71 (2005) 014028

- color string forces produce an overall spin-independent potential that confines quarks inside a definite volume (bag), with some wave functions $\psi(x_1, x_2, x_3)$
- residual quark-quark or quark-antiquark interactions are color-magnetic, spinspin, forces of the form

$$H_{ij} = \frac{g^2}{m_1 m_2} (T_1 \cdot T_2) \mathbf{s}_i \cdot \mathbf{s}_j \,\delta^{(3)}(x_1 - x_2)$$

- T are the color charges, g the color coupling, the form is derived from the non relativistic limit of QCD
- if i,j are in a color representation R , the formula simplifies to (CF is a color factor similar to the one introduced for color interactions)

$$\mathbf{H}_{ij} = 2\kappa_{ij} \ \mathbf{s}_i \cdot \mathbf{s}_j$$
$$\kappa_{ij} = \mathrm{CF}(\mathbf{R}) \times \frac{g^2}{m_1 m_2} \ |\psi(0)|^2$$

CERN, Oct.13-Shanghai, Nov. 4, 2016

$$H = \sum_{i} m_i + \sum_{i < j} 2\kappa_{ij} \mathbf{s}_j \cdot \mathbf{s}_j \qquad \kappa_{ij} = \operatorname{CF}(\mathbf{R}) \times \frac{g^2}{m_1 m_2} |\psi(0)|^2$$

- the Hamiltonian can be developed to first order in the small mass differences, like m_s-m_{u,d},
- there is also a first order contribution from the spin-spin interaction, which is very crucial for baryons
- one usually assumes that the wave function overlap is the same in all mesons and all baryons, but this is dubious in the case of hadrons with a very heavy quark, c or b.
- Works well for mesons and baryons (too well?)
- Few parameters: m_u , m_d , m_s , m_c , m_s , κ_{ij}
- same values of masses, within ± 30 MeV, reproduce masses of different hadrons
- κ_{ij} scale approx. like $1/m_im_j$ and not far from scaling with color factors

+ similar multiplet of vector mesons

Data from PdG live

MESONS	q	S	С	b
mass(MeV)	308	484	1664	5005

BARYONS	q	S	С	b
mass(MeV)	362	540	1710	5044

MESONS	$q \overline{q}$	$q\overline{s}$	$s\overline{s}$	$c\bar{q}$	$c\overline{s}$	$b\bar{q}$	$b\overline{s}$
$(\kappa_{ij})_1 (MeV)$	318	200	103	69	72	23	24
$(\kappa_{ij})_1 \ m_i m_j / \Lambda_{QCD}^3$	1.9	1.9	1.5	2.3	3.7	0.7	1.2

BARYONS	qq	qs	SS	cq	CS	bq	bs
$(\kappa_{ij})_{\bar{3}} (\text{MeV})$	98	59	23	15	50	2.5	38
$\left[(\kappa_{ij})_{\bar{3}} \ m_i m_j / \Lambda^3_{QCD} \right]$	0.82	0.74	0.43	0.57	2.7	0.29	6.6

	$\frac{(q\bar{q})_1}{(qq)_{\bar{3}}}$	$\frac{(q\bar{s})_1}{(qs)_{\bar{3}}}$	$rac{(sar{s})_1}{(ss)_{ar{3}}}$	$\frac{(c\bar{q})_1}{(cq)_{\bar{3}}}$	$\frac{(c\bar{s})_1}{(cs)_{\bar{3}}}$	$\frac{(b\bar{q})_1}{(bq)_{\bar{3}}}$	$\frac{(b\bar{s})_1}{(bs)_{\bar{3}}}$
$rac{\kappa_{MES}}{\kappa_{BAR}}$	3.2	3.4	4.5	4.7	1.6	9.2	0.6

CERN, Oct.13-Shanghai, Nov. 4, 2016 L. Maiani. Parity plus, J/Ψ - ϕ resonances

Data from PdG live

CERN, Oct.13-Shanghai, Nov. 4, 2016 L. Maiani. Parity plus, J/Ψ-φ resonances

Data from PdG live

CERN, Oct.13-Shanghai, Nov. 4, 2016 L. Maiani. Parity plus, J/Ψ-φ resonances

3. Tetraquark constituent picture of unexpected quarkonia

L.Maiani, F.Piccinini, A.D.Polosa and V.Riquer, Phys. Rev. D 71 (2005) 014028

- S-wave: positive parity
- total spin of each diquark, S=1, 0 $[cq]_{S=0,1}[\bar{c}\bar{q}']_{\bar{S}=0,1}$
- neutral states may be mixtures of isotriplet and isosinglet
- mass splitting described by

$$\mathbf{H} = 2m_{(diquark)} + \sum_{i < j} 2\kappa_{ij} (\mathbf{s}_i \cdot \mathbf{s}_j)$$

 3_c

The S-wave, J^P=1 ⁺ charmonium tetraquarks

in the $|S, \bar{S}\rangle_J$ basis we have the following states

$$J^{P} = 0^{+} \quad C = + \quad X_{0} = |0,0\rangle_{0}, \ X'_{0} = |1,1\rangle_{0}$$

$$J^{P} = 1^{+} \quad C = + \quad X_{1} = \frac{1}{\sqrt{2}} \left(|1,0\rangle_{1} + |0,1\rangle_{1}\right)$$

$$J^{P} = 1^{+} \quad C = - \quad Z = \frac{1}{\sqrt{2}} \left(|1,0\rangle_{1} - |0,1\rangle_{1}\right), \ Z' = |1,1\rangle_{1}$$

$$J^{P} = 2^{+} \quad C = + \quad X_{2} = |1,1\rangle_{2}$$

CERN, Oct.13-Shanghai, Nov. 4, 2016

3. Tetraquark constituent picture of unexpected quarkonia

L.Maiani, F.Piccinini, A.D.Polosa and V.Riquer, Phys. Rev. D 71 (2005) 014028

- S-wave: positive parity
- total spin of each diquark, S=1, 0 $[cq]_{S=0,1}[\bar{c}\bar{q}']_{\bar{S}=0,1}$
- neutral states may be mixtures of isotriplet and isosinglet
- mass splitting described by

$$\mathbf{H} = 2m_{(diquark)} + \sum_{i < j} 2\kappa_{ij} (\mathbf{s}_i \cdot \mathbf{s}_j)$$

3,

The S-wave, J^P=1 ⁺ charmonium tetraquarks

in the $|S, \bar{S}\rangle_J$ basis we have the following states

$$J^{P} = 0^{+} \quad C = + \quad X_{0} = |0,0\rangle_{0}, \ X'_{0} = |1,1\rangle_{0}$$

$$J^{P} = 1^{+} \quad C = + \quad X_{1} = \frac{1}{\sqrt{2}} \left(|1,0\rangle_{1} + |0,1\rangle_{1}\right)$$

$$J^{P} = 1^{+} \quad C = - \quad Z = \frac{1}{\sqrt{2}} \left(|1,0\rangle_{1} - |0,1\rangle_{1}\right), \ Z' = |1,1\rangle_{1}$$

$$J^{P} = 2^{+} \quad C = + \quad X_{2} = |1,1\rangle_{2}$$

CERN, Oct.13-Shanghai, Nov. 4, 2016

3. Tetraquark constituent picture of unexpected quarkonia

L.Maiani, F.Piccinini, A.D.Polosa and V.Riquer, Phys. Rev. D 71 (2005) 014028

- S-wave: positive parity
- total spin of each diquark, S=1, 0 $[cq]_{S=0,1}[\bar{c}\bar{q}']_{\bar{S}=0,1}$

• neutral states may be mixtures of isotriplet and isosinglet

• mass splitting described by

$$\mathbf{H} = 2m_{(diquark)} + \sum_{i < j} 2\kappa_{ij} (\mathbf{s}_i \cdot \mathbf{s}_j)$$

3,

 $X(3872)=X_1$

Z(3900), Z(4020)=lin.

??

The S-wave, $J^{P}=1$ + charmonium tetraquarks

in the $|S, \bar{S}\rangle_J$ basis we have the following states

$$J^{P} = 0^{+} \quad C = + \quad X_{0} = |0,0\rangle_{0}, \ X'_{0} = |1,1\rangle_{0}$$

$$J^{P} = 1^{+} \quad C = + \quad X_{1} = \frac{1}{\sqrt{2}} \left(|1,0\rangle_{1} + |0,1\rangle_{1}\right)$$

$$J^{P} = 1^{+} \quad C = - \quad Z = \frac{1}{\sqrt{2}} \left(|1,0\rangle_{1} - |0,1\rangle_{1}\right), \ Z' = |1,1\rangle_{1}$$

$$J^{P} = 2^{+} \quad C = + \quad X_{2} = |1,1\rangle_{2}$$
combs. of Z&Z' that diagonalize H
X(3940)=X_{2}??

CERN, Oct.13-Shanghai, Nov. 4, 2016

Phenomenology confirms

- q-qbar interaction in tetra quarks is not directly deducible from the meson spectrum, since the q-qbar pair in tetra is in a superposition of color octet and singlet.
- using one-gluon dominance, we estimate $\kappa_{q\bar{q}, tetra} = \frac{1}{4} (\kappa_{q\bar{q}})_1$
- if we take $(\kappa_{q\bar{q}})_1$ from mesons, we obtain a value of $\kappa_{q\bar{q}}$, $tetra >> (\kappa_{cq})_{\bar{3}}$ from baryons and this leads to the wrong ordering of the Z(3900) and Z(4030) with respect to X(3872): $X(3872): C = +, S_{c\bar{c}} = S_{a\bar{a}} = 1$

$$Z: \mathcal{C} = -, S_{c\bar{c}} = 1, S_{q\bar{q}} = 0, \text{ or } S_{c\bar{c}} = 0, S_{q\bar{q}} = 1$$

• $Z(S_{q qbar}=1)=Z_{deg}$ is ~ degenerate with X: $Z_{deg}=Z(3900)$ • $Z(S_{q qbar}=0)=Z_{nondeg}$ has a lower mass, while $Z_{nondeg}=Z(4030)$ has higher mass CERN, Oct.13-Shanghai, Nov. 4, 2016 L. Maiani. Parity plus, J/ Ψ - ϕ resonances

- Spin-spin interactions are expected to be proportional to the overlap probability $|\psi(0)|^2$ of the two quarks/antiquarks involved.
- No symmetry principle says that overlap functions in tetraquarks have to be the same as in baryons or mesons
- spin-spin couplings in tetra quarks should be considered as free parameters to be determined from the mass spectrum

Phenomenology confirms

- q-qbar interaction in tetra quarks is not directly deducible from the meson spectrum, since the q-qbar pair in tetra is in a superposition of color octet and singlet.
- using one-gluon dominance, we estimate $\kappa_{q\bar{q}, tetra} = \frac{1}{4} (\kappa_{q\bar{q}})_1$
- if we take $(\kappa_{q\bar{q}})_1$ from mesons, we obtain a value of $\kappa_{q\bar{q}}$, $tetra >> (\kappa_{cq})_{\bar{3}}$ from baryons and this leads to the wrong ordering of the Z(3900) and Z(4030) with respect to X(3872): $X(3872): C = +, S_{c\bar{c}} = S_{q\bar{q}} = 1$

$$Z: \mathcal{C} = -, S_{c\bar{c}} = 1, S_{q\bar{q}} = 0, \text{ or } S_{c\bar{c}} = 0, S_{q\bar{q}} = 1$$

• $Z(S_{q qbar}=1)=Z_{deg}$ is ~ degenerate with X: $Z_{deg}=Z(3900)$ • $Z(S_{q qbar}=0)=Z_{nondeg}$ has a lower mass, while $Z_{nondeg}=Z(4030)$ has higher mass CERN, Oct.13-Shanghai, Nov. 4, 2016 L. Maiani. Parity plus, J/ Ψ - ϕ resonances

- Spin-spin interactions are expected to be proportional to the overlap probability $|\psi(0)|^2$ of the two quarks/antiquarks involved.
- No symmetry principle says that overlap functions in tetraquarks have to be the same as in baryons or mesons
- spin-spin couplings in tetra quarks should be considered as free parameters to be determined from the mass spectrum

Phenomenology confirms

- Spin-spin interactions are expected to be proportional to the overlap probability $|\psi(0)|^2$ of the two quarks/antiquarks involved.
- No symmetry principle says that overlap functions in tetraquarks have to be the same as in baryons or mesons
- spin-spin couplings in tetra quarks should be considered as free parameters to be determined from the mass spectrum

Phenomenology confirms

- q-qbar interaction in tetra quarks is not directly deducible from the meson spectrum, since the q-qbar pair in tetra is in a superposition of color octet and singlet.
- using one-gluon dominance, we estimate

$$\kappa_{q\bar{q},\ tetra} = \frac{1}{4} (\kappa_{q\bar{q}})_1$$

- Spin-spin interactions are expected to be proportional to the overlap probability $|\psi(0)|^2$ of the two quarks/antiquarks involved.
- No symmetry principle says that overlap functions in tetraquarks have to be the same as in baryons or mesons
- spin-spin couplings in tetra quarks should be considered as free parameters to be determined from the mass spectrum

Phenomenology confirms

- q-qbar interaction in tetra quarks is not directly deducible from the meson spectrum, since the q-qbar pair in tetra is in a superposition of color octet and singlet.
- using one-gluon dominance, we estimate $\kappa_{q\bar{q}, tetra} = \frac{1}{4} (\kappa_{q\bar{q}})_1$
- if we take $(\kappa_{q\bar{q}})_1$ from mesons, we obtain a value of $\kappa_{q\bar{q}}$, $tetra >> (\kappa_{cq})_{\bar{3}}$ from baryons and this leads to the wrong ordering of the Z(3900) and Z(4030) with respect to X(3872): $X(3872): C = +, S_{c\bar{c}} = S_{a\bar{a}} = 1$

Z:
$$C = -, S_{c\bar{c}} = 1, S_{q\bar{q}} = 0, \text{ or } S_{c\bar{c}} = 0, S_{q\bar{q}} = 1$$

- Spin-spin interactions are expected to be proportional to the overlap probability $|\psi(0)|^2$ of the two quarks/antiquarks involved.
- No symmetry principle says that overlap functions in tetraquarks have to be the same as in baryons or mesons
- spin-spin couplings in tetra quarks should be considered as free parameters to be determined from the mass spectrum

Phenomenology confirms

- q-qbar interaction in tetra quarks is not directly deducible from the meson spectrum, since the q-qbar pair in tetra is in a superposition of color octet and singlet.
- using one-gluon dominance, we estimate $\kappa_{q\bar{q}, tetra} = \frac{1}{4} (\kappa_{q\bar{q}})_1$
- if we take $(\kappa_{q\bar{q}})_1$ from mesons, we obtain a value of $\kappa_{q\bar{q}}$, $tetra >> (\kappa_{cq})_{\bar{3}}$ from baryons and this leads to the wrong ordering of the Z(3900) and Z(4030) with respect to X(3872): $X(3872): C = +, S_{c\bar{c}} = S_{q\bar{q}} = 1$

$$Z: \mathcal{C} = -, S_{c\bar{c}} = 1, S_{q\bar{q}} = 0, \text{ or } S_{c\bar{c}} = 0, S_{q\bar{q}} = 1$$

• $Z(S_{q qbar}=1)=Z_{deg}$ is ~ degenerate with X: $Z_{deg}=Z(3900)$ • $Z(S_{q qbar}=0)=Z_{nondeg}$ has a lower mass, while $Z_{nondeg}=Z(4030)$ has higher mass CERN, Oct.13-Shanghai, Nov. 4, 2016 L. Maiani. Parity plus, J/ Ψ - φ resonances

The new ansatz

- Mass ordering is explained by the hypohesis that the *dominant* spin-spin interactions in tetraquarks are those *inside the diquark or the antidiquark*.
- With this hypothesis, H is diagonal in the diquark spin basis (used before) and the Hamiltonian simply counts the number of diquarks with spin 1

The new ansatz

- Mass ordering is explained by the hypohesis that the *dominant* spin-spin interactions in tetraquarks are those *inside the diquark or the antidiquark*.
- With this hypothesis, H is diagonal in the diquark spin basis (used before) and the Hamiltonian simply counts the number of diquarks with spin 1

Assuming:

$$X(3872) = X_1 = \frac{1}{\sqrt{2}} (|1,0\rangle_1 + |0,1\rangle_1)$$

$$Z(3900) = Z = \frac{1}{\sqrt{2}} (|1,0\rangle_1 - |0,1\rangle_1), Z(4030) = Z' = |1,1\rangle_1$$

X(3872) and Z(3900) have one spin 1, while Z(4030) has two spins 1 and therefore it is heavier.

The new ansatz

- Mass ordering is explained by the hypohesis that the *dominant* spin-spin interactions in tetraquarks are those *inside the diquark or the antidiquark*.
- With this hypothesis, H is diagonal in the diquark spin basis (used before) and the Hamiltonian simply counts the number of diquarks with spin 1

Assuming:

$$X(3872) = X_1 = \frac{1}{\sqrt{2}} (|1,0\rangle_1 + |0,1\rangle_1)$$

$$Z(3900) = Z = \frac{1}{\sqrt{2}} (|1,0\rangle_1 - |0,1\rangle_1), Z(4030) = Z' = |1,1\rangle_1$$

X(3872) and Z(3900) have one spin 1, while Z(4030) has two spins 1 and therefore it is heavier.

• A simple explanation of the dominance of inter-diquark interaction could be that diquarks and antidiquarks are at such relative distance in the hadron, as to suppress the overlap probability, unlike what happens, e.g., in the usual baryons

Parameters

- The spectrum of 1S ground states is characterised by two quantities:
 - the diquark mass, m_[cq]
 - the spin-spin interaction inside the diquark or the antidiquark, κ_{cq} .
- The first radially excited, 2S, states are shifted up by a common quantity, the radial excitation energy, ΔE_r expected to be mildly dependent on the diquark mass: $E_r(cq) \sim -E_r(cs)$

Parameters

- The spectrum of 1S ground states is characterised by two quantities:
 - the diquark mass, m_[cq]
 - the spin-spin interaction inside the diquark or the antidiquark, κ_{cq} .
- The first radially excited, 2S, states are shifted up by a common quantity, the radial excitation energy, ΔE_r expected to be mildly dependent on the diquark mass: $E_r(cq) \sim -E_r(cs)$

CERN, Oct.13-Shanghai, Nov. 4, 2016

Parameters

- The spectrum of 1S ground states is characterised by two quantities:
 - the diquark mass, m_[cq]
 - the spin-spin interaction inside the diquark or the antidiquark, κ_{cq} .
- The first radially excited, 2S, states are shifted up by a common quantity, the radial excitation energy, ΔE_r expected to be mildly dependent on the diquark mass: $E_r(cq) \sim -E_r(cs)$

CERN, Oct.13-Shanghai, Nov. 4, 2016

Summary Table

radial	particle	J^{PC}	input	predicted	notes
1S	X_0	0++		4040	below the $J/\Psi \phi$ threshold
1S	X	1^{++}	4140		
1S	$X^{(1)}$	1+-		4140	decays in $\chi_c \phi$? $(M \ge 4435)$
1S	$X^{(2)}$	1+-		4240	decays in $\eta_c \phi$?
1S	X'_0	0++		4240	part of 4274 structure?
1S	X'_2	2^{++}		4240	part of 4274 structure?
2S	X_0	0++	4500		
2S	X	1^{++}		4600	
2S	$X^{(1)}$	1+-		4600	$S_{c\bar{c}} = 1$ decays in $\chi_c \phi$?
2S	$X^{(2)}$	1+-		4700	$S_{c\bar{c}} = 0$ decays in $\eta_c(2S)\phi$?
2S	X'_0	0++	4700		
2S	X'_2	2^{++}		4700	decays in $J/\Psi\phi, \psi'\phi$?

Table 1: Input and predicted masses for 1S and 2S cs tetraquarks.

CERN, Oct.13-Shanghai, Nov. 4, 2016

5. Variations on the theme

- J/ Ψ - ϕ spectrum obtained with meson&baryon spin-spin parameters does not fit with experiment
- N.V. Drenska, R. Faccini and A. D. Polosa, Phys. Rev. D 79 (2009) 077502
 QCD sum rules with tetra quark currents tried with some success and support X(4500) and X(4700) to be higher excitations, radial or D-wave Z. G. Wang, arXiv:1607.00701 [hep-ph];
- flavour SU(3) nonet including J/ Ψ - φ has been considered in:

R. Zhu, Phys Rev. **D** 94 (2016) 054009

• diquarks in color 6 have been considered by several authors

J. Wu *et al.*, arXiv:1608.07900 [hep-ph]

- if at all bound, tetraquarks made by color 6 diquarks would double the spectrum
- an option if X(4270) turns out to be a pure 1^{++} resonance?
- basic masses of diquark in color 3 and 6 must be different: X(4270)-X(4140) is not due only to spin-spin interactions and will be essentially incalculable.

what about the strange members of the nonet?

- We expect strangeness= ±1 tetra quarks: $X_{\bar{s}} = [cq][\bar{c}\bar{s}]; X_s = [cs][\bar{c}\bar{q}]$
- partners of X(4140) should decay in: $J/\Psi + K^*/\bar{K}^* \rightarrow \mu^+\mu^- + \pi + K_S$
- while partners of C=-1 states decay in: $J/\Psi + K/\bar{K} \rightarrow \mu^+\mu^- + K_S$ • Mass can be estimated at: $M(X_s) \sim \frac{4140 + 3872}{2} \sim 4006$ $[M(J/\Psi) + M(K^*) \sim 4000]$
- are they visible at LHCb/BELLE/BES III?

6.Conclusions

- J/ Ψ - ϕ resonances go well with simple, S-wave, tetraquarks...
-except for the puzzling 1^{++} duplication of X(4140) and X(4270)
- if duplication of 1⁺⁺ is confirmed, diquarks with color 6 could be an option, but....are there other similar duplications?
- could the X(3940) be 1⁺⁺ as well ??
- Experimental clarification is essential for progress