

Λ_c^+ decays at **BESII**

Pei-Rong Li (李培荣)

University of Chinese Academy of Sciences (UCAS), Beijing

HFCPV2016 -SJTU

Outline

- Introduction
 > The lightest c-ed baryon Λ⁺_c
- Λ_c^+ decays at BESIII
 - > Λ_c^+ hadronic decays
 - > Λ_c^+ semi-leptonic decay $\Lambda_c^+ \rightarrow \Lambda l^+ v_l$

Discovery of the lightest heavy baryon

- First hint of charmed baryon Ξ_c^+ in BNL in 1975 PRL34, 1125 (1975)
- First evidence of Λ_c^+ at Fermi Lab in 1976 PRL37, 882 (1976)
- Λ_c^+ established in MarkII in 1980 PRL44, 10 (1980)

4

€5**Ⅲ** The charmed baryon family

Singly charmed baryons

Established ground states:

$$\Lambda_c^+, \Sigma_c, \Xi_c^{(\prime)}, \Omega_c$$

- Excited states are being explored
- No observations of doubly or triply charmed baryons
- Λ_c⁺: decay only weakly, many recent experimental progress since 2014
- $\succ \Sigma_c : B(\Sigma_c \to \Lambda_c^+ \pi) \sim 100\%;$ $B(\Sigma_c \to \Lambda_c^+ \gamma)?$
- > Ξ_c : decay only weakly; no absolute BF measured, most relative to $\Xi^-\pi^+(\pi^+)$
- Ω_c: decay only weakly; no absolute
 BF measured

Λ_c^+ :cornerstone of charmed baryon spectroscopy

- The lightest charmed baryon:2286.48MeV
- Most of the charmed baryons will eventually decay to Λ⁺_c
- The Λ_c^+ is one of important tagging hadrons in c-quark counting in the productions at high energy energies
- Quark model picture: a heavy quark (c) with an unexcited spin-zero diquark (u-d)

Quark model pictures

- $\rightarrow \underline{\text{Charmed meson}} (\mathbf{D}^+[\mathbf{cd}]) \rightarrow \underline{\text{Strange baryons}} (\Lambda[\mathbf{uds}]) \rightarrow \underline{\text{Charmed baryon}} (\Lambda_c[\mathbf{udc}])$ $m_d \ll m_c \rightarrow \underline{\text{quark}} + \underline{\text{heavy quark}} \qquad m_u, m_d \approx m_s \rightarrow (\underline{qqq}) \text{ uniform} \qquad m_u, m_d \ll m_c \rightarrow \underline{\text{diquark}} + \underline{\text{quark}} \qquad (\underline{qq}) \qquad (\underline{Q})$
 - Λ_{c}^{+} may provide more powerful test on internal dynamics than D/Ds does !
- Diquark correlation is enhanced by weak Color Magnetic Interaction with a heavy quark.

BESIII data taking $(a) \Lambda_c^+ \Lambda_c^-$ threshold

- In 2014, BESIII took data above Λ_c pair threshold and run machine at 4.6GeV with excellent performance!
- This is a marvelous achievement of **BEPCII** !
- $106 \times 10^3 \Lambda_c^+ \Lambda_c^-$ pairs make sensitivity to 10^{-3}
- First direct measurement on Λ_c^+ BFs at threshold.

Energy(GeV)	lum.(pb ⁻¹)
4.575	~48
4.580	~8.5
4.590	~8.1
4.6	~ 567

Production near threshold and double tag technique

- $\Lambda_c^+ \Lambda_c^-$ produced in pairs with no additional accompany hadrons.
- Clean backgrounds.
- Well constrained kinematics.
- Measure the probability of detecting signals in the singly tagged Λ_c^+ events.
- Systematic uncertainty in tag side are most cancelled.

Λ_{c}^{+} reconstruction at BESIII

- Λ_c -tagging package
- ΔE and M_{BC}
- Well controlled background
- ~15400 ST yields

$$M_{BC} \equiv \sqrt{E_{\text{beam}}^2/c^4 - p_{\Lambda_c^+}^2/c^2}$$

$$\Delta E \equiv E_{\Lambda_c^+} - E_{\text{beam}},$$

衰变方式

 $K_S^0 \to \pi^+ \pi^-$

 $\pi^0 \to \gamma \gamma$

 $\Lambda \rightarrow p\pi^-$

 $\Sigma^0 \to \Lambda \gamma$

 $\Sigma^+ \to p \pi^0$

 $\omega \to \pi^+\pi^-\pi^0$

衰变道

$$pK_{S}^{0}$$

 $pK^{0}\pi^{+}\pi^{+}$
 $pK_{S}^{0}\pi^{0}$
 $pK_{S}^{0}\pi^{+}\pi^{-}$
 $pK^{-}\pi^{+}\pi^{0}$
 $\Lambda\pi^{+}\pi^{-}\pi^{+}$
 $\Sigma^{0}\pi^{+}$
 $\Sigma^{+}\pi^{0}$
 $\Sigma^{+}\pi^{+}\pi^{-}$
 $\Sigma^{+}\omega$

Results of 12 Λ_c^+ hadronic decay BFs

567nh-1 @ 4 6 CeV

		C () P	
Mode	This work (%)	PDG (%)	BELLE B
pK ⁰	$1.52 \pm 0.08 \pm 0.03$	1.15 ± 0.30	
$pK^{-}\pi^{+}$	$5.84 \pm 0.27 \pm 0.23$	5.0 ± 1.3	$6.84 \pm 0.24^{+0.21}_{-0.27}$
$pK_S^{o}\pi^{o}$	$1.87 \pm 0.13 \pm 0.05$	1.65 ± 0.50	
$pK_S^0\pi^+\pi^-$	$1.53 \pm 0.11 \pm 0.09$	1.30 ± 0.35	
$pK^{-}\pi^{+}\pi^{0}$	$4.53 \pm 0.23 \pm 0.30$	3.4 ± 1.0	
$\Lambda \pi^+$	$1.24 \pm 0.07 \pm 0.03$	1.07 ± 0.28	
$\Lambda \pi^+ \pi^0$	$7.01 \pm 0.37 \pm 0.19$	3.6 ± 1.3	
$\Lambda \pi^+ \pi^- \pi^+$	$3.81 \pm 0.24 \pm 0.18$	2.6 ± 0.7	
$\Sigma^0 \pi^+$	$1.27 \pm 0.08 \pm 0.03$	1.05 ± 0.28	
$\Sigma^+ \pi^0$	$1.18 \pm 0.10 \pm 0.03$	1.00 ± 0.34	
$\Sigma^{+}\pi^{+}\pi^{-}$	$4.25 \pm 0.24 \pm 0.20$	3.6 ± 1.0	
$\Sigma^+\omega$	$1.56 \pm 0.20 \pm 0.07$	2.7 ± 1.0	

PRI 116 052001 (2016)

粲强子	强子衰变道	精度 $(\delta \mathcal{B}/\mathcal{B})$
D^0	$\mathcal{B}(K^-\pi^+) = (3.88 \pm 0.05)\%$	1.3%
D^+	$\mathcal{B}(K^{-}\pi^{+}\pi^{+}) = (9.13 \pm 0.19)\%$	2.1%
D_s^+	$\mathcal{B}(K^+K^-\pi^+) = (5.39 \pm 0.21)\%$	3.9%
	$\mathcal{B}(pK^{-}\pi^{+}) = (5.0 \pm 1.3)\% \text{ [PDG2014]}$	26%
Λ_c^+	$\mathcal{B}(pK^{-}\pi^{+}) = (6.84 \pm 0.36)\%$ [BELLE]	5.3%
	$\mathcal{B}(pK^{-}\pi^{+}) = (5.84 \pm 0.35)\%$ [BESIII]	6.0%

- **First direct measurement on** Λ⁺_c **BFs at threshold**
- A least square global fit are performed to improve the precision.
- Model independently
- The precision of B(pKπ) are comparable with Belle's
- Improved precisions of the other 11 modes significantly
- The precisions of Ac decay rates is reaching to the level of charmed mesons!

"BESIII make first direct measurement of the Λ_c^+ at threshold"

- The number of Ac baryons is determined by reconstructing the recoiling $D^{(*)-}\bar{p}\pi^+$
- system in events of the type $e^+e^- \rightarrow D^{(*)-}\bar{p}\pi^+\Lambda_c^+$

PDG2014

Total BF overflows after taking into account BEELE's $B(\Lambda_c^+ \rightarrow pK^-\pi^+)$?

HFAG Fit to world BF data

- A fitter to constrain the 12 hadronic BFs and 1 SL BF, based on all the existing experimental data
- · Correlated systematics are fully taken into account

The least overall χ^2 /ndf=30.0/23=1.3

Precise $B(pK^{-}\pi^{+})$ is useful for constrain V_{ub} determined via baryonic mode

CKM matrix element V_{ub}

- ▶ In measurement of $\Lambda_b^0 \to p\mu^-\overline{\nu}$, $\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)$ used published by Belle, with 6.84 $\pm 0.24 \frac{+0.21}{-0.27}\%$
- Another measurement was published later using BESIII data
- HFAG performed global fit to all branching fractions of the Cabibbo-favoured Λ⁺_c decays yielding 6.46 ± 0.24%

A conflict:
$$B(\Lambda_c^+ \rightarrow p\overline{K^0})$$
 v.s. $B(\Lambda_c^+ \rightarrow \Lambda \pi^+)$

- In naïve quark-diquark model, C- and W-diagram are suppressed, hence $B(\Lambda_c^+ \to p\overline{K^0}) \ll B(\Lambda_c^+ \to \Lambda \pi^+)$
- But BESIII measures: $B(\Lambda_c^+ \rightarrow p\overline{K^0}) = (3.04 \pm 0.18)\%$; $B(\Lambda_c^+ \rightarrow \Lambda \pi^+) = (1.24 \pm 0.08)\%$
- The non-factorizable C- and W-diagram are not trivial
- Experimental studies on the non-factorizable C- and W-diagrams is critical in understanding the Λ_c^+ internal dynamics

Singly Cabibbo-Suppressed Decays of $\Lambda_c^+ \rightarrow p \pi^+ \pi^-$ and $\Lambda_c^+ \rightarrow p K^+ K^-$

• Sensitive to nonfactorizable contributions from W-exchange diagrams

arXiv:1608.00407 submitted to PRL

• **ST method:** $\Lambda_c^+ \rightarrow pK^-\pi^+$ as ref. mode

Decay modes	$\mathcal{B}_{\mathrm{mode}}/\mathcal{B}_{\mathrm{ref.}}$ (this work)	$\mathcal{B}_{ m mode}/\mathcal{B}_{ m ref.}$ ([28])	
$\Lambda_c^+ \to p \pi^+ \pi^-$	$(6.70 \pm 0.48 \pm 0.25) \times 10^{-2}$	_	
$\Lambda_c^+ o p\phi$	$(1.81 \pm 0.33 \pm 0.13) \times 10^{-2}$	$0.015 \pm 0.002 \pm 0.002$	
$\Lambda_c^+ \to p K^+ K^- \pmod{\phi}$	$(9.36 \pm 2.22 \pm 0.71) \times 10^{-3}$	$0.007 \pm 0.002 \pm 0.002$	
_	$\mathcal{B}_{ ext{mode}}$	$\mathcal{B}(PDG)$	
$\Lambda_c^+ \to p \pi^+ \pi^-$	$(3.91 \pm 0.28 \pm 0.15 \pm 0.24) \times 10^{-3}$	$(3.5 \pm 2.0) \times 10^{-3}$	first observation
$\Lambda_c^+ \to p\phi$	$(1.06 \pm 0.19 \pm 0.08 \pm 0.06) \times 10^{-3}$	$(8.2 \pm 2.7) \times 10^{-4}$	
$\Lambda_c^+ \to p K^+ K^- \text{ (non-}\phi\text{)}$	$(5.47 \pm 1.30 \pm 0.41 \pm 0.33) \times 10^{-4}$	$(3.5 \pm 1.7) \times 10^{-4}$	Improved precision

 $\Lambda_{c}^{+} \rightarrow p\phi$: test large-N_c expansion

• Charmed meson decays

 $a_1 = c_1(\mu) + c_2(\mu) (1/N_c + \chi_1(\mu)),$ $a_2 = c_2(\mu) + c_1(\mu) (1/N_c + \chi_2(\mu)),$

If $\chi_1 = \chi_2 = 0$, naïve factorization

If $\chi_1 = \chi_2 = -1/N_c$, large-N_c factorization

- $\Lambda_c^+ \rightarrow p\phi$ proceeds only through internal W-emission diagram with BF = $(1.12\pm0.23)\times10^{-3}$
- \Rightarrow $|a_2|=0.70\pm0.07$, close to $c_2(m_c)\approx -0.59$
- 1/N_c is also applicable to charmed baryon sector.
- BESIII measurement are consistent with previous measurement.

Singly Cabibbo-Suppressed Decay $\Gamma(\Lambda_c^+ \rightarrow p\eta) > \Gamma(\Lambda_c^+ \rightarrow p\pi^0)$

From Prof. Hai-Yang Cheng's report.

- More precise comparison of the two BFs are desired to explore the interference of different non-factorizable diagrams
- **BESIII Preliminary result support the theoretic prediction.**

Singly Cabibbo-Suppressed Decay of $\Lambda_c^+ \rightarrow p\pi^0, p\eta$

 Their relative size essential to understand the interference of different non-factorizable diagrams

- **BESIII preliminary results:** $B(\Lambda_c^+ \rightarrow p\eta) = (1.24 \pm 0.28 \pm 0.10) \times 10^{-3};$ $B(\Lambda_c^+ \rightarrow p\pi^0) < 2.7 \times 10^{-4};$ $B(\Lambda_c^+ \rightarrow p\pi^0)/B(\Lambda_c^+ \rightarrow p\eta) < 0.24$
- First evidence for $\Lambda_c^+ \rightarrow p\eta$ with 4.2 σ

Measurements of channels involving a neutron

Absolute BFs for semi-leptonic (SL) $\Lambda_c^+ \rightarrow \Lambda l^+ \nu$

- No absolute measurements yet
 - ✓ B($\Lambda_c^+ \rightarrow \Lambda e^+ \nu$): poor precision in PDG2014 (2.1±0.6)%
 - ✓ $B(\Lambda_c^+ \rightarrow \Lambda \mu^+ \nu)$: no measurement
- BESIII uses the DT method and missing-mass technique at threshold: 11 ST modes are used, except $\Sigma^+ \omega$
- An optimized missing mass: $U_{\text{miss}} = E_{\text{miss}} c |\vec{p}_{\text{miss}}|$ which takes into account beam energy constrain.

 $\Gamma[\Lambda_{c}^{+} \rightarrow \Lambda \mu^{+} \nu_{\mu}] / \Gamma[\Lambda_{c}^{+} \rightarrow \Lambda e^{+} \nu_{e}] = 0.96 \pm 0.16 \pm 0.04 \text{ (preliminary)}$

Absolute BFs for semi-leptonic (SL) $\Lambda_c^+ \rightarrow \Lambda l^+ \nu$

• No absolute measurements yet

B($\Lambda_c^+ \rightarrow \Lambda e^+ v$): poor precision in PDG2014 (2.1 \pm 0.6)%

粲强子	半轻衰变道	精度(δB	(B)
D^0	$\mathcal{B}(K^-e^+\nu_e) = (3.55 \pm$	$\pm 0.05)\%$ 1.4%)
D^+	$\mathcal{B}(K^0 e^+ \nu_e) = (8.83 \pm$	$\pm 0.22)\%$ 2.5%)
D_s^+	$\mathcal{B}(\phi e^+ \nu_e) = (2.49 \pm$	0.14)% $5.6%$)
	$\mathcal{B}(\Lambda e^+ \nu_e) = (2.1 \pm 0.6)\%$	[PDG2014] 29%	
Λ_c	$\mathcal{B}(\Lambda e^+\nu_e) = (3.63 \pm 0.43)$)% [BESIII] 12%	
Ev			
-0.2	-0.1 0 0.1 0.2 U _{miss} (GeV)	-0.2 -0.1 0 0.1 0.3 $U_{ m miss}~({ m GeV})$	2

 $\Gamma[\Lambda_{c}^{+} \rightarrow \Lambda \mu^{+} \nu_{\mu}] / \Gamma[\Lambda_{c}^{+} \rightarrow \Lambda e^{+} \nu_{e}] = 0.96 \pm 0.16 \pm 0.04 \text{ (preliminary)}$

$\Lambda_c^+ \rightarrow \Lambda_e^+ \nu_e$ dominate the semi-leptonic decays

- Threshold data at BESIII opens a new door to direct measurements of the decays → precise study of ∧c decays
- A larger data set could help to improve our knowledge on Λ_c^+ decays.
- Many Λ⁺_c related topics in BESIII are in progress.
 Measurement of Λ⁺_c -->Λ + anything (See Xiao Dong's talk)
- BESIII and B factories will be complementary in Ac decays and provide the precise measurements in the future several years.

Backup Slides

Measurements of Cabibbo-suppressed decay $\Lambda_c^+ \rightarrow pK^+K^-$ and $p\pi^+\pi^-$

28

Λ_c^+ weak decays: W-exchange

- Experimental measurement of $B(\Lambda_c^+ \rightarrow p\overline{K^0})$ are not consistent with theoretically factorization approach at tree level.
- Contrary to charmed meson, W-exchange contribution is important (NO CS and HS)
- W-exchange are non-factorizable. There contribution can be only determined by experiment measurement.
- Search for process happened only through W-exchange process to extract their contribution are key to factorization approach

 $\Lambda_c^+ \to \Xi^0 K^+, \Xi^{*0} K^+, \Delta^{++} K^-, \Sigma^+ K^+ K^{-+}$