

Prospects of Charm physics at BESIII and Beyond

Xiao-Rui Lyu (吕晓睿) 中国科学院大学

(On behalf of the BESIII collaboration)

Outline

- Introduction
- Status of BESIII
- Upgrade plan
- Physics prospects
- Summary

EXAMPLE SERVICE FOR A COLLINE OF A SERVICE AND A SERVICE

BESIII

detector

2004: started BEPCII upgrade, BESIII construction 2008: test run 2009 - now: BESIII physics run

LINAC

1989-2004 (BEPC):

 L_{peak} =1.0x10³¹ /cm²s

- 2009-now (BEPCII):
 - L_{peak}= 1.0 x10³³/cm²(4/5/2016)

ЭШ Physics at tau-charm Energy Region

- Hadron form factors
- Y(2175) resonance
- Mutltiquark states with s quark, Zs
- MLLA/LPHD and QCD sum rule predictions

- Light hadron spectroscopy
- Gluonic and exotic states
- Process of LFV and CPV
- Rare and forbidden decays
- Physics with τ lepton

- XYZ particles
- D mesons
- f_D and f_{Ds}
- D₀-D₀ mixing
- Charm baryons

Features of the BEPC Energy Region

- Rich of resonances: charmonia(-like) and charmed hadrons
- Threshold characteristics (pairs of τ , D, D_s, Λ_c ...)
- Transition between smooth and resonances, perturbative and non-perturbative QCD
- Energy location of the new hadrons: glueballs, hybrids, multi-quark states

New forms of hadrons

Conventional hadrons consist of 2 or 3 quarks:

- QCD predicts the new forms of hadrons:
 - Multi-quark states : Number of quarks >= 4

None of the new forms of hadrons is settled !

Hadron Landscape

At BESIII, two golden measures to study hadron spectroscopy, esp., to search for exotics

- Light hadrons: charmonium radiative decays (act as spin filter)
- Heavy hadrons: direct production, radiative and hadronic transitions

Charmonium Spectrum

HFCPV 2016, SJTU

Overpopulated observed new charmonium-like states, i.e. "XYZ".

FESI Precision measurement of CKM elements -- Test EW theory

CKM matrix elements are fundamental SM parameters that describe the mixing of quark fields due to weak interaction.

- Precision measurement of CKM matrix elements
- A precise test of SM model
- New physics beyond SM?

δ and γ/ϕ_3 input

- *D* hadronic parameters for a final state $f: \frac{A(\overline{D}^0 \to f)}{A(D^0 \to f)} \equiv -r_D e^{-i\delta_D}$
- Charm mixing parameters: $x = \frac{\Delta M}{\Gamma}$, $y = \frac{\Delta \Gamma}{2\Gamma}$ - Time-dependent WS $D^0 \rightarrow K^+ \pi^- \text{rate} \Rightarrow$ $y' = y \cos \delta_{K\pi} - x \sin \delta_{K\pi}$ (LHCb)
 - $-\delta_{K\pi}$: QC measurements from Charm factory
- γ/ϕ_3 measurements from $B \rightarrow D^0 K$

$$-b \rightarrow u : \gamma/\phi_3 = argV^*_{ub}$$

- most sensitive method to constrain γ/ϕ_3 at present
- GLW, ADS method
 - r_D , δ_D : QC measurements from Charm factory
- GGSZ method
 - c_i , s_i : QC measurements from Charm factory

Time-integrated decay rates

- No time dependent information at Charm threshold
- Anti-symmetric wavefuction: $\Gamma^{2}_{ij} = |\langle i | D^{0} \rangle \langle j | \overline{D}^{0} \rangle - \langle j | D^{0} \rangle \langle i | \overline{D}^{0} \rangle|^{2}$
- Double tag rates: $A_i^2 A_j^2 [1 + r_i^2 r_i^2 - 2r_i r_j \cos(\delta_i + \delta_j)]$
 - CP tag: r=1, $\delta=0$ or π ; l^{\pm} tag: r=0
- Single and Double tag rates

★
$$z_f \equiv 2 \cos \delta_f$$
, $r_f \equiv \frac{A_{DCS}}{A_{CF}}$, $R_M \approx \frac{x^2 + y^2}{2}$

C-odd f \bar{f} l^+ l CP+ CP-

 \bar{f} $1 + r_f^2(2 - z_f^2) + r_f^4$ $R_M [1 + r_f^2(2 - z_f^2) + r_f^4]$ $[1 + r_f^2(2 - z_f^2) + r_f^4]$
 $l^ l$ R_M $[1 + r_f^2(2 - z_f^2) + r_f^4]$ R_M $[1 + r_f^2(2 - z_f^2) + r_f^4]$ $[1 + R_M]$

CP- $1 + r_f(r_f - z_f)$ $1 + r_f(r_f - z_f)$ l l l 4 0

 $\psi(3770) \rightarrow [D^0 \bar{D}^0 - \bar{D}^0 D^0] / \sqrt{2}$ $= -[D_{CP+}D_{CP-} - D_{CP-}D_{CP+}]/\sqrt{2}$ $D_{CP+} = [D^0 \pm \bar{D}^0]/\sqrt{2}$

BESIII data samples

+ Initial State Radiation (ISR)

BESIII Collaboration

Suzhou Univ., Hangzhou Normal Univ.

Jinan Univ.

Lanzhou Univ., Henan Sci. and Tech. Univ.

BESIII Detector

5600

4100

Superconductor MG

3500

8820

HDC:

rr∎C

770

TOF BTOF: two layers ETOF: 48 crys. for each

BESIII Detector Performance

R

Exps.	MDC Spatial resolution	MDC dE/dx resolution	EMC Energy resolution	Exps.	TOF Time resolution	
CLEO-c	110 µm	5%	2.2-2.4 %			
BaBar	125 μm	7%	2.67 %	CDFII	100 ps	
Belle	130 µm	5.6%	2.2 %	Belle	90 ps	
BESIII	115 µm	<5% (Bhabha)	2.4%	BESIII	68 ps (BTOF) 60 ps (ETOF)	

MUC: Efficiency ~ 96% backgroun level: < 0.04 Hz/cm²(B-MUC), < 0.1 Hz/cm²(E-MUC)

Data/MC consistency

• For tracking efficiency data/MC difference < 1%

• For photon detection efficiency data/MC difference < 1%

Charm facilities

- Hadron colliders (huge cross-section, energy boost)
 - Tevetron (CDF, D0)
 - LHC (LHCb, CMS, ATLAS)
- e⁺e⁻ Colliders (more kinematic constrains, clean environment, ~100% trigger efficiency)
 - B-factories (Belle, BaBar)
 - Threshold production (CLEOc, BESIII)
 - Can not compete in statistics with Hadron colliders & B-factories !!!
 - Quantum Correlations (QC) and CP-tagging are unique
 - Only D meson pairs, no extra CM Energy for pions
 - Systematic uncertainties cancellations while applying double tag technique

Physics at Charm threshold

- Decay constants & form factors for Charm meson
- Quantum correlations at $\psi(3770)$
 - CPV measurements
 - Strong phase measurements
- Rare decays
- Charm baryons
- D^0 - \underline{D}^0 mixing & CPV @ $\psi(4040)$

Many new BESIII results have been released! See Hailong, Peirong, and Yu's talks.

Double Tag (DT) techniques

- 100% of beam energy converted to *D* pair (Clean environment, kinematic constrains v Recon.)
- *D* generated in pair \Rightarrow absolute Branching fractions
- At $\psi(3770)$ charm production is $D^0 \overline{D}^0$ and $D^+ D^-$
- Fully reconstruct about 15% of $D_{(S)}$ decays

Double tag techniques: Hadronic tag on one side, on the other side for leptonic/semileptonic studies. Neutrino is reconstructed from missing energy and momentum (Double tag efficiency is high.)

$D_{(S)}$ Leptonic decays

Purely Leptonic:

- Extract decay constant $f_{D(s)}$ incorporates the strong interaction effects (wave function at the origin)
- Multiple tests with charm: f_D , f_{Ds} and f_D/f_{Ds}
- To validate Lattice QCD calculation of $f_{B(s)}$ and provide constrain of CKM-unitarity
- Sensitive to New Physics (Charged Higgs contribution, ...)

Semi-leptonic: form facotr (FF)

- $D_{(s)} \rightarrow P l \nu$ (Theoretically clean)
- Measure |V_{cx}| x FF
- Charm physics:
 - CKM-unitarity $\Rightarrow |V_{cx}|$, extract FF, test LQCD
 - Input LQCD FF to test CKM-unitarity

The Zc Family at BESIII

Which is the nature of these states? Different decay channels of the same observed states? Other decay modes?

 $Y(4260) \rightarrow \pi^+\pi^- J/\psi$ is observed by Babar (2005) and confirmed by Belle, known for its anomaly large decay width to $\pi^+\pi^- J/\psi$

- Revisit the Y(4260)
 -- with improved cross section measurements
- Not a single/simple BW?
- Is there any connection to $\overline{D}_s * D_s *$ threshold (4224 MeV) ?

Multiquark Hybrid Hadrocharmonium Molecule Threshold effects Cusps

. . .

States or/and interactions???

What is the role of threshold

--Many new observations near thresholds: D*D,D*D*, D₁D, ...

See reviews by Swanson (Hadron2015), Eichten (QWG2016), Zhao(MENU2016) and ref. within * Phase variations appear in many process: not unique for resonance

To have a complete picture, more findings are desired

The X(18??) near the $p\overline{p}$ mass threshold

Are they the same state? It is crucial to understand their connections.

BESII Connection of $X(p\overline{p})$ and X(1835)

- Three efficiencycorrected Breit-Wigner functions
- Simple BW function fails in describing the $\eta'\pi^-\pi^+$ line shape near the threshold

Phys. Rev. Lett. 117, 042002 (2016)

MODEL 1

Threshold structure caused by the opening of additional decay mode

- Flatté formula for the shape (Phys.Lett.B63, 224)
- An additional BW resonance (X(1920)) is needed (5.7σ)

MODEL 2

Interference between two

resonances

- Use coherent sum of two BW amplitudes for the line shape: X(1835) and a narrow resonance called X(1870)
- X(1920) not significant

• Both fits support the existence of one of

- Broad state with strong coupling to pp
- Narrow state just below the pp mass threshold

- MDC: Malter effect found in inner chamber in 2012, add water vapor to the chamber to cure the aging problem.
- New inner chamber, built by IHEP, is ready now.
- CGEM as the inner chamber ongoing : Italy group in collaboration with other groups.
- New ETOF (built by USTC & IHEP) was installed last year to improve the time resolution.

Other possible upgrade plan is under discussion

New Inner Drift Chamber

- An aluminum outer cylinder was manufactured for the chamber cosmic-ray test
- The outer cylinder was assembled after wiring had been finished

After half year's cosmic ray test, the efficiency > 99%

The chamber is stored in a clean room and is ready to be replaced.

Cylindrical GEM Inner Tracker in a nutshell

BESIII is building a cylindrical GEM detector (CGEM-IT) to replace the **BESIII** Inner MDC to recover some efficiency loss due to aging and to improve the secondary vertex resolution.

Expected performance of CGEM

Track fitting with Kalman Filter

- Scintillator Endcap TOF: time resolution for π is 138ps.
- New MRPC Endcap-TOF built
- The installation of MRPC ETOF completed in the Oct. of 2015

MRPC Endcap TOF

Time resolution of 60ps achieved; Efficiency ~97%

Data/MC discrepancy

$\epsilon_{data}/\epsilon_{MC}$ -1	2010	2016	2019?
Tracking eff./track	~2%	~1%	~0.5%
PID/track	~2%	~1%	~0.5%
Photon eff./photon	~1%	0.5-1%	~0.5%

Control of systematic errors.

FSI Prospects of hadron spectroscopy at BESIII

- BESIII collected world's largest samples of J/ψ, ψ(2S), ψ(3770), Y(4260), ... from e⁺e⁻ production.
- It will continue to run a few years.

	BESIII	Goal		
J/ψ	1.3*10 ⁹ 21x BESII	10*10 ⁹		
ψ '	0.6*10 ⁹ 24x CLEO-c	3*10 ⁹		
$\psi(3770)$	2.9 fb ⁻¹ 21x CLEO-c	20 fb ⁻¹		
Above open charm threshold	$\begin{array}{ll} 0.5 \ \text{fb}^{-1} @ \psi(4040), 1.9 \ \text{fb}^{-1} @ \sim 4260, & >15 \ \text{fb}^{-1} @ 4360, 1.0 \ \text{fb}^{-1} @ 4420, 0.5 \ \text{fb}^{-1} \\ @ 4600, & & \\ \textbf{scan data @ 4.19 \sim 4.30 GeV in 2017.} & \\ \end{array}$			
R scan and tau	3.8-4.6 GeV at 105 energy points 2.0-3.1 GeV at 20 energy points			
Y(2175)	100 pb ⁻¹ (2015)			
ψ (4170)	3 fb ⁻¹ (2016)			
• • • •				

Opportunities for both heavy and light hadron spectroscopy

Glueballs

- Low lying glueballs have ordinary quantum number 0⁺⁺(1.5~1.7 GeV), 2⁺⁺(2.3~2.4 GeV), 0⁻⁺(2.3~2.6 GeV) mixing with qqbar mesons
- The mix of glueball with ordinary qq meson makes the situation more difficult.
- The spectrum is from unquenched LQCD calculations

Glueball candidates: f₀(1500), f₀(1700), f_J(2220), ...

• J/ ψ radiative decays are believed to be an ideal

- > $J/\psi \rightarrow \gamma \omega \phi$ Phys.Rev. D 87,032008(2013)
- → J/ ψ →γφφ Phys. Rev. D 93, 112011 (2016)
- → J/ ψ →γ**ηη** Phys. Rev. D 87, 092009 (2013)
- ► $J/\psi \rightarrow \gamma \pi^0 \pi^0$ Phys. Rev. D 92, 052003 (2015) HFCPV 2016, SJTU

	0+	2+	0-
$J/\psi{\rightarrow}\gamma PP$			
$J/\psi{\rightarrow}\gamma VV$			
J/ψ→γ P PP			

Two resonances? What are they?

Prospects of charmed hadron decays

Data at 3.773, 4.18 GeV and 4.63GeV

	Systematic	Statistical	
		~3 fb ⁻¹	+10 fb ⁻¹
∆f _{D+} /f _{D+}	~0.9% ^{BESIII}	2.6%	1.3%
$\Delta f_{Ds+}/f_{Ds+}(\mu+\tau)$	~1.4% ^{CLEO-c}	~1.5%	~0.7%
Δf _{D→K} /f _{D→K}	~0.5% ^{BESIII}	0.4%	0.2%
$\Delta \mathbf{f}_{D \to \pi} / \mathbf{f}_{D \to \pi}$	~0.7% ^{BESIII}	1.3%	0.6%
$ V_{cs} ^{Ds+\rightarrow I+v}(\mu+\tau)$	~1.4% ^{CLEO-c}	~1.4%	~0.7%
V _{cs} ^{D0→K-e+v}	2.5% ^{BESIII} (2.4% ^{LQCD})	0.4%	0.2%
 V_{cd} ^{D+→μ+v}	2.1% ^{BESIII} (1.9→0.5% ^{LQCD})	2.6%	1.3%
V _{cd} ^{D0→π-e+v}	4.5% ^{BESIII} (4.4% ^{LQCD})	1.3%	0.6%
(c_i, s_i) in $D^0 \rightarrow K^0 \pi^+ \pi^-$	Uncertinaty for γ/ϕ_3	1%	0.5%
∧ +→nK-σ+		4.8%	~2%
		(0.6fb ⁻¹ @4.6)	(3fb ⁻¹ @4.6X)

Strong phases in *D* hadronic decays

Decay mode	Quantity of interest	Comments
$D ightarrow K_{ m S}^0 \pi^+ \pi^-$	c_i and s_i	Binning schemes as those used in the CLEO-c analysis. With future, very large $\psi(3770)$ data sets, it might be worthwhile to explore alternative binning.
$D ightarrow K_{ m S}^0 K^+ K^-$	c_i and s_i	Binning schemes as those used in the CLEO-c analysis. With future, very large $\psi(3770)$ data sets, it might be worthwhile to explore alternative binning.
$D \to K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	R, δ	In bins guided by amplitude models, currently under development by LHCb.
$D \rightarrow K^+ K^- \pi^+ \pi^-$	c_i and s_i	Binning scheme can be guided by the CLEO model [18] or potentially an improved model from LHCb in the future.
$D \rightarrow \pi^+ \pi^- \pi^+ \pi^-$	F_+ or c_i and s_i	Unbinned measurement of F_+ . Measurements of F_+ in bins or c_i and s_i in bins could be explored.
$D \! ightarrow K^{\pm} \pi^{\mp} \pi^{0}$	R, δ	Simple 2-3 bin scheme could be considered.
$D \rightarrow K^0_{ m s} K^{\pm} \pi^{\mp}$	R, δ	Simple 2 bin scheme where one bin encloses the K^* resonance.
$D \! ightarrow \pi^+ \pi^- \pi^0$	F_+	No binning required as $F_+ \sim 1$.
$D \rightarrow K_{\rm s}^0 \pi^+ \pi^- \pi^0$	F_+ and c_i and s_i	Unbinned measurement of F_+ required. Additional measurements of F_+ or c_i and s_i in bins could be explored.
$D \rightarrow K^+ K^- \pi^0$	F_+	Unbinned measurement required. Extensions to binned measurements of either F_+ or c_i and s_i possible.
$D \rightarrow K^{\pm} \pi^{\mp}$	δ	Of low priority due to good precision available through charm-mixing analyses

Prospects for Λ_c semi-leptonic decays

• So far, only mode $\Lambda e^+ v_e$ is measured

- 1 M Λ⁺ pairs
- Many more semi-leptonic modes can be established at BESIII!

modes	Expected	δΒ/Β		SL	δB/B
	B[%]		D0	$B(Kev) = (3.55 \pm 0.05)\%$	1.4%
$\Lambda l^+ u_l$	3.6	5.4%	D+	$B(K0ev) = (8.83 \pm 0.22)\%$	2.5%
$\Lambda^* l^+ \nu_l$	0.7	17%	Ds	B(phiev)= $(2.49 \pm 0.14)\%$	5.6%
$(pK^-, \Sigma\pi) l^+\nu_l$	0.7	17%	Λ_{c}	$B(\Lambda ev) = (2.1 \pm 0.6)\% (PDG2014) = (3.63 \pm 0.43)\% (BESIII)$	29% 12%
$nl^+\nu_l$	0.2	30%		$=(3.63\pm0.13)\%$ (new BESIII)	3%

Other Relevant Λ_c^+ Potentials

- Studies on new Cabibbo-suppressed modes
- Many neutron modes will be firstly measured: to test isospin symmetry PRD93, 056008 (2016)
- Λ_c^+ hadronic weak decays
 - ✓ Decay asymmetry parameters in two-body hadronic weak decays, such as Λ⁺_c → BP and Λ⁺_c → BV
 → to measure the relative phase between the S- and P-wave decays
 - We can provide precise measurements on this observables
- search for Λ_c^+ low rate decays and rare decays
 - ✓ Weak radiative decay $\Lambda_c^+ \rightarrow \gamma \Sigma^+$; predictions of BF are $10^{-4} \sim 10^{-5}$: expected sensitivity ~10⁻⁴
 - ✓ FCNC, lepton number/family violation, baryon family violation ...: expected sensitivity~10⁻⁵

We will find more the Λ_c -decay Mosaic!

10x more Λ_c^+ pairs

Reaches for rare charm decays?

 10^{-0} SM predictions and experimental reaches 10^{-1} Cabibbo favor 10^{-2} Single Cabibbo suppressed 10^{-3} 10^{-4} Doubly Cabibbo suppressed CLEO-c 10^{-5} $D^0 \rightarrow \overline{K}^{*0} \gamma / \phi \gamma / \rho \gamma / \omega \gamma$ BESIII **Radiative decays** 10^{-6} $D^+ \to K^{*+} \gamma / \rho^+ \gamma D^+_{\varsigma} \to K^{*+} \gamma / \rho^+ \gamma$ **BESIII** final/B factory 10^{-7} Long distance: Vector meson Dominance $D^0 \rightarrow \gamma \gamma / VV'(\rightarrow ll) / hV(\rightarrow ll) / hh'V(\rightarrow ll)$ LHCb Super-B 10^{-8} 10^{-9} Super-τ-charm 10^{-10} $D^0 / D^+ \rightarrow \gamma \gamma / V l^+ l^- / h l^+ l^- / h h' l^+ l^-$ Short distance FCNC 10^{-11} $D^0 \rightarrow \mu^+ \mu^-$ **10**⁻¹² $D^0 \rightarrow e^+ e^-$ 10-13 10-14 $D \rightarrow (h) \mu^+ e^-$ 10⁻¹⁵ Forbidden decays: LNV, LFV, BNV $D \rightarrow (hh)e^+e^+/(hh)\mu^+\mu^+$ HFCPV 2016, SJTU 43

BEPCII Future Upgrade

- Replace one cavity in summer of 2017
 - ✓ ~3 months for the replacement
 - ✓ takes time for ramping up
- A mini-workshop with BEPCII machine people
 - ✓ Top up plan ?
 Successful testing in synchrotron mode
 - ✓ Increase the beam energy? current max. energy 2.30 GeV
 Upgrade choice I: → 2.35 GeV (hardware replacement,
 Upgrade choice II: 2.35 GeV < E < 2.45 GeV
 bottleneck: ISPB, new magnet and power supply
 Upgrade choice III: > 2.45 GeV
 bottleneck: ISPB and SCQ
- Discussions on Crab-Waist technology
 - ✓ In maximum, luminosity can be increased by 17x

Summary

- **BESIII is successfully operating since 2008**
 - Collected large data samples in the τ -charm mass region
- Many exciting results have been published:
 - $\checkmark Study of X, Y and Z states$
 - \checkmark Light hadron spectroscopy in charmonium decays
 - \checkmark Charmed mesons and baryons
 - best measurements: $f_{D(s)} \& FF$
 - strong phases based on neutral D quantum correlation
 - $-\Lambda_{\rm c}$ physics
- BESIII team has learned and developed technology with charm at threshold.
- **BESIII** will continue to run 6 8 years.
- **BEPCII/BESIII upgrade** trackers, ETOF, beam energy, data taking efficiency, luminosity ...
- Future goals
 - roughly 50M $D^0,$ 50M D^+ , 1M $\Lambda_{\rm c}$, 15M Ds, 100B $J\!/\psi$
- We are working on BESIII physics survey for future BESIII potentials you are welcome to join the effort. HFCPV 2016, SJTU

Thank you! 谢谢!