Experimental neutrino physics: status and prospects*

刘江来 ● JIANGLAI LIU 上海交通大学 Member Of Daya Bay And JUNO Collaborations

* Materials heavily based on experimental talks given at Neutrino 2016

Neutrinos: glories in the past century

Flavor physics in leptons

$$-\mathcal{L}_{cc} = \frac{g}{\sqrt{2}} \left[\overline{(e \ \mu \ \tau)_{L}} \ \gamma^{\mu} U \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}_{L} W_{\mu}^{-} + \overline{(u \ c \ t)_{L}} \ \gamma^{\mu} V \begin{pmatrix} d \\ s \\ b \end{pmatrix}_{L} W_{\mu}^{+} \right] + h.c.$$

CKM matrix

Neutrino mixing

Transformation from mass to weak eigenstates

The last mixing angles θ_{13}

$$P(\nu_e \to \nu_e) = 1 - \sin^2 2\theta_{13} (\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32}) \qquad \Delta_{ij} = \frac{\Delta m_{ij}^2 L}{4E_{\nu}}$$

 $\Delta m_{31}^2 = 2.4 \times 10^{-3} \text{ eV}^2$, reactor neutrino Ev ~ 4 MeV, L = 2 km

~2 km

All three experiments with multiple detector

Impressive world data on θ_{13}

Daya Bay, RENO, and Double Chooz are now sitting together (first meeting Oct 2016) and discussing combined analysis

Open questions

- What's the last mixing angle θ_{13} ?
- What is the mass ordering of neutrinos?
- What's the absolute energy scale of the neutrinos?
- Is neutrino Majorana particle?
- Is there CP violation in the lepton sector?
- Are neutrino flavor > 3?

Open questions

What's the last mixing angle θ_{13} ?

- What is the mass ordering of neutrinos?
- What's the absolute energy scale of the neutrinos?
- Is neutrino Majorana particle?
- Is there CP violation in the lepton sector?
- Are neutrino flavor > 3?

Mass hierarchy?

- $|\Delta m_{31}^2| = 2.4 \times 10^{-3} \text{ eV}^2$, $\Delta m_{21}^2 = 7.5 \times 10^{-5} \text{ eV}^2$
- Mass hierarchy:

Is m₁ the lightest (normal) or m₃ the lightest (inverted)?

Can loosely translate to: is electron neutrino the lightest?

^{*}The fermions are subdivided into quarks and leptons, with leg

Connection with flavor models

> Consequences for $M_{\nu} = U_{\rm PMNS} M_{\nu}^{\rm diag} U_{\rm PMNS}^T$ (to leading order)

(1	0	0 \		
$M_{\nu} \simeq$	0	1	1		
	0	1	1 /		

 $M_{\nu} \simeq \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)$

Hierarchy: normal

 $M_{\nu} \simeq \begin{pmatrix} \varepsilon & \varepsilon & \varepsilon \\ \varepsilon & 1 & 1 \\ \varepsilon & 1 & 1 \end{pmatrix}$

Hierarchy: inverted

Degenerate case

Very different structure of neutrino mass matrix! Model discriminator (flavor models) Walter Winter LNNN 2016

Walter Winter | NNN 2016 | Nov. 3-5, 2016 | Page 9

JUNO experiment

$$P(\nu_e \to \nu_e) = 1 - \sin^2 2\theta_{13} \cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32} - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{12}$$

- 20k-ton multi-purpose LS detector
- Construction phase: 2013-2020
- 66 institutes, 444 collaborators

JUNO experiment

Schedule:

Civil preparation: 2013-2014 Civil construction: 2014-2017 Detector component production: 2016-2017 Detector assembly & installation: 2018-2019 Filling & data taking: 2020

- 27-36 GW reactor power, 20k ton LS detector
- 3%/√E energy resolution, <1% energy scale uncertainty
- >3 σ (4 σ) 6-years MH determination JUNO-alone (JUNO+accelerator exps)

Atmospheric neutrino experiments

- Wide range of baselines and energy
- Oscillation pattern altered by the matter effects
- Tracking and energy reconstruction important

Atmospheric neutrino experiments

Atmospheric neutrino experiments

Open questions

What's the last mixing angle θ_{13} ?

- What is the mass ordering of neutrinos?
- What's the absolute energy scale of the neutrinos?
- Is neutrino Majorana particle?
- Is there CP violation in the lepton sector?
- Are neutrino flavor > 3?

Effective electron neutrino mass

$$m\rangle_e\equiv \sqrt{\sum_i \left(m_i^2|U_{ei}|^2\right)}$$

Even the lightest mass eigenstate is zero, the effective flavor mass is non-zero

KATRIN experiment Sensitivity: 2 eV → 0.2 eV Improvement x100 in statistics and systematics MAC-E-Filter electron Background comparable to predecessors high-res. electron detector 70 m total beam line spectrometer <1e⁻/s tritium pumping & e⁻ transport windowless gaseous T₂ source 10¹¹ e⁻/s ES ESTERESTES ES 1500 m³ UHV spectrometer

MAC-E-Filter

KATRIN Experiment

Source and transport systems

- Test of source beamtube cooling system
- Completion of closed tritium loops
- Cold commissioning of full source beamline: first with D2(T2)

Full system integration

 Final commissioning of spectrometer & detector section

KATRIN Karlsruhe Tritium

- "First light" planned for autumn 2016
- First tritium data in 2017

Projection

Interplay with cosmology

arXiv: 1309.5383 Future cosmology combing number of surveys leading to uncertainty of 16 meV!

- Gravitational lensing in CMB
- Baryon acoustic oscillation
- Weak lensing of the galaxy

Open questions

What's the last mixing angle θ_{13} ?

- What is the mass ordering of neutrinos?
- What's the absolute energy scale of the neutrinos?
- Is neutrino Majorana particle?
- Is there CP violation in the lepton sector?
- Are neutrino flavor > 3?

Majorana particles

Majorana mass term:

 $m_R \nu_R^C \nu_R$

- Majorana, 1937
- Can be tested via neutrinoless double β decay, W.
 Furry, 1939

Neutrinoless double beta decay

W

 $\overline{v} = v$

- Neutrinoless double beta decay
 - The nature of neutrinos, Dirac or Majorana
 - lepton number violation
- Extremely rare events T > 10²⁴ year.

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q, Z) |M^{0\nu}|^2 \frac{|\langle m_{\beta\beta} \rangle|^2}{m_e^2}$$
$$m_{\beta\beta} \equiv \left| \sum_{i=1}^3 U_{ei}^2 m_i \right|.$$

Sum of electrons energy

Front runners

Experiment	Isotope	Resolution	Efficiency	Phase	Mass	Exposure	Background rate	Sensitivity
		(keV)			(kg)	$(kg \cdot year)$	$(\mathrm{counts}/(\mathrm{keV}\cdot\mathrm{kg}\cdot\mathrm{y}))$	(meV)
CUORE	130-т.	5	0.8	2015 – 2017 (I)	200	600	10^{-1}	140
	Te	Э		2018-2020 (II)	200	600	4×10^{-2}	85
EXO	$^{136}\mathrm{Xe}$	100	0.7	2012 - 2014 (I)	160	480	7×10^{-3}	185
				(II) 2016–2020	160	800	5×10^{-3}	150
GERDA	76 C	E	0.8	2012–2014 (I)	18	54	10^{-2}	214
	Ge	Э		2016-2020 (II)	35	175	10^{-3}	112
KamLAND-Zen	$^{136}\mathrm{Xe}$	250	0.8	2013 – 2015 (I)	360	1440	10^{-3}	97
				2017 – 2020 (II)	35	2700	5×10^{-4}	60

Table 1.1: Proposals considered in the $m_{\beta\beta}$ sensitivity comparison. For each proposal, the isotope that will be used, together with estimates for detector performance parameters — FWHM energy resolution, detection efficiency and background rate per unit of energy, time and $\beta\beta$ isotope mass — are given. Two possible operation phases, with estimates for the detector mass and the background rate achieved, are given for each experiment.

Front runners

KamLAND-Zen, ¹³⁶Xe

GERDA, ⁷⁶Ge

Constraints from non-discovery

Gaseous 136Xe

Tracking: smoking guy for discovery

Gaseous ¹³⁶Xe

Tracking: smoking guy for discovery

PandaX-III: Searching for Neutrinoless Double Beta Decay with High Pressure ¹³⁶Xe Gas Time Projection Chambers

Xun Chen¹, Changbo Fu¹, Javier Galan¹, Karl Giboni¹, Franco Giuliani¹, Linghui Gu¹, Ke Han^{*1}, Xiangdong Ji^{1, 10}, Heng Lin¹, Jianglai Liu¹, Kaixiang Ni¹, Hiroki Kusano¹, Xiangxiang Ren¹, Shaobo Wang¹, Yong Yang¹, Dan Zhang¹, Tao Zhang¹, Li Zhao¹, Xiangming Sun², Shouyang Hu³, Siyu Jian³, Xinglong Li³, Xiaomei Li³, Hao Liang³, Huanqiao Zhang³, Mingrui Zhao³, Jing Zhou³, Yajun Mao⁴, Hao Qiao⁴, Siguang Wang⁴, Ying Yuan⁴, Meng Wang⁵, Amir N. Khan⁶, Neill Raper⁶, Jian Tang⁶, Wei Wang⁶, Jianing Dong⁷, Changqing Feng⁷, Chen Li⁷, Jianbei Liu⁷, Shubin Liu⁷, Xiaolian Wang⁷, Danyang Zhu⁷, Juan F. Castel⁸, Susana Cebrián⁸, Theopisti Dafni⁸, Javier G. Garza⁸, Igor G. Irastorza⁸, Francisco J. Iguaz⁸, Gloria Luzón⁸, Hector Mirallas^{8,1}, Stephan Aune⁹, Eric Berthoumieux⁹, Yann Bedfer⁹,

Denis Calvet⁹, Nicole d'Hose⁹, Alain Delbart⁹, Maria Diakaki⁹, Esther Ferrer-Ribas⁹, Andrea Ferrero⁹, Fabienne Kunne⁹, Damien Neyret⁹, Thomas Papaevangelou⁹, Franck Sabatié⁹, Maxence Vanderbroucke⁹, Andi Tan¹⁰, Wick Haxton¹¹, Yuan Mei¹¹, Chinorat Kobdaj¹², and Yu-Peng Yan¹²

Open questions

What's the last mixing angle θ_{13} ?

- What is the mass ordering of neutrinos?
- What's the absolute energy scale of the neutrinos?
- Is neutrino Majorana particle?
- Is there CP violation in the lepton sector?
- Are neutrino flavor > 3?

Long baseline neutrino experiments

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &\sim \underbrace{\sin^{2} 2\theta_{13}}_{-\alpha \sin \delta} \times \frac{\sin^{2} \theta_{23}}{x \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23}} \times \frac{\frac{\sin^{2}[(1-x)\Delta]}{(1-x)^{2}}}{x \sin \Delta \frac{\sin[x\Delta]}{x} \frac{\sin[(1-x)\Delta]}{(1-x)}} \\ &+ \alpha \cos \delta \\ &+ \partial(\alpha^{2}) \\ \end{split} \\ \begin{array}{l} \kappa &= \left| \frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}} \right| \sim \frac{1}{30} \\ \end{array} \\ &\Delta &\equiv \frac{\Delta m_{31}^{2}L}{4E} \\ \end{array} \\ \begin{array}{l} \kappa &\equiv \frac{2\sqrt{2}G_{F}N_{e}E}{\Delta m_{31}^{2}} \\ \kappa &\equiv \frac{2\sqrt{2}G_{F}N_{e}E}{\Delta m_{31}^{2}} \\ \end{array} \\ \end{split}$$

• $\sin^2 2\theta_{13}$ dependence of leading term

- θ_{23} dependence of leading term: "octant" dependence (θ_{23} =/>/<45°?)
- CP odd phase δ : asymmetry of probabilities $P(v_{\mu} \rightarrow v_{e}) \neq P(\bar{v}_{\mu} \rightarrow \bar{v}_{e})$ if sin $\delta \neq 0$
- Matter effect through x: $v_e(\bar{v}_e)$ enhanced in normal (inverted) hierarchy

T2K **T2K**: ND280 "near" detectors J-PARC Super-Kamiokande "far" detector Kamioka 🖉 🗤 Tokai 295 km ~400 collaborators

~400 collaborators 59 institutions 11 nations

- Intense muon (anti)neutrino beam from J-PARC to Super-K to study:
 - muon (anti) neutrino disappearance $(v_{\mu} \rightarrow v_{\mu}, \overline{v}_{\mu} \rightarrow \overline{v}_{\mu})$
 - electron (anti)neutrino appearance $(v_{\mu} \rightarrow v_{e}, \overline{v_{\mu}} \rightarrow \overline{v_{e}})$

- Long-baseline, off-axis neutrino oscillation experiment
- Study neutrinos from NuMI beam at Fermilab
- At 14 mrad off-axis, energy peaked at 2 GeV
- Functionally identical detectors
 - ND on site at Fermilab
 - FD 810 km away in Ash River, MN
 - Measurement at ND is directly used to predict FD

CP violation angle

Hints from global fits

A. Marrone, Neutrino 2016

- CP phase trend:
- $\delta \sim 1.4 \pi$ at best fit
- CP-conserving cases ($\delta = 0, \pi$) disfavored at -2σ level or more
- Significant fraction of the $[0,\pi]$ range disfavored at >3 σ

θ_{23} trend:

- maximal mixing disfavored at about ~2σ level
- best-fit octant flips with mass ordering

$$\Delta\chi^2_{\rm IO-NO}=3.1$$

inverted ordering slightly disfavored

Next generation of mega detectors moving fast

500kton

detector

water

Open questions

What's the last mixing angle θ_{13} ?

- What is the mass ordering of neutrinos?
- What's the absolute energy scale of the neutrinos?
- Is neutrino Majorana particle?
- Is there CP violation in the lepton sector?
- Are neutrino flavor > 3?

Number of active neutrino flavors

- A heavier type which can be heavier than Z
- Or a type of neutrino that DOES NOT participate in weak interactions ("sterile")
 - However, they can still "mix" with regular ones (quantum mechanics still works)

Anomalies

Anomalies

Anomalies

Global situation

Global situation

New null results

Phys. Rev. Lett. 117, 071801 (2016)

A zoo of new sterile hunters

Scintillator	Constant Anna	Nylon vesse 130 µm theo
220 + PC-PPO	- Reality of	PMTs
		Source
Combined		(100-150) kCl
		$\sigma_{\rm b} = 0.015$ $\sigma_{\rm b} = 0.03$ - rate+ shape - rate only
Only S		shape only anomalies PRD 88 672008
Rate Only		- 95% CL
2×10 ⁻² 3×10 ⁻²	10^{-1} 2×1 $\sin^2(2\theta_{14})$	• best fit

Experiment	Reactor Power/Fuel	Overburden (mwe)	Detection Material	Segmentation	Optical Readout	Particle ID Capability
DANSS (Russia)	3000 MW LEU fuel	~50	Inhomogeneous PS & Gd sheets	2D, ~5mm	WLS fibers.	Topology only
NEOS (South Korea)	2800 MW LEU fuel	~20	Homogeneous Gd-doped LS	none	Direct double ended PMT	recoil PSD only
nuLat (USA)	40 MW ²³⁵ U fuel	few	Homogeneous ⁶ Li doped PS	Quasi-3D, 5cm, 3-axis Opt. Latt	Direct PMT	Topology, recoil & capture PSD
Neutrino4 (Russia)	100 MW ²³⁵ U fuel	~10	Homogeneous Gd-doped LS	2D, ~10cm	Direct single ended PMT	Topology only
PROSPECT (USA)	85 MW ²³⁵ U fuel	few	Homogeneous ⁶ Li-doped LS	2D, 15cm	Direct double ended PMT	Topology, recoil & capture PSD
SoLid (UK Fr Bel US)	72 MW ²³⁵ U fuel	~10	Inhomogeneous ⁶ LiZnS & PS	Quasi-3D, 5cm multiplex	WLS fibers	topology, capture PSD
Chandler (USA)	72 MW 235 U fuel	~10	Inhomogeneous ⁶ LiZnS & PS	Quasi-3D, 5cm, 2-axis Opt. Latt	Direct PMT/ WLS Scint.	topology, capture PSD
Stereo (France)	57 MW ²³⁵ U fuel	~15	Homogeneous Gd-doped LS	1D, 25cm	Direct single ended PMT	recoil PSD

10

- Strong neutrino ٠ source @ Borexino
- Short baseline • reactors
- Short baseline • accelerator Definitive to the parameter space $\Delta m^2 \sim 0.1$ eV² & above

5 CL

Summary and outlook

- Multiple experimental probes are strategically answering the key questions in neutrino physics
- A somewhat surprise: first implication of leptonic CP violating from world data
- In the next ten years,
 - Precision unitarity tests up to 1% precision
 - firm answer on CP
 - mass hierarchy determined
 - b absolute mass to <0.2 eV</p>
 - Majorana neutrino may be discovered if neutrino mass order is inverted
- Unexpected surprise may still be ahead!