Based on arXiv: 1608.06231

陈自强 陈龙斌 乔从丰

中国科学院大学 物理学院

2016-11-03

Outline

Outline

Introduction

• J/ψ Inclusive Production in Photon-Photon Collision

◆□▶ ◆□▶ ◆臣▶ ★臣▶ 臣 のへぐ

- \blacksquare NLO QCD Corrections to $\gamma\gamma \rightarrow J/\psi + c \bar{c}$
- $J/\psi + ggg$ Final State Subprocess

Summary

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …のへぐ

Introduction

 In non-relativistic QCD(NRQCD), heavy quarkonium is treated as a nonrelativistic system. Then we get a hierarchy of energy scales: (M_Qv²)² << (M_Qv)² << M²_Q

In non-relativistic QCD(NRQCD), heavy quarkonium is treated as a nonrelativistic system. Then we get a hierarchy of energy scales:

$$(M_Q v^2)^2 << (M_Q v)^2 << M_Q^2$$

Based on this hierarchy, the quarkonium production and decay amplitudes can be factorized into short- and long-distance sectors:

$$d\sigma(H+X) = \sum d\hat{\sigma}(Q\bar{Q}+X)\langle \mathcal{O}_H \rangle$$

 In non-relativistic QCD(NRQCD), heavy quarkonium is treated as a nonrelativistic system. Then we get a hierarchy of energy scales:

$$(M_Q v^2)^2 << (M_Q v)^2 << M_Q^2$$

 Based on this hierarchy, the quarkonium production and decay amplitudes can be factorized into short- and long-distance sectors:

$$d\sigma(H+X) = \sum d\hat{\sigma}(Q\bar{Q}+X)\langle \mathcal{O}_H \rangle$$

 In non-relativistic QCD(NRQCD), heavy quarkonium is treated as a nonrelativistic system. Then we get a hierarchy of energy scales:

$$(M_Q v^2)^2 << (M_Q v)^2 << M_Q^2$$

 Based on this hierarchy, the quarkonium production and decay amplitudes can be factorized into short- and long-distance sectors:

$$d\sigma(H+X) = \sum d\hat{\sigma}(Q\bar{Q}+X)\langle \mathcal{O}_H \rangle$$

- NRQCD factorization model is not so intuitive as color-singlet(CS) model for the introduction of color-octet(CO) mechanism(QQ can be CO state).
- The test of NRQCD factorization is a exigent task in quarkonium physics. And the study of J/ψ inclusive production through $\gamma\gamma$ collision at LEPII unravel a rather confusing pattern.

 $-J/\psi$ Inclusive Production in Photon-Photon Collision

J/ψ Inclusive Production in Photon-Photon Collision

Experimental Data

• LEPII $\gamma \gamma \rightarrow J/\psi + X$ Data

Theoretical Calculations

- Three Classes of Subprocesses
- The LO Calculations
- The NLO Corrections
- $J/\psi + c\bar{c}$ Final State Subprocess

- Full NLO Corrections
- About Our Work

LEPII $\gamma\gamma \rightarrow J/\psi + X$ Data

In 2001, the DELPHI Collaboration presented preliminary data on the J/ψ inclusive cross section in photon-photon collision ($e^+e^- \rightarrow e^+e^-J/\psi + X$) at LEPII.

 $- J/\psi$ Inclusive Production in Photon-Photon Collision Experimental Data

LEPII $\gamma \gamma \rightarrow J/\psi + X$ Data

In 2001, the DELPHI Collaboration presented preliminary data on the J/ψ inclusive cross section in photon-photon collision ($e^+e^- \rightarrow e^+e^-J/\psi + X$) at LEPII.

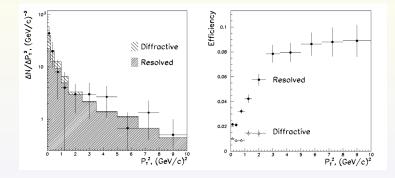


Figure: "DELPHI Collaboration, Phys. Lett. B 565(2003)76-86".

The requirement of at least 4 reconstructed tracks suppress the $J/\psi + \gamma$ final state.

▲ロ ▶ ▲ 冊 ▶ ▲ 目 ▶ ▲ 目 ▶ ● の Q @

 $-J/\psi$ Inclusive Production in Photon-Photon Collision

- Theoretical Calculations

Three Classes of Subprocesses

There are 3 classes of subprocesses for $\gamma \gamma \rightarrow J/\psi + X$:

 $-J/\psi$ Inclusive Production in Photon-Photon Collision

- Theoretical Calculations

Three Classes of Subprocesses

There are 3 classes of subprocesses for $\gamma\gamma \rightarrow J/\psi + X$:

i direct process:

$$\begin{split} &\gamma\gamma\to c\bar{c} \left[{}^3S_1^{(8)}\right]g,\\ &\gamma\gamma\to c\bar{c} \left[{}^3S_1^{(1)}\right]\gamma \quad \text{(suppressed at at LEPII)} \end{split}$$

 $-J/\psi$ Inclusive Production in Photon-Photon Collision

- Theoretical Calculations

Three Classes of Subprocesses

There are 3 classes of subprocesses for $\gamma\gamma \rightarrow J/\psi + X$:

i direct process:

$$\begin{split} &\gamma\gamma\to c\bar{c} \left[{}^3S_1^{(8)}\right]g,\\ &\gamma\gamma\to c\bar{c} \left[{}^3S_1^{(1)}\right]\gamma \quad \text{(suppressed at at LEPII)} \end{split}$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 … のへぐ

ii single-resolved process:

$$\begin{split} \gamma g &\to c \bar{c} \left[{}^3S_1^{(1)} \right] g, c \bar{c} [8] g, \\ \gamma q &\to c \bar{c} [8] q \end{split}$$

 $-J/\psi$ Inclusive Production in Photon-Photon Collision

- Theoretical Calculations

Three Classes of Subprocesses

There are 3 classes of subprocesses for $\gamma\gamma \rightarrow J/\psi + X$:

i direct process:

$$\begin{split} &\gamma\gamma \to c\bar{c} \left[{}^3S_1^{(8)}\right]g, \\ &\gamma\gamma \to c\bar{c} \left[{}^3S_1^{(1)}\right]\gamma \quad \text{(suppressed at at LEPII)} \end{split}$$

ii single-resolved process:

$$\gamma g \to c \bar{c} \begin{bmatrix} 3S_1^{(1)} \end{bmatrix} g, c \bar{c}[8]g,$$

 $\gamma q \to c \bar{c}[8]q$

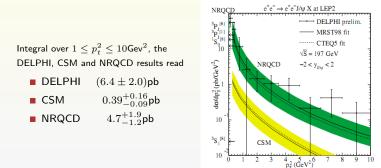
iii double-resolved process:

$$\begin{split} gg &\to c\bar{c} \begin{bmatrix} {}^3S_1^{(1)} \end{bmatrix} g, c\bar{c} \begin{bmatrix} {}^3P_J^{(1)} \end{bmatrix} g, c\bar{c}[8]g, \\ gq &\to c\bar{c} \begin{bmatrix} {}^3P_J^{(1)} \end{bmatrix} q, c\bar{c}[8]q, \\ q\bar{q} &\to c\bar{c} \begin{bmatrix} {}^3S_1^{(8)} \end{bmatrix} \end{split}$$

 $-J/\psi$ Inclusive Production in Photon-Photon Collision

- Theoretical Calculations

The LO Calculations

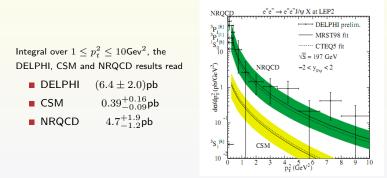

The LO calculations for direct process was finished early[1]. And full LO calculations was finished soon after the presentation of DELPHI data[2].

 $-J/\psi$ Inclusive Production in Photon-Photon Collision

- Theoretical Calculations

The LO Calculations

The LO calculations for direct process was finished early[1]. And full LO calculations was finished soon after the presentation of DELPHI data[2].



 $-J/\psi$ Inclusive Production in Photon-Photon Collision

- Theoretical Calculations

The LO Calculations

The LO calculations for direct process was finished early[1]. And full LO calculations was finished soon after the presentation of DELPHI data[2].

It seems that the CO mechanism is evidently supported by DELPHI data. However, the study is performed only on LO. Higher order corrections should be included before we draw a firm conclusion.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

- [1] Michael Klasen et al., Nucl. Phys. B 609 (2001).
- [2] Michael Klasen et al., Phys. Rev. Lett. 89, 032001(2002).

 $-J/\psi$ Inclusive Production in Photon-Photon Collision

L Theoretical Calculations

The NLO Corrections

Before the global NLO analysis performed, there are several NLO corrections

for some subprocess:

 $\int J/\psi$ Inclusive Production in Photon-Photon Collision

- Theoretical Calculations

The NLO Corrections

Before the global NLO analysis performed, there are several NLO corrections for some subprocess:

I M.Klasen, B.A.Kniehl et al., Nucl. Phys. B 713(2005)487-521:

NLO corrections to $\gamma\gamma \rightarrow Q\bar{Q} + g$ (TESLA)

 J/ψ Inclusive Production in Photon-Photon Collision

- Theoretical Calculations

The NLO Corrections

Before the global NLO analysis performed, there are several NLO corrections for some subprocess:

1 M.Klasen, B.A.Kniehl et al., Nucl. Phys. B 713(2005)487-521:

NLO corrections to $\gamma\gamma \rightarrow Q\bar{Q} + g$ (TESLA)

2 M.Klasen, B.A.Kniehl et al., Phys. Rev. D 71, 014016 (2005):

NLO corrections to $\gamma\gamma \rightarrow Q\bar{Q} + \gamma$ (TESLA)

 J/ψ Inclusive Production in Photon-Photon Collision

- Theoretical Calculations

The NLO Corrections

Before the global NLO analysis performed, there are several NLO corrections for some subprocess:

1 M.Klasen, B.A.Kniehl et al., Nucl. Phys. B 713(2005)487-521:

NLO corrections to $\gamma\gamma \rightarrow Q\bar{Q} + g$ (TESLA)

2 M.Klasen, B.A.Kniehl et al., Phys. Rev. D 71, 014016 (2005):

NLO corrections to $\gamma\gamma \rightarrow Q\bar{Q} + \gamma$ (TESLA)

3 M.Kramer, Nucl. Phys. B 459(1996)3-50:

NLO corrections to $\gamma g \rightarrow Q \bar{Q} + g$ (HERA)

 J/ψ Inclusive Production in Photon-Photon Collision

- Theoretical Calculations

The NLO Corrections

Before the global NLO analysis performed, there are several NLO corrections for some subprocess:

1 M.Klasen, B.A.Kniehl et al., Nucl. Phys. B 713(2005)487-521:

NLO corrections to $\gamma\gamma \rightarrow Q\bar{Q} + g$ (TESLA)

2 M.Klasen, B.A.Kniehl et al., Phys. Rev. D 71, 014016 (2005):

NLO corrections to $\gamma\gamma \rightarrow Q\bar{Q} + \gamma$ (TESLA)

3 M.Kramer, Nucl. Phys. B 459(1996)3-50:

NLO corrections to $\gamma g \rightarrow Q \bar{Q} + g$ (HERA)

4

 J/ψ Inclusive Production in Photon-Photon Collision

Theoretical Calculations

The NLO Corrections

Before the global NLO analysis performed, there are several NLO corrections for some subprocess:

I M.Klasen, B.A.Kniehl et al., Nucl. Phys. B 713(2005)487-521:

NLO corrections to $\gamma\gamma \rightarrow Q\bar{Q} + g$ (TESLA)

2 M.Klasen, B.A.Kniehl et al., Phys. Rev. D 71, 014016 (2005):

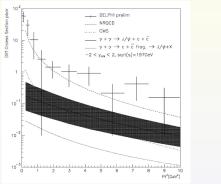
NLO corrections to $\gamma\gamma \rightarrow Q\bar{Q} + \gamma$ (TESLA)

3 M.Kramer, Nucl. Phys. B 459(1996)3-50:

NLO corrections to $\gamma g \rightarrow Q \bar{Q} + g$ (HERA)

4

Although none of these analyses is performed in LEPII condition, people infer that similar corrections should not change the former conclusion, and shift their focus to a new subprocess: $J/\psi + c\bar{c}$ final state subprocess.


 J/ψ Inclusive Production in Photon-Photon Collision

— Theoretical Calculations

$J/\psi + c\bar{c}$ Final State Subprocess

The direct production of $J/\psi + c\bar{c}$, namely $\gamma\gamma \rightarrow J/\psi + c\bar{c}$ process, prove to be the dominant CS process[1].

A comparison is also made between pure fragmentation result and full calculation in [1]. It is found that this process cannot be mimicked by simple fragmentation scheme.

р

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

After including this process, the prediction of CS is doubled, but still insufficient to explain experiment data.

[1] C.F. Qiao and J.X. Wang, Phys. Rev. D 69, 014015(2004).

・ロト・日本・モー・モー・ しょうくの

 $-J/\psi$ Inclusive Production in Photon-Photon Collision

- Theoretical Calculations

$J/\psi + c\bar{c}$ Final State Subprocess

Further studies:

 $-J/\psi$ Inclusive Production in Photon-Photon Collision

- Theoretical Calculations

$J/\psi + c\bar{c}$ Final State Subprocess

Further studies:

1 R. Li and K.-T. Chao, Phys. Rev. D 79, 114020(2009): $\gamma g \rightarrow J/\psi + c\bar{c}, q\bar{q} \rightarrow J/\psi + c\bar{c}, gg \rightarrow J/\psi + c\bar{c},$ $\gamma \gamma \rightarrow J/\psi + c\bar{c}$

 $-J/\psi$ Inclusive Production in Photon-Photon Collision

- Theoretical Calculations

$J/\psi + c\bar{c}$ Final State Subprocess

Further studies:

1 R. Li and K.-T. Chao, Phys. Rev. D 79, 114020(2009): $\gamma g \rightarrow J/\psi + c\bar{c}, q\bar{q} \rightarrow J/\psi + c\bar{c}, gg \rightarrow J/\psi + c\bar{c},$ $\gamma \gamma \rightarrow J/\psi + c\bar{c}$

2 G. Chen, X.-G. Wu, et al. Phys. Rev. D 90, 034004(2014),

Z. Sun, X.-G. Wu and H.-F. Zhang, Phys. Rev. D 92, 074021(2015): $\gamma\gamma\to [Q\bar{Q}]+Q\bar{Q} \text{ at ILC}$

(日)、(型)、(E)、(E)、(E)、(O)()

 J/ψ Inclusive Production in Photon-Photon Collision

- Theoretical Calculations

$J/\psi + c\bar{c}$ Final State Subprocess

Further studies:

1 R. Li and K.-T. Chao, Phys. Rev. D 79, 114020(2009): $\gamma g \rightarrow J/\psi + c\bar{c}, q\bar{q} \rightarrow J/\psi + c\bar{c}, gg \rightarrow J/\psi + c\bar{c},$ $\gamma \gamma \rightarrow J/\psi + c\bar{c}$

2 G. Chen, X.-G. Wu, et al. Phys. Rev. D 90, 034004(2014),

Z. Sun, X.-G. Wu and H.-F. Zhang, Phys. Rev. D 92, 074021(2015): $\gamma\gamma\to [Q\bar{Q}]+Q\bar{Q} \text{ at ILC}$

M. Klasen and J.P.Lansberg, Nucl. Phys. B 179-180 (2008) 226-231:
photon-photon collisions at LHC

 J/ψ Inclusive Production in Photon-Photon Collision

- Theoretical Calculations

$J/\psi + c\bar{c}$ Final State Subprocess

Further studies:

1 R. Li and K.-T. Chao, Phys. Rev. D 79, 114020(2009): $\gamma g \rightarrow J/\psi + c\bar{c}, q\bar{q} \rightarrow J/\psi + c\bar{c}, gg \rightarrow J/\psi + c\bar{c},$ $\gamma \gamma \rightarrow J/\psi + c\bar{c}$

2 G. Chen, X.-G. Wu, et al. Phys. Rev. D 90, 034004(2014),

Z. Sun, X.-G. Wu and H.-F. Zhang, Phys. Rev. D 92, 074021(2015): $\gamma\gamma \to [Q\bar{Q}] + Q\bar{Q} \text{ at ILC}$

M. Klasen and J.P.Lansberg, Nucl. Phys. B 179-180 (2008) 226-231:
photon-photon collisions at LHC

4

 $-J/\psi$ Inclusive Production in Photon-Photon Collision

- Theoretical Calculations

$J/\psi + c\bar{c}$ Final State Subprocess

Further studies:

1 R. Li and K.-T. Chao, Phys. Rev. D 79, 114020(2009): $\gamma g \rightarrow J/\psi + c\bar{c}, q\bar{q} \rightarrow J/\psi + c\bar{c}, gg \rightarrow J/\psi + c\bar{c},$ $\gamma \gamma \rightarrow J/\psi + c\bar{c}$

2 G. Chen, X.-G. Wu, et al. Phys. Rev. D 90, 034004(2014),

Z. Sun, X.-G. Wu and H.-F. Zhang, Phys. Rev. D 92, 074021(2015): $\gamma\gamma \to [Q\bar{Q}] + Q\bar{Q} \text{ at ILC}$

M. Klasen and J.P.Lansberg, Nucl. Phys. B 179-180 (2008) 226-231:
photon-photon collisions at LHC

4

These researches indicate that the contributions of single-resolved and double-resolved are significantly less important than the direct one with in the CS prescription. Their contributions do little to reduce the gap between CS prediction and experiment data.

 $-J/\psi$ Inclusive Production in Photon-Photon Collision

- Theoretical Calculations

Full NLO analysis

Kniehl (one of the author of full LO analysis) et at. then carried out a full NLO NRQCD analysis and found the situation become more enigmatic[1].

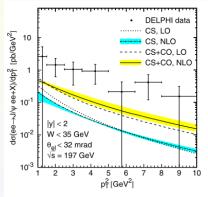
 $-J/\psi$ Inclusive Production in Photon-Photon Collision

- Theoretical Calculations

Full NLO analysis

Kniehl (one of the author of full LO analysis) et at. then carried out a full NLO NRQCD analysis and found the situation become more enigmatic[1].

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○



 $-J/\psi$ Inclusive Production in Photon-Photon Collision

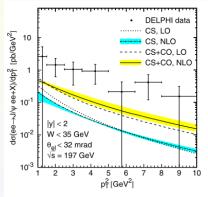
- Theoretical Calculations

Full NLO analysis

Kniehl (one of the author of full LO analysis) et at. then carried out a full NLO NRQCD analysis and found the situation become more enigmatic[1].

TABLE I.	NLO fit results for the J/ψ CO LDMEs.
$\langle \mathcal{O}^{J/\psi}({}^1S_0^{[8]})\rangle$	$(4.97 \pm 0.44) \times 10^{-2} \text{ GeV}^3$
$\langle \mathcal{O}^{J/\psi}({}^{3}S_{1}^{[8]})\rangle$	$(2.24 \pm 0.59) \times 10^{-3} \text{ GeV}^3$
$\langle O^{J/\psi}({}^3P_0^{[8]})\rangle$	$(-1.61 \pm 0.20) \times 10^{-2} \text{ GeV}^5$

Owing to the negative value of $\langle \mathcal{O}^{J/\psi} ({}^{3}P_{0}^{[8]}) \rangle$, the DELPHI data cannot be reproduced even with the CO contributions.


▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

 $-J/\psi$ Inclusive Production in Photon-Photon Collision

- Theoretical Calculations

Full NLO analysis

Kniehl (one of the author of full LO analysis) et at. then carried out a full NLO NRQCD analysis and found the situation become more enigmatic[1].

TABLE I.	NLO fit results for the J/ψ CO LDMEs.
$\langle \mathcal{O}^{J/\psi}({}^1S_0^{[8]})\rangle$	$(4.97 \pm 0.44) \times 10^{-2} \text{ GeV}^3$
$\langle \mathcal{O}^{J/\psi}({}^3S_1^{[8]})\rangle$	$(2.24 \pm 0.59) \times 10^{-3} \text{ GeV}^3$
$\langle {\cal O}^{J/\psi}({}^3P_0^{[8]})\rangle$	$(-1.61 \pm 0.20) \times 10^{-2} \text{ GeV}^5$

Owing to the negative value of $\langle \mathcal{O}^{J/\psi}({}^{3}P_{0}^{[8]})\rangle$, the DELPHI data cannot be reproduced even with the CO contributions.

Kniehl et al. started to emphasise that the data sample only consisted of 16 events above $p_t > 1 {\rm GeV}.$

[1] M.Butenschoen and B.A.Kniehl, Phys. Rev. D 84, 051501(2011): イクトイミトィミト ミークへの

 $-J/\psi$ Inclusive Production in Photon-Photon Collision

L Theoretical Calculations

About our work

 $-J/\psi$ Inclusive Production in Photon-Photon Collision

- Theoretical Calculations

About our work

• However, before we give the definite conclusion, we should stretch our calculation as far as we can. To this aim, we calculate the tedious NLO QCD corrections to $\gamma\gamma \rightarrow J/\psi + c\bar{c}$ process.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

 J/ψ Inclusive Production in Photon-Photon Collision

Theoretical Calculations

About our work

- However, before we give the definite conclusion, we should stretch our calculation as far as we can. To this aim, we calculate the tedious NLO QCD corrections to $\gamma\gamma \rightarrow J/\psi + c\bar{c}$ process.
- This process deserves our attention, because
 - i It's the dominant CS process in the J/ψ inclusive production through $\gamma\gamma$ collision.

ii $J/\psi + c\bar{c}$ is the experimentally distinguishable final state.

 J/ψ Inclusive Production in Photon-Photon Collision

Theoretical Calculations

About our work

- However, before we give the definite conclusion, we should stretch our calculation as far as we can. To this aim, we calculate the tedious NLO QCD corrections to $\gamma\gamma \rightarrow J/\psi + c\bar{c}$ process.
- This process deserves our attention, because
 - i It's the dominant CS process in the J/ψ inclusive production through $\gamma\gamma$ collision.
 - ii $J/\psi + c\bar{c}$ is the experimentally distinguishable final state.
- This is the first true NLO calculation of 2 to 3 inclusive process in heavy quarkonium production.

NLO QCD Corrections to J/ψ Inclusive Production in Photon-Photon Collision <u>NLO QCD Corrections</u> to $\gamma\gamma \rightarrow J/\psi + c\bar{c}$

NLO QCD Corrections to $\gamma\gamma \rightarrow J/\psi + c\bar{c}$

Formalism and Calculation

Numerical Results

 \square NLO QCD Corrections to $\gamma\gamma \rightarrow J/\psi + c\bar{c}$

Formalism and Calculation

Formalism and Calculation

□ NLO QCD Corrections to $\gamma \gamma \rightarrow J/\psi + c\bar{c}$

Formalism and Calculation

Formalism and Calculation

The overall differential cross section can be written as

$$d\sigma = \int dx_1 dx_2 f_{\gamma}(x_1) f_{\gamma}(x_2) d\hat{\sigma}(\gamma\gamma \to c\bar{c}[{}^3S_1] + c\bar{c}) \langle \mathcal{O}^{J/\psi}({}^3S_1) \rangle$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …のへぐ

NLO QCD Corrections to J/ψ Inclusive Production in Photon-Photon Collision \square NLO QCD Corrections to $\gamma\gamma \rightarrow J/\psi + c\bar{c}$

Formalism and Calculation

Formalism and Calculation

The overall differential cross section can be written as

$$d\sigma = \int dx_1 dx_2 f_{\gamma}(x_1) f_{\gamma}(x_2) d\hat{\sigma}(\gamma\gamma \to c\bar{c}[{}^3S_1] + c\bar{c}) \langle \mathcal{O}^{J/\psi}({}^3S_1) \rangle$$

To NLO calculation, the cross section is

$$d\hat{\sigma}(\gamma\gamma \to c\bar{c}[{}^{3}S_{1}] + c\bar{c}) = d\hat{\sigma}_{born} + d\hat{\sigma}_{virtual} + d\hat{\sigma}_{real} + O(\alpha^{2}\alpha_{s}^{4})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

NLO QCD Corrections to J/ψ Inclusive Production in Photon-Photon Collision \square NLO QCD Corrections to $\gamma\gamma \rightarrow J/\psi + c\bar{c}$

Formalism and Calculation

Formalism and Calculation

The overall differential cross section can be written as

$$d\sigma = \int dx_1 dx_2 f_{\gamma}(x_1) f_{\gamma}(x_2) d\hat{\sigma}(\gamma\gamma \to c\bar{c}[{}^3S_1] + c\bar{c}) \langle \mathcal{O}^{J/\psi}({}^3S_1) \rangle$$

To NLO calculation, the cross section is

$$d\hat{\sigma}(\gamma\gamma \to c\bar{c}[{}^{3}S_{1}] + c\bar{c}) = d\hat{\sigma}_{born} + d\hat{\sigma}_{virtual} + d\hat{\sigma}_{real} + O(\alpha^{2}\alpha_{s}^{4})$$

The quarkonium spin projection operator is

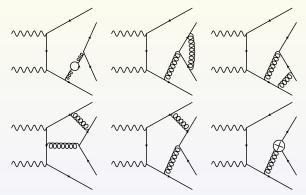
$$v(P/2)\bar{u}(P/2) = \frac{1}{4\sqrt{2}E(E+2m_c)} (\frac{P}{2} - m_c) \ \epsilon_S^* (P+2E) (\frac{P}{2} + m_c)$$

□ NLO QCD Corrections to $\gamma \gamma \rightarrow J/\psi + c\bar{c}$

Formalism and Calculation

Formalism and Calculation

Virtual corrections (582 Diagrams)


- NLO QCD Corrections to $\gamma \gamma \rightarrow J/\psi + c\bar{c}$

Formalism and Calculation

Formalism and Calculation

Virtual corrections (582 Diagrams)

Selfenergies, Triangles, Boxes, Pentagons, Hexagons and Counter terms

Masses of Feynman integrals are evaluated.

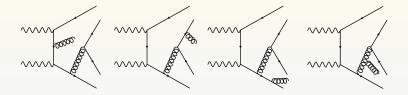
□ NLO QCD Corrections to $\gamma \gamma \rightarrow J/\psi + c\bar{c}$

- Formalism and Calculation

Formalism and Calculation

Real corrections (200 Diagrams)

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …のへぐ


□ NLO QCD Corrections to $\gamma \gamma \rightarrow J/\psi + c\bar{c}$

Formalism and Calculation

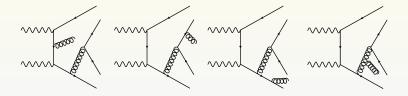
Formalism and Calculation

Real corrections (200 Diagrams)

 $\gamma\gamma \to J/\psi + c\bar{c} + g$

イロト 不得下 不良下 不良下

э


□ NLO QCD Corrections to $\gamma \gamma \rightarrow J/\psi + c\bar{c}$

Formalism and Calculation

Formalism and Calculation

Real corrections (200 Diagrams)

 $\gamma\gamma \to J/\psi + c\bar{c} + g$

According to B. W. Harris and J. F. Owens, "Two cutoff phase space slicing method", Phys. Rev. D 65, 094032 (2002),

$$d\sigma_{real} = d\sigma_{soft}^{IR}|_{p_g^0 < \delta \frac{\sqrt{s}}{2}} + d\sigma_{hard}^{IR-free}|_{p_g^0 > \delta \frac{\sqrt{s}}{2}}$$

□ NLO QCD Corrections to $\gamma \gamma \rightarrow J/\psi + c\bar{c}$

Formalism and Calculation

Formalism and Calculation

Cancellation of singularities

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …のへぐ

□ NLO QCD Corrections to $\gamma \gamma \rightarrow J/\psi + c\bar{c}$

Formalism and Calculation

Formalism and Calculation

- Cancellation of singularities
 - i Coulombic singularities are attributed to NRQCD long-distance matrix elements

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

□ NLO QCD Corrections to $\gamma \gamma \rightarrow J/\psi + c\bar{c}$

Formalism and Calculation

Formalism and Calculation

- Cancellation of singularities
 - i Coulombic singularities are attributed to NRQCD long-distance matrix elements

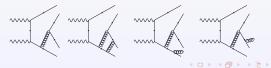
ii Ultraviolet singularities are canceled by renormalization

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

▶ NLO QCD Corrections to $\gamma \gamma \rightarrow J/\psi + c\bar{c}$

Formalism and Calculation

Formalism and Calculation


- Cancellation of singularities
 - i Coulombic singularities are attributed to NRQCD long-distance matrix elements

ii Ultraviolet singularities are canceled by renormalization

iii Infrared singularities involved in virtual corrections and real emissions are canceled each other

 \square NLO QCD Corrections to $\gamma \gamma \rightarrow J/\psi + c\bar{c}$

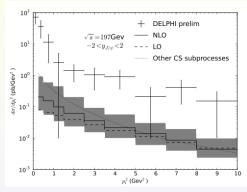
— Numerical Results

Numerical Results

 $\ \ \, \bigsqcup_{\text{NLO QCD Corrections to } \gamma \gamma \to J/\psi + c\bar{c} }$

— Numerical Results

Numerical Results

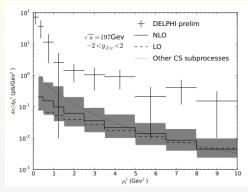

LEPII collider energy

□ NLO QCD Corrections to $\gamma \gamma \rightarrow J/\psi + c\bar{c}$

— Numerical Results

Numerical Results

LEPII collider energy



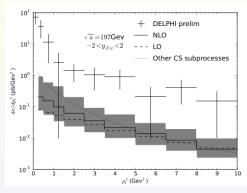
− NLO QCD Corrections to $\gamma \gamma \rightarrow J/\psi + c\bar{c}$

-Numerical Results

Numerical Results

LEPII collider energy

The shaded band is the NLO result of $\gamma\gamma \rightarrow J/\psi + c\bar{c}$ process with its upper bound obtained at $r=0.5,\,m_c=1.4 {\rm GeV}$ and lower bound at $r=2,\,m_c=1.6 {\rm GeV}.$ The solid and dashed lines represent the NLO and LO results with $r=1,\,m_c=1.5 {\rm GeV}.$


$$u = r\sqrt{4m_c^2 + p_t^2}$$

- NLO QCD Corrections to $\gamma \gamma \rightarrow J/\psi + c\bar{c}$

-Numerical Results

Numerical Results

LEPII collider energy

The shaded band is the NLO result of $\gamma\gamma \rightarrow J/\psi + c\bar{c}$ process with its upper bound obtained at $r=0.5,\,m_c=1.4 {\rm GeV}$ and lower bound at $r=2,\,m_c=1.6 {\rm GeV}.$ The solid and dashed lines represent the NLO and LO results with $r=1,\,m_c=1.5 {\rm GeV}.$

$$\mu = r\sqrt{4m_c^2 + p_t^2}$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

The NLO correction is moderate but not big enough to remove the huge discrepancy between theoretical prediction and experimental observation.

□ NLO QCD Corrections to $\gamma \gamma \rightarrow J/\psi + c\bar{c}$

-Numerical Results

Numerical Results

LEPII collider energy

While integrated over the range $1 \leq p_t^2 \leq 10 {\rm GeV^2}$,

$\sigma(pb)$	$m_c = 1.4 {\rm GeV}$	$m_c = 1.5 {\rm GeV}$	$m_c = 1.6 {\rm GeV}$
r = 0.5	0.766(0.436)	0.459(0.283)	0.299(0.187)
r = 1	0.363(0.236)	0.227(0.156)	0.152(0.105)
r=2	0.216(0.152)	0.138(0.101)	0.093(0.069)

▲ロ ▶ ▲ 冊 ▶ ▲ 目 ▶ ▲ 目 ▶ ● の Q @

Table: NLO(LO) results of total cross sections with different renormalization scale and charm quark mass. The K factor of central value is about 1.46.

− NLO QCD Corrections to $\gamma \gamma \rightarrow J/\psi + c\bar{c}$

-Numerical Results

Numerical Results

LEPII collider energy

While integrated over the range $1 \leq p_t^2 \leq 10 {\rm GeV^2}$,

$\sigma(pb)$	$m_c = 1.4 {\rm GeV}$	$m_c = 1.5 {\rm GeV}$	$m_c = 1.6 {\rm GeV}$
r = 0.5	0.766(0.436)	0.459(0.283)	0.299(0.187)
r = 1	0.363(0.236)	0.227(0.156)	0.152(0.105)
r=2	0.216(0.152)	0.138(0.101)	0.093(0.069)

Table: NLO(LO) results of total cross sections with different renormalization scale and charm quark mass. The K factor of central value is about 1.46.

The result of DELPHI and other CS processes read $(6.4\pm2.0)\rm pb$ and $0.39^{+0.16}_{-0.09}\rm pb$, respectively. And the DELPHI data can not be reproduced by CS model (according to [1] NRQCD neither) after including our corrections.

[1] M.Butenschoen and B.A.Kniehl, Phys. Rev. D 84, 051501(2011).

□ NLO QCD Corrections to $\gamma \gamma \rightarrow J/\psi + c\bar{c}$

-Numerical Results

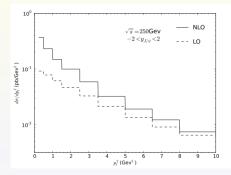
Numerical Results

CEPC collider energy

In the future, the e^+e^- collider CEPC will run at $\sqrt{s}=250{\rm GeV},$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 … のへぐ

□ NLO QCD Corrections to $\gamma \gamma \rightarrow J/\psi + c\bar{c}$

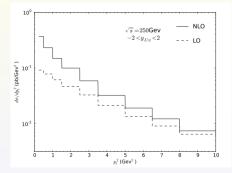

└─ Numerical Results

Numerical Results

CEPC collider energy

In the future, the e^+e^- collider CEPC will run at $\sqrt{s}=250 {\rm GeV},$

▲ロ ▶ ▲ 冊 ▶ ▲ 目 ▶ ▲ 目 ▶ ● の Q @


□ NLO QCD Corrections to $\gamma \gamma \rightarrow J/\psi + c\bar{c}$

-Numerical Results

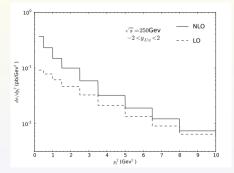
Numerical Results

CEPC collider energy

In the future, the e^+e^- collider CEPC will run at $\sqrt{s}=250 {\rm GeV},$

The p_t^2 distribution of $J/\psi+c\bar{c}$ production through $\gamma\gamma$ collision at CEPC. The solid and dashed lines represent the NLO and LO results with $r=1,\,m_c=1.5 {\rm GeV}.$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○


- NLO QCD Corrections to $\gamma \gamma \rightarrow J/\psi + c\bar{c}$

-Numerical Results

Numerical Results

CEPC collider energy

In the future, the e^+e^- collider CEPC will run at $\sqrt{s} = 250 \text{GeV}$,

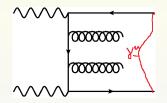
The p_t^2 distribution of $J/\psi + c\bar{c}$ production through $\gamma\gamma$ collision at CEPC. The solid and dashed lines represent the NLO and LO results with $r=1,m_c=1.5 {\rm GeV}.$ Integrated over $p_t^2 \geq 1 {\rm GeV}^2$, the total NLO(LO) cross section is $0.432 {\rm pb}(0.245 {\rm pb}).$ The K factor is about 1.76.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

 $J/\psi + ggg$ Final State Subprocess

 $\blacksquare~\gamma\gamma\rightarrow J/\psi+gg$ Process and Furry's Theorem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

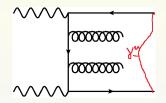

- Feynman Diagrams
- Numerical Results

 $-J/\psi + ggg$ Final State Subprocess

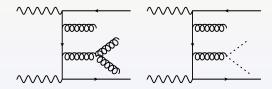
 $\Box \gamma \gamma \rightarrow J/\psi + gg$ Process and Furry's Theorem

$\gamma\gamma \rightarrow J/\psi + gg$ Process and Furry's Theorem

Process $\gamma\gamma \rightarrow J/\psi + gg$ is of the same order as $\gamma\gamma \rightarrow J/\psi + c\bar{c}$. But this process is forbidden by Furry's theorem based on charge conjugation invariance.



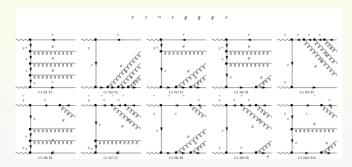
 $J/\psi + ggg$ Final State Subprocess


 $\Box \gamma \gamma \rightarrow J/\psi + gg$ Process and Furry's Theorem

$\gamma\gamma \rightarrow J/\psi + gg$ Process and Furry's Theorem

Process $\gamma\gamma \rightarrow J/\psi + gg$ is of the same order as $\gamma\gamma \rightarrow J/\psi + c\bar{c}$. But this process is forbidden by Furry's theorem based on charge conjugation invariance.

The same as


イロト (四) イヨト (ヨト) つくの

This was also verified by explicit calculation.

Feynman Diagrams

There are 120 Feynman diagrams for $\gamma \gamma \rightarrow J/\psi + ggg$.

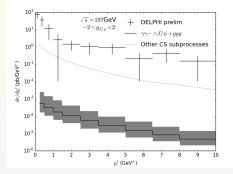
э

Other diagrams can be obtained by exchange gluons and photons.

 $J/\psi + ggg$ Final State Subprocess Numerical Results

Numerical Results

 $J/\psi + ggg$ Final State Subprocess

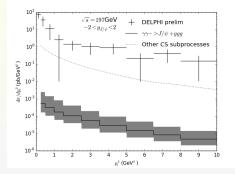

Numerical Results

LEPII collider energy

 $J/\psi + ggg$ Final State Subprocess

Numerical Results

LEPII collider energy

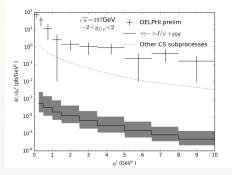


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の��

 $J/\psi + ggg$ Final State Subprocess

Numerical Results

LEPII collider energy



The shaded band is the cross section of $\gamma\gamma \rightarrow J/\psi + ggg$ process with its upper bound obtained at r = 0.5, $m_c = 1.4 \text{GeV}$ and lower bound at r = 2, $m_c = 1.6 \text{GeV}$. The solid lines represent the results with r = 1, $m_c = 1.5 \text{GeV}$.

 $J/\psi + ggg$ Final State Subprocess

Numerical Results

LEPII collider energy

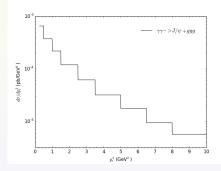
The shaded band is the cross section of $\gamma\gamma \rightarrow J/\psi + ggg$ process with its upper bound obtained at r = 0.5, $m_c = 1.4 \text{GeV}$ and lower bound at r = 2, $m_c = 1.6 \text{GeV}$. The solid lines represent the results with r = 1, $m_c = 1.5 \text{GeV}$.

Integrated over the range $1 \le p_t^2 \le 10 \text{GeV}^2$,

$\sigma(fb)$	$m_c = 1.4 {\rm GeV}$	$m_c = 1.5 {\rm GeV}$	$m_c = 1.6 {\rm GeV}$
r = 0.5	1.32	0.82	0.54
r = 1	0.52	0.33	0.22
r=2	0.26	0.17	0.12

 $J/\psi + ggg$ Final State Subprocess

Numerical Results

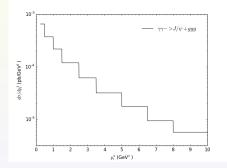

- CEPC collider energy
 - At the e^+e^- collider CEPC,

 $J/\psi + ggg$ Final State Subprocess

Numerical Results

CEPC collider energy

At the e^+e^- collider CEPC,


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の��

 $J/\psi + ggg$ Final State Subprocess

Numerical Results

CEPC collider energy

At the e^+e^- collider CEPC,

The p_t^2 distribution of $J/\psi + ggg$ production through $\gamma\gamma$ collision at CEPC. The solid lines represent the cross section with r=1, $m_c=1.5 {\rm GeV}.$ Integrated over $p_t^2 \geq 1 {\rm GeV}^2$, the total cross section is $0.39 {\rm fb}.$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Summary

Summary

• We have calculated the NLO QCD corrections to $\gamma\gamma \rightarrow J/\psi + c\bar{c}$ process. This is the first truly NLO calculation of 2 to 3 inclusive process for heavy quarkonium production.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- We have calculated the NLO QCD corrections to $\gamma\gamma \rightarrow J/\psi + c\bar{c}$ process. This is the first truly NLO calculation of 2 to 3 inclusive process for heavy quarkonium production.
- Numerical results shows that the cross section of this process at LEPII can be enhanced with a K factor of about 1.46. And the discrepancy between theoretical prediction and experiment data reduced accordingly.

- We have calculated the NLO QCD corrections to $\gamma\gamma \rightarrow J/\psi + c\bar{c}$ process. This is the first truly NLO calculation of 2 to 3 inclusive process for heavy quarkonium production.
- Numerical results shows that the cross section of this process at LEPII can be enhanced with a K factor of about 1.46. And the discrepancy between theoretical prediction and experiment data reduced accordingly.
- As a experimentally distinguishable final state process, It is meaningful to predict its cross section at CEPC. Our results indicate that The NLO corrections is more significant there. And the K factor can reach up to 1.76.

- We have calculated the NLO QCD corrections to $\gamma\gamma \rightarrow J/\psi + c\bar{c}$ process. This is the first truly NLO calculation of 2 to 3 inclusive process for heavy quarkonium production.
- Numerical results shows that the cross section of this process at LEPII can be enhanced with a K factor of about 1.46. And the discrepancy between theoretical prediction and experiment data reduced accordingly.
- As a experimentally distinguishable final state process, It is meaningful to predict its cross section at CEPC. Our results indicate that The NLO corrections is more significant there. And the K factor can reach up to 1.76.

According to Furry's theorem, CS process $\gamma\gamma \rightarrow J/\psi + gg$ is forbidden. The cross section of $\gamma\gamma \rightarrow J/\psi + ggg$ is relatively small.