Detection of Supernova Neutrinos at JUNO

Shun Zhou (周顺) IHEP, Beijing

The JUNO Workshop on Neutrino Astronomy and Astrophysics Nanjing University, 2016-04-17

The JUNO Experiment

 Jiangmen Underground Neutrino Observatory (JUNO), a multiple-purpose neutrino experiment, approved in Feb. 2013 (~ 300 M\$), construction started in Jan. 2015.

- 20 kton LS detector
- 3% energy resolution
- 700 m underground
- Rich Physics Possibilities
 - Reactor Neutrinos for neutrino mass hierarchy & precision measurement of oscillation parameters
 - <u>Supernova Neutrino Burst</u>
 - Diffuse Supernova Neutrino Background
 - Geoneutrinos
 - Solar Neutrinos
 - Atmospheric Neutrinos
 - Proton Decays
 - Exotic Searches

Talks by Y.F. Wang at ICFA Seminar 2008, Neutel 2011; by J. Cao at NeuTel 2009, NuTurn 2012, NeuTel 2015; Papers by L. Zhan, Y.F. Wang, J. Cao, L.J. Wen, PRD78:111103, 2008; PRD79:073007,2009; Y.F. Li, J. Cao, Y.F. Wang, L. Zhan, PRD 88: 013008, 2013.

High-precision, Giant LS detector

Muon tracker –

	KamLAND	BOREXINO	JUNO	Run for 6 yrs	Relative	Absolute Δm ²
LS mass	1 kt	0.5 kt	20 kt	Statistics	4σ	5σ
Energy Resolution	6%/√E	5%/√E	3%/ √E			
Light yield	250 p.e./MeV	511 p.e./MeV	1200 p.e./MeV	Realistic	3σ	4σ

Galactic SN 1054

Distance: 6500 light years (2 kpc) Center: Neutron Star (R~30 km) Progenitor : M ~ 10 solar masses

Red : Optical (Hubble) Blue : X-Ray (Chandra)

Stellar Collapse and SN Explosion

Grav. binding energy E_b≈3 × 10⁵³ erg
99% Neutrinos
1% Kinetic energy of explosion (1% of this into cosmic rays)
0.01% Photons, outshine host galaxy

Proto-Neutron star: $\label{eq:phi} \rho \sim \rho_{nuc} = 3 \times 10^{14} \, g \, cm^{-3}$ T $\sim 30 \, MeV$

Exploding Models (8–10 Solar Masses)

Kitaura, Janka & Hillebrandt: "Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous type II-P supernovae", astro-ph/0512065

Three Phases of Neutrino Emission

- Spherically symmetric model (10.8 M $_{\odot}$) with Boltzmann neutrino transport
- Explosion manually triggered by enhanced CC interaction rate Fischer et al. (Basel group), A&A 517:A80, 2010 [arxiv:0908.1871]

Galactic SN Neutrinos

Inverse beta decay (IBD) $\overline{\nu}_e + p \longrightarrow n + e^+$

- 5000 IBD events, golden channel for SN neutrino observations
- Coincidence of prompt and delayed signals: least background
- Dominant channel for electron anti- ν , good reconstruction of E_{ν}

Elastic v - p Scattering (pES) $v + p \rightarrow v + p$

Elastic v - e Scattering (eES) $v_e + e \rightarrow v_e + e$

- 2000 pES events, dominant channel for muon & tau neutrinos
- Low threshold for visible energy: nominal value = 0.2 MeV
- reconstruction of neutrino energy spectrum: high-energy tail

F.P. An et al, JUNO Yellow Book, published in JPG, 1507.05613

Hypothesis of Energy Equipartition

Jia-Shu Lu et al, to appear

Only the MSW effects in the supernova are considered, and the energy fractions can be constrained.

Neutrino Mass Bound @ JUNO

J.S. Lu et al., JCAP 15', 1412.7418

Galactic SN Neutrinos

For Optical Observations: SuperNova Early Warning System (SNEWS) Ya-Ping Cheng et al, to appear

Diffuse Supernova Neutrino Background (DSNB)

- Approx. 10 core collapses/sec in the visible universe
- Emitted u energy density
 - \sim extra galactic background light
 - $\sim 10\%$ of CMB density
- Detectable $\overline{\nu}_e$ flux at Earth ~ 10 cm⁻² s⁻¹ mostly from redshift $z \sim 1$
- Confirm star-formation rate
- Nu emission from average core collapse & black-hole formation
- Pushing frontiers of neutrino astronomy to cosmic distances!

Window of opportunity between reactor $\overline{\nu}_e$ and atmospheric ν bkg

Diffuse SN Background (DSNB)

Neutrinos from all the SNe in our Universe# of SNe per yr per Mpc³(un. SFR, IMF) $\frac{dF_{\bar{\nu}_e}}{dE_{\bar{\nu}_e}} = \frac{c}{H_0} \int_0^{z_{max}} dz \frac{R_{SN}(z)}{\sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda}} \frac{dN_{\bar{\nu}_e}(E'_{\bar{\nu}_e})}{dE'_{\bar{\nu}_e}}$ Cosmological evolutionv spectrum

- Observation window: 11 MeV < E_v < 30 MeV
- PSD techniques for NC atmospheric v
- Fast neutrons: r < 16.8 m (equiv. 17 kt mass)

Syst. uncertainty BG	5%		20%		
$\langle { m E}_{ar{ u}_{ m e}} angle$	rate only	spectral fit	rate only	spectral fit	
$12{ m MeV}$	1.7σ	1.9σ	1.5σ	1.7σ	
$15{ m MeV}$	3.3σ	3.5σ	3.0σ	3.2σ	
$18{ m MeV}$	5.1σ	5.4σ	4.6σ	4.7σ	
$21{ m MeV}$	6.9σ	7.3σ	6.2σ	6.4σ	

Sanduleak - 69 202

Supernova 1987A 23 February 1987

Large Magellanic Cloud SN 1987A

Distance: 165 000 light yrs (50 kpc) Center: Neutron Star (expected, but not found) Progenitor: M ~ 18 solar masses

Supernova Neutrinos: SN 1987A

Hirata et al., PRD 38 (1988) 448

Supernova Neutrinos: SN 1987A

Kamiokande-II (Japan):

- Water Cherenkov (2,140 ton)
- **Clock Uncertainty** \pm 1 min

Irvine-Michigan-Brookhaven (US):
■ Water Cherenkov (6,800 ton)
■ Clock Uncertainty ±50 ms

Baksan LST (Soviet Union):

- Liquid Scintillator (200 ton)
- Clock Uncertainty +2/-54 s

Mont Blanc: 5 events, 5 h earlier

Supernova Neutrinos: SN 1987A

SN v **Detection:** present and future experiments

supernova neutrino detectors

Detector Location Mass **Events** Status Type (kton) @ 10 kpc 32 Super-K Water 8000 Running (SK IV) Japan **Scintillator** LVD 300 Italy 1 Running **KamLAND Scintillator** 300 Japan 1 Running 0.3 **Borexino Scintillator** Italy 100 Running **South Pole** IceCube Long string (600) (106) Running Baksan **Scintillator** Russia 0.33 50 Running **Mini-BooNE Scintillator** USA 0.7 200 (Running) HALO Lead Canada 0.079 20 Running Daya Bay **Scintillator** China 0.33 100 Running **NOvA Scintillator** USA 15 3000 Turning on SNO+ **Scintillator** Canada 1 300 Under construction 0.17 **MicroBooNE** Liquid argon USA 17 Under construction 34 DUNE Liquid argon USA 3000 Proposed Hyper-K Water Japan 540 110,000 Proposed **Scintillator** China 20 6000 **Under construction** JUNO **RENO-50 Scintillator** South Korea 18 5400 Proposed PINGU South pole (600) (10^{6}) Proposed Long string

Adapted from Scholberg @ Neutrino 14

Key Problem: where and when?

(1) Estimate from SN statistics in other galaxies; (2) Only massive stars produce 26 Al (with a half-life 7.2 × 10⁵ years); (3) Historical SNe in the Milky Way; (4) No neutrino bursts observed by Baksan since June 1980

Key Problem: where and when?

High and Low Supernova Rates in Nearby Galaxies

Last observed supernova: 1885A

Observed supernovae: 1917A, 1939C, 1948B, 1968D, 1969P, 1980K, 2002hh, 2004et, 2008S

SN Candidate: The Red Supergiant Betelgeuse (Alpha Orionis)

ASAS-SN Bright Supernova Catalog I: 2013-2014

SN 2020a

10

