Potential of Supernova Relic Neutrino Search by Slow Liquid Scintillator

Hanyu Wei Tsinghua University

April 17, 2016 Workshop on JUNO Neutrino Astronomy and Astrophysics

Contents

- Brief introduction to supernova relic neutrinos (SRN)
- Current experimental upper limits
- Key issues of SRN search in a hydrogen-rich detector
- Slow liquid scintillator (slow LS)
 - Linear alkyl benzene, LAB, as a candidate (arXiv:1511.09339)
- SRN sensitivity study
- Conclusions

Supernova relic neutrinos (SRN)

- Collective supernova burst neutrinos from all the past supernova explosions throughout the history of the Universe
- Also known as diffuse supernova neutrino background (DSNB)

SRN theoretical spectrum

Workshop on JUNO Neutrino Astronomy & Astrophysics

Detection of SRN

• SRN are identified primarily through **IBD** interactions in a hydrogen-rich detector

$$\overline{\nu}_{e} + p \rightarrow e^{+} + n$$

$$| \rightarrow + p \rightarrow D + \gamma (2.2 \text{ MeV}) \quad (200 \text{ } \mu\text{s})$$

$$| \rightarrow + Gd \rightarrow Gd^{*} \rightarrow Gd + \gamma's (8 \text{ MeV}) \quad (30 \text{ } \mu\text{s})$$

Large cross section (10-20x second largest)

Prompt-delayed coincidence: low backgrounds from accidentals, radioactivity and other neutrino sources and interactions Liquid scintillator - KamLAND [scintillation light]

✓ Water - SuperK (Gd-doped) with neutron tagging [Cherenkov light]

Only positron signal

✓ Water – SuperK without neutron tagging [Cherenkov light]

Backgrounds for SRN detection

16/4/16

Workshop on JUNO Neutrino Astronomy & Astrophysics

Current experimental upper limits

Key issues in SRN study

✓ Ignore the backgrounds induced by cosmic muons and reactor neutrinos, which are basically negligible at Jinping context.

	efficiency	Atmos. CC	Atmos. NC	Optical Photon to PMT	
LS	~90%	triple coin. from μ^{\pm} , Michel e^{\pm} , and neutron capture μ^{\pm} visible in 10-30 MeV	Energetic neutrons (< 1GeV atmos. neutrinos considered due to strong quenching of neutron in LS)	Scintillation	
water w/o n-tag	~75%	Michel e^{\pm} from invisible μ^{\pm} .	Secondaries (decays) of n or π^{\pm}/π^{0} (reduced		
water w/ n-tag	~10%	reduced a lot by n-tag μ^{\pm} invisible in 10-30 MeV	by n-tag) below Cherenkov thresh or	Cherenkov	
Gd-water	~70%		different hit pattern		

Green: advantage / Blue: disadvantage Invisible muon: below Cherenkov threshold

✓ Solution: both Cherenkov lights and Scintillation lights are utilized, and further reduce CC and NC backgrounds?

Slow liquid scintillator

 ✓ Separation of Cherenkov and scintillation lights in linear alkyl benzene (LAB), as a slow LS candidate

LAB Scintillation light time profile:

$$n(t) = \frac{\tau_r + \tau_d}{\tau_d^2} (1 - e^{-t/\tau_r}) \cdot e^{-t/\tau_d},$$

- Rising time (τ_r) : 7.7 \pm 3.0 ns
- Decay time (τ_d) : 36.6 ± 2.4 ns
- PMT time resolution: ~2ns
- Scintillation light yield: ~1000/MeV
 - 3% E_{res} @10 MeV assuming a PMT quantum eff. & coverage~10%

Particle identification - ideal

 >250 nm Cherenkov
 True Chrenkov photon number (CPh.) and scintillation photon number (SPh.)

Note: secondary gamma from neutron inelastic scattering would introduce Cherenkov

Particle identification- realistic

- 1. 300-500 nm Cherenkov 2 PMT coverage & quantum
- 2. PMT coverage & quantum eff ~10%

3. Consider Contamination between CPh. and SPh.

Sensitivity study

- [Detector response] Use LAB, PID from true Cherenkov and Scintillation photons
- [Signal flux] HBD model on page 4 for SRN prediction
- [Background flux] Atmospheric neutrino flux
 - > 100 MeV
 - < 100 MeV, basically for atmos. $\bar{\nu}_e$, ($\bar{\nu}_\mu/\nu_\mu$ CC interaction threshold ~105 MeV, NC neutron mainly contributed from >100 MeV atmos. flux)
 - MSW effect considered, which would reduce the flux of $\bar{\nu}_{\mu}/\nu_{\mu}$ by 30%–50% in the interested energy range for SRN study
- GENIE cross sections for neutrino interactions
- Simulation validated by KamLAND SRN result (2012)

Selection cuts and results

- Crucial selection criteria:
 - Prompt signal: N_{SPh} (number of scintillation photons)
 - Ratio of Cherenkov/Scintillation photons: N_{CPh}/N_{SPh}
 - Double-coincidence cut

Atmos. CC bkg: mainly atmos. $\bar{\nu}_e$ and quite a few atmos. $\bar{\nu}_\mu / \nu_\mu$ Atmos. NC bkg: due to secondary γ 's from neutron inelastic scattering with carbon nuclei, (additional cut for Cherenkov light hit pattern).

Comparison

- 8.3-30.8 MeV neutrino energy
- Liquid scintillator (LS), slow liquid scintillator (slow), water Cherenkov (water), and Gd-water (Gd-w)

15 kton-year	LS	water ^a	Gd-w ^a	slow
Accidentals	NA	NA	NA	NA
Reactor neutrinos	0.3	0.03	0.2	0.3
Fast neutrons	0.015	NA	NA	NA
⁹ Li/ ⁸ H0	0.017	NA	0.01	0.017
Atmospheric \bar{v}_e	0.21	0.02	0.13	0.21
Atmospheric $\bar{\nu}_{\mu}/\nu_{\mu}$ CC	3.0	0.26	1.6	0.03
Atmospheric NC	54.0	0.08	0.48	0.21
Total backgrounds	57.5	0.4	2.4	0.77
Signal ^b	3.7	0.3	2.1	3.7
Signal efficiency	92%	10%	66.7%	92%
S/B	0.06	0.75	0.88	4.8

^a with neutron tagging.

^b HBD model; water and Gd-w results corrected by a factor ~0.8 due to the different fraction of free protons in water from that in LS.

Jinping context (~6400 w.m.e.)

Slow LS Less CC than LS due to $N_{\rm CPh}/N_{\rm SPh}$ cut less NC than (Gd-)water due to $N_{\rm SPh}$ cut

Sensitivity

Conclusions

- Based on the capability of the separation of Cherenkov and scintillation lights in slow LS (eg. LAB), atmospheric neutrino CC and NC backgrounds could be reduced significantly.
- A kilo-ton scale detector with LAB has the sensitivity to make a discovery of SRN, which is a key consideration in the future Jinping neutrino experiment. Based on my calculation,

10-year sensitivity	Jinping (2x 1k† LAB)	SK-Gd (20kt Gd-water)	JUNO (w/ PSD*, 20k† LS)
	3.5 σ 10–30 MeV	3σ 15–30 MeV	4σ 15–30 MeV
Ignore cos read	mogenic muons and ctor neutrinos	4σ 10–30 MeV	5σ 10–30 MeV

*PSD: Pulse Shape Discrimination