Potential effects of accretion disk neutrinos on high-energy neutrino produced in GRBs and CCSNe

Gang Guo Shanghai Jiao Tong University

Collaborating with Prof. Yong-Zhong Qian

JUNO Neutrino Astronomy and Astrophysics Seminar April 17-18, 2016, Nanjing University

つひつ

Stellar Evolution Vs Neutrino Astronomy

Gang Guo Shanghai Jiao Tong University CcPotential effects of accretion disk neutrinos on high-energy neutrinos on hanjing2016 2/22

core-collapse ⇓ stellar-mass BH with accretion disk (AD) ⇓ GRB jets

4 0 8

Gang Guo Shanghai Jiao Tong University CcPotential effects of accretion disk neutrinos on high-energy neutrinos on hanjing2016 3/22

core-collapse ⇓ stellar-mass BH with accretion disk (AD) ⇓ GRB jets

AD as a strong source of MeV neutrinos: *e* [±] capture, *e* [±] pair annihilation, etc.

core-collapse ⇓ stellar-mass BH with accretion disk (AD) ⇓ GRB jets

- AD as a strong source of MeV neutrinos: *e* [±] capture, *e* [±] pair annihilation, etc.
- **•** relativistic jets powered by AD $\nu\bar{\nu}$ annihilation or MHD processes.

- AD as a strong source of MeV neutrinos: *e* [±] capture, *e* [±] pair annihilation, etc.
- **•** relativistic jets powered by AD $\nu\bar{\nu}$ annihilation or MHD processes.
- particle acceleration by shocks, or magnetic process such as magnetic reconnection, etc.

- AD as a strong source of MeV neutrinos: *e* [±] capture, *e* [±] pair annihilation, etc.
- **•** relativistic jets powered by AD $\nu\bar{\nu}$ annihilation or MHD processes.
- particle acceleration by shocks, or magnetic process such as magnetic reconnection, etc.
- HE neutrinos emerge naturally from *p*γ or *pp*.

イロト イ押ト イヨト イヨ

Þ

つへへ

イロト イ押ト イヨト イヨ

4 0 8

∋⇒

simultaneity is guaranteed if the duration of AD neutrinos $\Delta {\cal T} \, \gtrsim \, R_{\rm sh}/(2\Gamma_j^2 c) \, \sim \,$ 0.1−1 s, for *R*sh ∼ 10¹⁰−¹² cm and Γ*^j* ∼ 2−10 (mildly relativistic shocks inside stars).

つへへ

the basics of AD neutrinos

- simultaneity is guaranteed if the duration of AD neutrinos $\Delta {\cal T} \, \gtrsim \, R_{\rm sh}/(2\Gamma_j^2 c) \, \sim \,$ 0.1−1 s, for *R*sh ∼ 10¹⁰−¹² cm and Γ*^j* ∼ 2−10 (mildly relativistic shocks inside stars).
- Energy-differential number density of AD neutrinos,

$$
dn_{\bar{\nu}_{\beta}}(E',r)=\frac{E'^{2}dE'}{\exp(E'/T_{\nu})+1}\frac{R_{\nu}^{2}\cos\theta'}{8\pi^{2}r^{2}}\bar{f}_{\beta}(r),
$$

*T*_ν: 5−10 MeV, and $L_v \sim 10^{53-54}$ ergs/s.

the basics of AD neutrinos

- simultaneity is guaranteed if the duration of AD neutrinos $\Delta {\cal T} \, \gtrsim \, R_{\rm sh}/(2\Gamma_j^2 c) \, \sim \,$ 0.1−1 s, for *R*sh ∼ 10¹⁰−¹² cm and Γ*^j* ∼ 2−10 (mildly relativistic shocks inside stars).
- Energy-differential number density of AD neutrinos,

$$
dn_{\bar{\nu}_{\beta}}(E',r)=\frac{E'^{2}dE'}{\exp(E'/T_{\nu})+1}\frac{R_{\nu}^{2}\cos\theta'}{8\pi^{2}r^{2}}\bar{f}_{\beta}(r),
$$

*T*_ν: 5–10 MeV, and $L_v \sim 10^{53-54}$ ergs/s.

initially ν_e and $\bar\nu_e$, with $\mathcal{T}_\nu = \mathcal{T}_{\bar\nu}$ for simplicity (dominated by \bm{e}^\pm capture).

the basics of AD neutrinos

- simultaneity is guaranteed if the duration of AD neutrinos $\Delta {\cal T} \, \gtrsim \, R_{\rm sh}/(2\Gamma_j^2 c) \, \sim$ 0.1−1 s, for *R*sh ∼ 10¹⁰−¹² cm and Γ*^j* ∼ 2−10 (mildly relativistic shocks inside stars).
- Energy-differential number density of AD neutrinos,

$$
dn_{\bar{\nu}_{\beta}}(E',r)=\frac{E'^{2}dE'}{\exp(E'/T_{\nu})+1}\frac{R_{\nu}^{2}\cos\theta'}{8\pi^{2}r^{2}}\bar{f}_{\beta}(r),
$$

*T*_ν: 5−10 MeV, and *L*_ν ∼ 10^{53–54} ergs/s.

- initially ν_e and $\bar\nu_e$, with $\mathcal{T}_\nu = \mathcal{T}_{\bar\nu}$ for simplicity (dominated by \bm{e}^\pm capture).
- flavor conversion $f_\beta(\bar{f}_\beta)$: (1) no evolution (NE), $f_\beta(r)=\bar{f}_\beta(r)=\delta_{\beta e};$ (2) MSW only with (NH), $f_\beta(r) = |U_{\beta 3}|^2$ and $\bar{f}_\beta(r) = |U_{\beta 1}|^2$; (3) MSW only with (IH), $f_\beta(r) =$ $|U_{\beta 2}|^2$ and $\vec{I}_\beta(r) = |U_{\beta 3}|^2$, and (4) exotic evolution (EE), $f_\beta(r) = \vec{I}_\beta(r) = \delta_{\beta\mu}$.

4 0 1

cutoff or dip for a nearby source with θ_0 fixed

 \leftarrow

つへへ

averaging survival probability over θ_0

$$
\langle P_{\nu_{\alpha}}(E) \rangle = \int \exp[-\tau_{\nu_{\alpha}}(E,\theta_0)]g(\theta_0)d\cos\theta_0,
$$

where $g(\theta_0)=\frac{1-\beta^2}{2(1-\beta\cos\theta)}$ $\frac{1-\beta^2}{2(1-\beta\cos\theta_0)^2}$, and $\beta \equiv (1-\Gamma^{-2})^{1/2}$. $\langle \theta_0 \rangle \sim \Gamma^{-1}$.

NE;
$$
\Gamma = 3, 10
$$
; $T_{\nu} = 5, 8$ MeV;
 $R_{\rm sh} = 3 \times 10^9, 10^{11}$ cm

A nice fit for $\langle P_{\nu \alpha} (E) \rangle$:

$$
\langle P_{\nu_{\alpha}}(E) \rangle = \frac{1}{[1 + (E/E_0)^n]}
$$

analytic approximation and scaling parameter

Taking
$$
\theta \sim \theta_0 \ll 1
$$
, $\ell \sim r \sim R_{\rm sh}$, and $\sigma_{\nu_\alpha \bar{\nu}_\beta} \sim G_F^2 s$, we get

$$
\tau_{\nu_{\alpha}}(E,\theta_0) = \sum_{\beta} \int (1-\cos\theta) \sigma_{\nu_{\alpha}\bar{\nu}_{\beta}}(s) \times d n_{\bar{\nu}_{\beta}}(E',r) d\ell \\ \sim \frac{\theta_0^2}{2} [G_F^2 E(3T_{\nu}) \theta_0^2] \Big[\frac{7\pi^2}{1920} \frac{R_{\nu}^2 T_{\nu}^3}{R_{\rm sh}^2} \Big] R_{\rm sh} \\ \sim 25 E_{\rm PeV} R_{\nu,7}^2 T_{\nu,\rm MeV}^4 \theta_0^4 R_{\rm sh,9}^{-1},
$$

and

$$
\langle P_{\nu_{\alpha}}(E) \rangle = \int \exp[-\tau_{\nu_{\alpha}}(E,\theta_0)]g(\theta_0)d\cos\theta_0
$$

$$
\sim \exp[-\tau(E,\bar{\theta})]
$$

depending on $E T_{\nu}^4 \Gamma^{-4} R_{\rm sh}^{-1}$ only.

4 0 8

 \leftarrow \leftarrow \leftarrow

14. B. K.

つへへ

scaling parameter

Gang Guo Shanghai Jiao Tong University CcPotential effects of accretion disk neutrinos on high-energy neutrino produced in GRBs and CRBs and

 \leftarrow

Assuming an initial HE neutrinos with all-flavor total flux $\phi^{(\mathbf{0})}$ and flavor ratio ($\nu_\mu : \bar{\nu}_\mu : \nu_e : \bar{\nu}_e$) = (2:2:1:1). After $\nu\bar{\nu}$ annihilation,

$$
\frac{\phi}{\phi^{(0)}}=\frac{\langle P_{\nu_\mu}(E)\rangle+\langle P_{\bar\nu_\mu}(E)\rangle}{3}+\frac{\langle P_{\nu_e}(E)\rangle+\langle P_{\bar\nu_e}(E)\rangle}{6},
$$

and the corresponding flavor ratio is

$$
R_{\mu/e} \equiv \frac{\phi_{\nu_{\mu}} + \phi_{\bar{\nu}_{\mu}}}{\phi_{\nu_{e}} + \phi_{\bar{\nu}_{e}}} = \frac{2[\langle P_{\nu_{\mu}}(E) \rangle + \langle P_{\bar{\nu}_{\mu}}(E) \rangle]}{\langle P_{\nu_{e}}(E) \rangle + \langle P_{\bar{\nu}_{e}}(E) \rangle}.
$$

Gang Guo Shanghai Jiao Tong University Cc[Potential effects of accretion disk neutrinos on high-energy neutrino produced in GRBs and CCSNe](#page-0-0) Nanjing2016 12/22

spectral and flavor change of HE neutrinos

- \bullet (5,10,5) for case A
- \bullet (8,10,5) for case B
- \bullet (10,3,3) for case C

AD neutrino flavor evolutions: NE, IH, NH, EE

イロト イ押ト イヨト イヨ

Correlation between spectral change and flavor change

- Spectra and flavour content of HE neutrinos in GRBs/CCSNe may be affected by AD neutrinos.
- No specific model has been applied for HE neutrino production in a consistent way, but the above effects should be considered for proper values of (Γ, R_{sh} , T_{ν}), etc.
- These effects may be detected by IceCube if more statistics are accumulated in the near future.

Thank you

Gang Guo Shanghai Jiao Tong University CcPotential effects of accretion disk neutrinos on high-energy neutrinos on high-energy neutrinos on high-energy neutrinos on high-energy neutrinos and CRBs and CRBs and CRBs and CRBs

 \rightarrow

 299

K ロ ▶ K 御 ▶ K 君 ▶ K 君

back up

Gang Guo Shanghai Jiao Tong University CcPotential effects of accretion disk neutrinos on high-energy neutrinos on

 299

 \mathbf{p}

イロトメ 倒 トメ 差 トメ 差

effects of AD neutrinos on proton acceleration

$$
t'_{\rm acc} \sim \kappa \frac{E'_{\rho}}{e c B'} \simeq 4 \times 10^{-9} \text{ s } \kappa \left(\frac{E'_{\rho}}{\text{PeV}}\right) \left(\frac{R_{\rm sh,10}^2 \Gamma_{0.5}^2}{\epsilon_{B,-1} L_{53}^{\rm iso}}\right)^{1/2},
$$

$$
t'_{\rm AD} \sim \frac{E_{\rho}}{\Delta E_{\rho}} \frac{1}{\Gamma \sigma_{\rho \nu} n_{\nu} (1 - \cos \theta) c} \sim \frac{E_{\rho}}{\Delta E_{\rho}} \frac{2\Gamma}{\sigma_{\rho \nu} n_{\nu} c}
$$

$$
\sim 6.8 \times 10^{-3} \text{ s} \times \Gamma_{0.5}^2 (5 \text{ MeV}/T_{\nu})^4 R_{\rm sh,10}^2 (\text{PeV}/E'_{\rho}),
$$

Processes of AD neutrino are typically slow, so that they don't affect particle acceleration and HE neutrino production. The only exception is $\nu\bar{\nu}$ annihilation between AD neutrino and HE neutrinos, as discussed above.

Gang Guo Shanghai Jiao Tong University CcPotential effects of accretion disk neutrinos on hanging 2016 18/22

Choked jets and radiation constraints

Gang Guo Shanghai Jiao Tong University CcPotential effects of accretion disk neutrinos on high-energy neutrinos on high-

The same flavor annihilation case is dominated by the Z-resonance pro- $\text{cess } (\nu_\alpha \bar{\nu}_\alpha \to Z^* \to f \bar{f}),$ with the leading order cross section given by

$$
\sigma_Z^S(S) = \frac{2G_F^2}{3\pi} \sum_f n_f s P_Z [t_{f3}^2 - 2t_{f3} Q_f s_W^2 + 2Q_f^2 s_W^4],
$$

where s is the square of the CM energy, t_{f3} , Q_f are the isospin and charge for each fermion, and $n_f = 1$ (3) for leptons (quarks). $s_W \equiv$ $\sin \theta_W$, and θ_W is the Weinberg angle. P_Z is defined as

$$
P_Z = \frac{M_Z^4}{(s - M_Z^2)^2 + \Gamma_Z^2 M_Z^2},
$$

with *M^z* and Γ*^z* the Z-boson mass and decay width.

For both $\alpha = \beta$ and $\alpha \neq \beta$, annihilation process can occur via t-channel process (exchanging Z-boson for $\alpha = \beta$ and W-boson for $\alpha \neq \beta$). The leading order cross sections are calculated as

$$
\sigma_Z^t(\nu_\alpha \bar{\nu}_\alpha \to \nu_\alpha \bar{\nu}_\alpha) = \frac{G_F^2}{2\pi} sF_1(s/M_Z^2),
$$

$$
\sigma_W^t(\nu_\alpha \bar{\nu}_\beta \to l_\alpha^- l_\beta^+) = \frac{2G_F^2}{\pi} sF_1(s/M_W^2),
$$

with $F_1(x) = [x^2 + 2x - 2(1 + x) \ln(1 + x)]/x^3$. For $\alpha = \beta$, there are also interference terms between s-channel and t channel processes. All contributions above are included in our calculations.

Take ν*^e* for demonstration: since the matter density near the BH center is very high, ν_e is almost coincident with ν_{3m} for NH (ν_{2m} for IH); it then evolves adiabatically when propagating to the region where $HE\nu s$ are produced, and we have

> $f_{\alpha}(r) = |U_{\alpha 3}|^2$, (NH) $|U_{\alpha 2}|^2$, (IH)

