

Studies on the charmed baryon  $\Lambda_c$  at BESIII

### 吕晓睿 (Lyu Xiao-Rui) 中国科学院大学 (UCAS) (A member of the BESIII collaboration)

## Outline

- **The lightest heavy baryon:**  $\Lambda_c$
- About the BESIII experiment
- **Recent results on the**  $\Lambda_{c}$  **decays** 
  - $\succ$  the semi-leptonic decay  $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$
  - > 12 major hadronic decay rates, *esp*,  $pK\pi$
  - First observation of the decay involving the neutron
- Impacts and prospects

## Summary

### ... the lego blocks of our matter-world!





# **BESIII**: a unique place to study the hadron structure below 3 GeV



### Quark model picture:

a heavy quark (c) with an unexcited spin-zero diquark (u-d)



In some sense, more reliable prediction of heavy-light quark transition without dealing with light degrees of freedom that have net spin or isospin.

# $\Lambda_c^+$ provides more powerful test on internaldynamics than D/Ds does

Apr. 18, 2016

## $\Lambda_c^+$ : cornerstone of charmed baryon spectroscopy

- The lightest charmed baryon
- Most of the charmed baryons will eventually decay to Λc
- The Ac is one of important tagging hadrons in c-quark counting in the productions at high energy energies





#### Apr. 18, 2016

## $\Lambda_c^+$ weak decays

• Contrary to charmed meson, W-exchange contribution is important



- The Ac weak decay acts as isospin filter
  - ✓ For example, Oset suggests to study the Λ(1405) through Λc→π Λ(1405) and Λ(1405) e v, which filters isospin I=0 from contamination of the I=1

[Phys. Rev. C 92, 055204 (2015), Phys. Rev. D 93, 014021 (2016)]





#### Apr. 18, 2016



Apr. 18, 2016

EPD seminar@IHEP

7

## Charmed baryon thresholds



## The BEPCII Collider

Beam energy: 1.0 – 2.3 GeV Peak Luminosity: *Design:* 1×10<sup>33</sup> cm<sup>-2</sup>s<sup>-1</sup> *Achieved:* 1 x 10<sup>33</sup> cm<sup>-2</sup>s<sup>-1</sup>

Optimum energy: 1.89 GeV Energy spread:  $5.16 \times 10^{-4}$ 

Circumference: 237 m



In 2015, BEPCII made successful test with top-up mode! *Beam energy measurement:* Using Compton backscattering technique. Accuracy up to 5×10<sup>-5</sup>

# **Energies of the BEPCII Collider**





## **BESIII** data samples



**BEPCII** can reach here!

- 4100~4400 MeV: 0.5/fb coarse scan
- 3850~4590 MeV: 0.5/fb fine scan
- In 2015, we finished energy scan at 2000~3000 MeV
- In 2016, we will take  $\sim 3/\text{fb}$  Ds data at 4180 MeV (about 5 times of CLEO-c data)

#### Machine luminosity is optimal near $\psi''$ peak EPD seminar@IHEP

Apr. 18, 2016

## <u>NIM A614, 345 (2010)</u> The BESIII Detector



The new BESIII detector is hermetic for neutral and charged particle with excellent resolution, PID, and large coverage.

Apr. 18, 2016

## Data taking @4.6GeV proposed in 2013

## **Proposal of Studying the Charmed Bayron** $\Lambda_c^+$ at **BESIII**

Wenbiao Yan Guangshun Huang Hai-Bo Li Xiao-Rui Lu Changzheng Yuan

Zhengguo Zhao Yangheng Zheng

Institute of High Energy Physics University of Chinese Academy of Sciences University of Science and Technology of China

**BESIII** physics and software workshop at Tsinghua University 2013.2.27-3.1

## **BESIII data taken**

In 2014, BESIII took data above  $\Lambda_c$  pair threshold and run machine at 4.6GeV with excellent performance! This is a marvelous achievement of BEPC!



First time to systematically study charmed baryon at threshold!

## Absolute BF's of $\Lambda_c^+$ hadronic decays

- Absolute branching fractions (BF) of  $\Lambda_c^+$  decays are still not well determined since its discovery 30 years ago
  - BFs of all the decay modes (~85%) are measured relative to  $\Lambda_c^+ \rightarrow p K^- \pi^+$
  - − Charm counting → test SM
  - However, no completely model-independent measurements of the absolute BF of  $\Lambda_c^+ \rightarrow p K^- \pi^+$  (from Argus and CLEO very old results) *uncertainties of BFs of*  $\Lambda_c^+$  *decays are 25%~40% in PDG2014*
- Until Belle's first "model-independent" measurement:  $B(\Lambda_c^+ \rightarrow pK^-\pi^+) = (6.84 \pm 0.24^{+0.21}_{-0.27})\%$ precision reaches to 4.7% [PRL113(2014)042002]
- However, measurement using the threshold pair-productions via e<sup>+</sup>e<sup>-</sup> annihilations is unique: the most simple and straightforward

#### PDG2014



Apr. 18, 2016

#### EPD seminar@IHEP

Total BF overflow?

## Detection of $\Lambda_c$ pairs



12 modes  $pK_S$  $pK^{-}\pi^{+}$  $pK_S\pi^0$  $pK_S\pi^+\pi^$  $pK^{-}\pi^{+}\pi^{0}$  $\Lambda \pi^+$  $\Lambda \pi^+ \pi^0$  $\Lambda \pi^+ \pi^- \pi^+$  $\Sigma^0 \pi^+$  $\Sigma^+ \pi^0$  $\Sigma^+\pi^+\pi^ \Sigma^+ \omega$ 

# Single Tag (ST) and Double Tag (DT) method 单标记与双标记方法

## Threshold production at 4.6GeV:

- $\Lambda_c$  are always in pairs
- **\bullet DT techniques: (partial-)reconstruct both**  $\Lambda_c$  mesons
- Charm events at threshold are very clean
- Ratio of signal to background is optimum
- Lots of systematic uncertainties cancellation while applying DT method
- We define an optimal invariant mass M<sub>BC</sub>

$$M_{\rm BC}c^2 \equiv \sqrt{E_{\rm beam}^2 - p^2 c^2}$$







 $_{-}\pi'$ 



| modes                       | $N_i^{ST}$    |
|-----------------------------|---------------|
| $pK_S$                      | $1243 \pm 37$ |
| $pK^{-}\pi^{+}$             | $6308 \pm 88$ |
| $pK_S\pi^0$                 | $558 \pm 33$  |
| $pK_S\pi^+\pi^-$            | $454 \pm 28$  |
| $pK^{-}\pi^{+}\pi^{0}$      | $1849 \pm 71$ |
| $\Lambda \pi^+$             | $706 \pm 27$  |
| $\Lambda \pi^+ \pi^0$       | $1497 \pm 52$ |
| $\Lambda \pi^+ \pi^- \pi^+$ | $609 \pm 31$  |
| $\Sigma^0 \pi^+$            | $586 \pm 32$  |
| $\Sigma^+ \pi^0$            | $271 \pm 25$  |
| $\Sigma^+\pi^+\pi^-$        | $836 \pm 43$  |
| $\Sigma^+ \omega$           | $157\pm22$    |
|                             |               |





| Decay modes                 | $N_{-j}^{DT}$ |
|-----------------------------|---------------|
| $pK_S$                      | $89 \pm 10$   |
| $pK^{-}\pi^{+}$             | $390 \pm 21$  |
| $pK_S\pi^0$                 | $40\pm7$      |
| $pK_S\pi^+\pi^-$            | $29\pm 6$     |
| $pK^{-}\pi^{+}\pi^{0}$      | $148 \pm 14$  |
| $\Lambda \pi^+$             | $59\pm 8$     |
| $\Lambda \pi^+ \pi^0$       | $89 \pm 11$   |
| $\Lambda \pi^+ \pi^- \pi^+$ | $53\pm7$      |
| $\Sigma^0 \pi^+$            | $39\pm 6$     |
| $\Sigma^+ \pi^0$            | $20\pm5$      |
| $\Sigma^+\pi^+\pi^-$        | $56 \pm 8$    |
| $\Sigma^+ \omega$           | $13 \pm 3$    |

### Very clean backgrounds

## Hadronic branching fraction results

PRL 116, 052001 (2016)

a least square global fitter: simultaneous

fit to all the modes

[Chinese Phys. C37(2013)106201]

| NA a da                             | $\mathbf{T}$                                    |                                 |                                 |
|-------------------------------------|-------------------------------------------------|---------------------------------|---------------------------------|
| wode                                | This work (%)                                   | PDG (%)                         | BELLE B                         |
| $pK_S^0$                            | $1.52 \pm 0.08 \pm 0.03$                        | $1.15\pm0.30$                   |                                 |
| ${m  ho}{m K}^-\pi^+$               | $5.84\pm0.27\pm0.23$                            | $5.0 \pm 1.3$                   | $6.84 \pm 0.24^{+0.21}_{-0.27}$ |
| ${m  ho}{m K}^0_S\pi^0$             | ${ 1.87 \pm 0.13 \pm 0.05 }$                    | $1.65\pm0.50$                   |                                 |
| ${\it pK_S^0}\pi^+\pi^-$            | ${\bf 1.53 \pm 0.11 \pm 0.09}$                  | $1.30\pm0.35$                   |                                 |
| ${m  ho}{m K}^-\pi^+\pi^0$          | ${\bf 4.53 \pm 0.23 \pm 0.30}$                  | $3.4\pm1.0$                     |                                 |
| $\Lambda\pi^+$                      | $1.24\pm0.07\pm0.03$                            | $1.07\pm0.28$                   |                                 |
| $\Lambda\pi^+\pi^0$                 | $7.01 \pm 0.37 \pm 0.19$                        | $3.6\pm1.3$                     |                                 |
| $\Lambda\pi^+\pi^-\pi^+$            | $3.81\pm0.24\pm0.18$                            | $2.6\pm0.7$                     |                                 |
| $\Sigma^0 \pi^+$                    | $1.27 \pm 0.08 \pm 0.03$                        | $1.05\pm0.28$                   |                                 |
| $\mathbf{\Sigma}^+ \pi^0$           | $1.18 \pm 0.10 \pm 0.03$                        | $1.00\pm0.34$                   |                                 |
| $\mathbf{\Sigma}^{+}\pi^{+}\pi^{-}$ | $\textbf{4.25}\pm\textbf{0.24}\pm\textbf{0.20}$ | $\textbf{3.6} \pm \textbf{1.0}$ |                                 |
| $\Sigma^+\omega$                    | $1.56\pm0.20\pm0.07$                            | $\textbf{2.7} \pm \textbf{1.0}$ |                                 |

- ✓  $B(pK^{-}\pi^{+})$ : BESIII precision comparable with Belle's
- ✓ **BESIII**  $B(pK^{-}\pi^{+})$  is smaller
- ✓ Improved precisions of the other 11 modes significantly

## 欧洲核子中心新闻报道

## CERN COURIER

Latest Issue Archive Jobs Links Buyer's guide White papers Events Contact us

Search

Go

#### **REGISTER NOW**

**Register** as a member of *cerncourier.com* and get full access to all features of the site. Registration is free.

#### **CERN COURIER**

#### Mar 18, 2016 BESIII makes first direct measurement of the $\Lambda_c$ at threshold

The charmed baryon,  $\Lambda_c$ , was first

observed at Fermilab in 1976. Now, 40 years later, the Beijing Spectrometer (BESIII) experiment at the Beijing Electron–Positron Collider II (BEPCII) has measured the absolute branching fraction of  $\Lambda^+_{c} \rightarrow pK^-\pi^+$  at threshold for the first time.



Beam-constrained mass distribution

#### DIGITAL EDITION

CERN Courier is now available as a regular digital edition. Click here to read the digital edition.



More companies >

FEATURED

#### LATEST CERN COURIER ARTICLES

- Another important step for the AWAKE experiment
- When trees break
- TPS exceeds design goal of 500 mA stored current
- From the April 1973 issue
- CMS hunts for supersymmetry in

BF of 
$$\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$$

- $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$  is a  $c \rightarrow s l^+ \nu_l$  dominated process.
- Urgently needed for LQCD calculations.
- No direct absolute measurement for  $\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e)$  available.

 $\mathcal{B}(\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e) = (2.1 \pm 0.6)\%$  PDG 2014

scaling to (2.9±0.5)%, when taking the BELLE's B( $pK^{-}\pi^{+}$ ) However, this is not a direct measurement.

- Theoretical predications for branching fraction of  $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$ ranges from 1.4% to 9.2%.
- Thus, measuring B(Λ<sup>+</sup><sub>c</sub> → Λe<sup>+</sup>ν<sub>e</sub>) will provide very important experimental information for

1) testing the theoretical predications for  $\mathcal{B}(\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e)$ .

- 2) calibrating the LQCD calculations.
- 3) addition information for determining CKM elements. Apr. 18, 2016 EPD seminar@IHEP

# **SII** Candidate events for $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$

11 ST modes are used, except  $\Sigma^+ \omega$ 

567/pb @ 4.6 GeV



## Results of $B(\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e)$

#### PRL 115, 221805 (2015)

#### an optimized missing mass:

$$egin{aligned} U_{ ext{miss}} &= E_{ ext{miss}} - c \left| ec{p}_{ ext{miss}} 
ight| \ E_{ ext{miss}} &= E_{ ext{beam}} - E_{\mathcal{K}^0_S} - E_{\pi^+}, \ ec{p}_{ ext{miss}} &= ec{p}_{\Lambda^+_c} - ec{p}_{\mathcal{K}^0_S} - ec{p}_{\pi^+}, \ ec{p}_{\Lambda^+_c} &= - \hat{p}_{ ext{tag}} \sqrt{E_{ ext{beam}}^2 - m_{\Lambda^+_c}^2}, \end{aligned}$$



where  $\hat{p}_{tag}$  is the direction of the momentum of singly tagged  $\bar{\Lambda}_c^-$ ;

$$B(\Lambda_c^+ \to \Lambda e^+ \nu_e) = (3.63 \pm 0.38 \pm 0.20)\%$$

- First absolute measurement!
- Statistics limited
- Best precision to date: twofold improvement

scaled PDG (2.9±0.5)%

## Comparison with predictions and PDG

| Theoretical Models       | predicated branching fraction for $\Lambda_c^+ \to \Lambda e^+ \nu_e$ |
|--------------------------|-----------------------------------------------------------------------|
| MBM [1]                  | 1.9%                                                                  |
| NRQM [1]                 | 2.6%                                                                  |
| SU(4)-symmetry limit [2] | 9.2%                                                                  |
| RSQM [3]                 | 4.4%                                                                  |
| QCM [4]                  | 5.62%                                                                 |
| SQM [5]                  | 1.96%                                                                 |
| NRQM2 [6]                | 2.15%                                                                 |
| NRQM3 [7]                | 1.42%                                                                 |
| QCD SR1 [8]              | $(3.0 \pm 0.9)\%$                                                     |
| QCD SR2 [9]              | $(2.6 \pm 0.4)\%$                                                     |
| QCD SR3 [9]              | $(5.8 \pm 1.5)\%$                                                     |
| STSR [10]                | 2.22% for $\Lambda_c^+ \to \Lambda l^+ \nu_l$                         |
| STNR [10]                | 1.58% for $\Lambda_c^+ \to \Lambda l^+ \nu_l$                         |
| HOSR [10]                | 4.72% for $\Lambda_c^+ \to \Lambda l^+ \nu_l$                         |
| HONR [10]                | 4.2% for $\Lambda_c^+ \to \Lambda l^+ \nu_l$                          |
| LCSRs [11]               | $(3.0 \pm 0.3)\%$ for $\Lambda_c^+ \to \Lambda l^+ \nu_l$ (CZ-type)   |
| PDG 2014 [14]            | $(2.1 \pm 0.6)\%$                                                     |
| BESIII                   | $(3.62\pm0.38\pm0.20)\%$                                              |



## Semileptonic $\Lambda_c$ decay

 ${\cal B}(\Lambda_c^+ o \Lambda e^+ 
u) = (3.63 \pm 0.38 \pm 0.20)\%$  Phys.Rev.Lett. 115 (2015) 221805

 $\Gamma(\Lambda_c^+ \to \Lambda e^+ \nu) = (18.2 \pm 2.1) \times 10^{10} s^{-1}$  Besiin

$$\Gamma(\Lambda_c^+ \to X e^+ \nu) = (22.5 \pm 8.5) \times 10^{10} s^{-1} 
\Gamma(D^0 \to X e^+ \nu) = (15.84 \pm 0.27) \times 10^{10} s^{-1} \text{ PDG2014} 
\Gamma(D^+ \to X e^+ \nu) = (15.45 \pm 0.29) \times 10^{10} s^{-1}$$

Data: 
$$\frac{\Gamma(\Lambda_c^+ \to \Lambda e^+ \nu)}{\Gamma(D \to X e^+ \nu)} = 1.16 \pm 0.13 \qquad \frac{\Gamma(\Lambda_c^+ \to X e^+ \nu)}{\Gamma(D \to X e^+ \nu)} = 1.44 \pm 0.54$$

Prediction:

$$\frac{\Gamma(\Lambda_c^+ \to X e^+ \nu)}{\Gamma(D \to X e^+ \nu)} = 1.20 \sim 1.67$$

J. Rosner (2012) Manohar, Wise(1994) Gronau and Rosner(2011)

- The inclusive  $\Lambda c$  semileptonic decay rate  $\approx \Lambda c \rightarrow \Lambda l v$  rate?
- No evidence for semileptonic decay in the final states without Λ.
- Precise measurement of the inclusive Ac semileptonic is important.
- Search for other semileptonic modes, such as pK<sup>-</sup> e<sup>+</sup>v<sub>e</sub>



## PRL审稿人意见

The article presents the first measurement of the absolute branching fraction for the semileptonic decay of the Lambda\_c to Lambda e\nu. This sets of measurements are important for testing different non-perturbative theoretical models of heavy hadrons, and model-independent measurements like this one provide extremely valuable data. Moreover, this measurement provides important data to model the phenomenology of hadrons and which go on to be used in current and future collider experiments.



## Observation of $\Lambda_c^+ \rightarrow n K_S^0 \pi^+$

- ✓ The total measured branching fractions for  $\Lambda_c^+$  decay is only about 60%. Searching for new decay modes are important for understanding the decay property of  $\Lambda_c^+$ .
- ✓ There is no measurements for  $\Lambda_c^+$  decay into the final states containing neutron.
- $\checkmark DT method is used$
- ✓ To confer the missing neutron, we define the variable  $M^2_{miss}$

 $M_{\rm miss}^2$  is calculated to extract the information of missing neutron

$$M_{\mathrm{miss}}^2 = (p_{\Lambda_c^+} - p_{K_s^0} - p_{\pi^+})^2 = E_{\mathrm{miss}}^2 - c^2 |\overrightarrow{p}_{\mathrm{miss}}|^2.$$

In analysis,

$$egin{aligned} E_{
m miss} &= E_{
m beam} - E_{\mathcal{K}^0_S} - E_{\pi^+}, \ ec{p}_{
m miss} &= ec{p}_{\Lambda^+_c} - ec{p}_{\mathcal{K}^0_S} - ec{p}_{\pi^+}, \ ec{p}_{\Lambda^+_c} &= - \hat{p}_{
m tag} \sqrt{E_{
m beam}^2 - m_{\Lambda^+_c}^2}, \end{aligned}$$

An optimal way to improve resolution

where  $\hat{p}_{tag}$  is the direction of the momentum of singly tagged  $\bar{\Lambda}_c^-$ ;

## Observation of $\Lambda_c^+ \rightarrow nK_S^0 \pi^+$

567/pb data @ 4.6 GeV



scatter plots  $M_{\pi+\pi-}$  versus  $M^2_{miss}$ 

## **Observation of** $\Lambda_c^+ \rightarrow n K_S^0 \pi^+$



**BESIII Preliminary results:** 

 $B[\Lambda_{c}^{+} \rightarrow nK_{S}^{0}\pi^{+}] = (1.82 \pm 0.23 \pm 0.11)\%$ 

# First observation of $\Lambda_{\rm C}^{+}$ decays to final states involving the neutron.

# Experimental precision reaches of charmed hadrons

|    | golden mode                                                                   | δB/B                | SL                                                   | δΒ/Β       |
|----|-------------------------------------------------------------------------------|---------------------|------------------------------------------------------|------------|
| D0 | B(Kpi)=(3.88±0.05)%                                                           | 1.3%                | B(Kev)=(3.55±0.05)%                                  | 1.4%       |
| D+ | B(Kpipi)=(9.13±0.19)%                                                         | 2.1%                | B(K0ev)=(8.83±0.22)%                                 | 2.5%       |
| Ds | B(Kkpi)=(5.39±0.21)%                                                          | 3.9%                | B(phiev)=(2.49±0.14)%                                | 5.6%       |
| Λc | B(pKpi)=(5.0±1.3)%(PDG2014)<br>=(6.8±0.36)% (BELLE)<br>=(5.84±0.35)% (BESIII) | 26%<br>5.3%<br>6.0% | B(∧ev)=(2.1±0.6)%(PDG2014)<br>=(3.63±0.43)% (BESIII) | 29%<br>12% |

- BESIII  $\Lambda_c$  data correspond to 567/pb taken in 2014
- We have chance to improve the precisions of Λ<sub>c</sub> decay rates to the level of charmed mesons!

# More $\Lambda_c$ data set ?



We propose one year dedicated data taking at  $\Lambda_c$  threshold

## $0.5 \text{ M} \Lambda_c^+$ pairs

# **Precision Prospects**

## Push the precisions to the level of those of D/Ds mesons. Hadronic decays

- PWA analysis of Cabbio-favored hadronic decays: light hadrons
- studies of the modes involving neutron particles

### Semi-Leptonic decays :

- so far, only  $\Lambda e^+ v_e$  mode is measured; How about pK<sup>-</sup>  $e^+ v_e$ ?
- many more semi-leptonic modes can be established at BESIII!

|    | golden mode                                                                                                  | δΒ/Β                               | SL                                                                                         | δ <b>Β/Β</b>              |
|----|--------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------|---------------------------|
| D0 | B(Kpi)=(3.88±0.05)%                                                                                          | 1.3%                               | B(K e v)=(3.55±0.05)%                                                                      | 1.4%                      |
| D+ | B(Kpipi)=(9.13±0.19)%                                                                                        |                                    | B(K0 e v)=(8.83±0.22)%                                                                     | 2.5%                      |
| Ds | B(Kkpi)=(5.39±0.21)%                                                                                         | 3.9%                               | B(phi e v)=(2.49±0.14)%                                                                    | 5.6%                      |
| Лc | B(pKpi)=(5.0±1.3)% (PDG2014)<br>=(6.8±0.36)% (BELLE)<br>=(5.84±0.35)% (BESIII)<br>=(5.84±0.18)% (new BESIII) | 26%<br>5.3%<br>6.0%<br><b>3.0%</b> | B(∧ev)=(2.1±0.6)%(PDG2014)<br>=(3.63±0.43)% (BESIII)<br><b>=(3.63±0.20)% ( new BESIII)</b> | 29%<br>12%<br><b>5.4%</b> |

### You are welcome to join the effort!

## **Other Relevant Studies**

### • $\Lambda_c^+$ hadronic weak decays

- $\checkmark~$  Two-body hadronic decays of  $\Lambda_c^+~$  are of great interest
- ✓ Decay asymmetry parameters in  $\Lambda_c^+$  two-body hadronic weak decays, such as  $\Lambda_c^+ \to BP$  and  $\Lambda_c^+ \to BV$
- ✓ We can provide precise measurements on this observables (see next page)

#### • search for $\Lambda_c^+$ low rate decays and rare decays

✓ Weak radiative decay  $\Lambda_c^+ \rightarrow \gamma \Sigma^+$ ; predictions of BF are 10<sup>-4</sup> ~10<sup>-5</sup>

• Sensitivity with  $0.5 \text{ M} \Lambda_c^+$  pairs gets to ~10<sup>-4</sup>

- ✓ FCNC, lepton number/family violation, baryon family violation ...
  - Sensitivity with  $0.5 \text{ M} \Lambda_c^+$  pairs reaches to ~10<sup>-5</sup>

## Decay asymmetry in two-body decays

• first or improved measurements of decay asymmetry parameters the following modes  $\Lambda_c^+ \to B(\frac{1}{2}^+) + P$ 

$$\frac{dW}{d\cos\theta} = \frac{1}{2}(1 + \alpha_{\Lambda_c}\alpha_B\cos\theta)$$

 $0.5 \text{ M} \Lambda_c^+$  pairs

| Decay                            | Körner,      | Xu,         | Cheng,      | Ivanov       | Żenczy-     | Sharma, | PDC               | S er |
|----------------------------------|--------------|-------------|-------------|--------------|-------------|---------|-------------------|------|
|                                  | Krämer [260] | Kamal [264] | Tseng [263] | et al. [278] | kowski[277] | [276]   | IDG               | οα   |
| $\Lambda_c^+ \to \Lambda \pi^+$  | -0.70        | -0.67       | -0.95       | -0.95        | -0.99       | -0.99   | $-0.91\pm0.15$    | 0.10 |
| $\Lambda_c^+ \to \Sigma^0 \pi^+$ | 0.70         | 0.92        | 0.78        | 0.43         | 0.39        | -0.31   |                   | 0.10 |
| $\Lambda_c^+ \to \Sigma^+ \pi^0$ | 0.71         | 0.92        | 0.78        | 0.43         | 0.39        | -0.31   | $-0.45{\pm}~0.32$ | 0.20 |
| $\Lambda_c^+ 	o \Sigma^+ \eta$   | 0.33         |             |             | 0.55         | 0           | -0.91   |                   | 0.25 |
| $\Lambda_c^+ 	o p \bar{K}^0$     | -1.0         | 0.51        | -0.49       | -0.97        | -0.66       | -0.99   |                   | 0.05 |

- Most of the modes involve photon or  $\pi^0$  final states:
  - advantage for threshold measurement
- BESIII will provide rigid tests on the theoretical calculations

经过八年努力,终于在4月5日22:29实现对撞亮度 1×10<sup>33</sup>cm<sup>-2</sup>s<sup>-1</sup>,成功达到了BEPCII对撞亮度设计指标!



## Summary

- ♦ BESIII also opens a new door for the charmed baryon Λ<sub>c</sub><sup>+</sup>
   → Precise study of Λc decays stringent test on theoretical models
  - absolute branching fractions of  $\Lambda_c{}^+$  decays suffers from large uncertainties since its discovery 30 years ago
  - · For the first time, BES is able to precisely study its decays at threshold
  - BESIII took a data set of 567/pb and published several world-best results
  - more potentials to reveal the nature of  $\Lambda c$  dynamics
    - We are proposing to take a larger data set; a golden opportunity to thoroughly improve our knowledge on  $\Lambda_{\rm c}$  decays
    - Hadronic decays

PWA analysis of Cabbio-favored hadronic decays and studies of the modes involving the neutron

#### Semi-Leptonic decays

many more semi-leptonic modes, like  $pK^-e^+v_e$ , can be established at BESIII!

# Thank you! 谢谢太家!