γ-ray station at SSRF@SINAP (SLEGS)

Yu-Gang MA (马余刚)

Hongwei Wang & Gongtao Fan

Shanghai Institute of Applied Physics (SINAP), CAS

ICFA Mini-workshop on Future γγ collider, Apr. 23-26, 2017; THU

Outline

- 1. SLEGS @ SSRF-SINAP
- 2. Properties & Scientific goals
- 3. Design of Gamma source
- 4. Design of Beamline
- 5. Design of End station
- 6. Summary & Outlook

1. SLEGS @ SSRF

SINAP is a national research institute for particle accelerator physics and engineering, nuclear science and technology, and interdisciplinary studies. It constructed and operates a 3.5GeV third generation synchrotron light sources – the Shanghai Synchrotron Radiation Facility (SSRF).

It also conducts state-of-the-art R&D in Thorium Molten Salt Reactor (TMSR).

Other key scientific endeavour includes Nuclear Physics, Physical Biology and Water Science & Technology.

SLEGS as one of 16 new SSRF Phase II beamlines, was approved by central government in 2015 and expected to be completed in 2021.

SLEGS is the first laser-Compton scattering based gamma-ray source in China, aiming at the frontier researches in nuclear structure physics, nuclear astrophysics, nuclear photonics, and etc. SLEGS will be opened for users in 2022.

1. SLEGS @ SSRF

energy distribution

Laser-electron X-ray @ SINAP-100MeV e-Linac, 2010

SINAP Shanghai Institute of Applied Physics, Chinese Academy of Sciences

Fig. 3 Spot images of the electron beam (*left*) and the He–Ne laser beam (*right*) at the center of the LCS chamber (the interaction point) observed with the 16-bit CCD camera

Laser-electron X-ray @ SINAP-100MeV e-Linac

Table 2 The LCS experimental parameters including the generated LCS X-rays				
Parameter	SINAP I	SINAP II		
Electron b	beam			
Macropulse energy (MeV)	108	112		
Macropulse charge (nC)	~0.1 (1.0)	0.027 (1.0)		
Pulse length (rms) (ns)	0.95	0.9		
rms spot size at focus (σ_{ex}/σ_{ey}) (mm)	3.1/2.5	1.5/1.9		
Nd: YAG laser				
Wavelength (nm)	1064	1064		
Pulse energy (J)	0.113	0.9 (2.0)		
Pulse duration (FWHM) (ns)	21	7.8		
rms spot size at focus $(\sigma_{lx}/\sigma_{ly})$ (mm)	<0.5/<0.5	<0.2/<0.2		
Laser incident angle	42°	$44 \pm 2^{\circ}$		
Relative time jitter at interaction	1.3	1.0		
point (ns)				
X-rays				
Peak energy (keV)	$29.1 \pm 4.4_{stat} \pm 2.1_{syst}$	$31.73 \pm 0.22_{stat} \pm 1.64_{syst}$		
Peak width (keV)	$7.8 \pm 2.8_{stat} \pm 0.4_{syst}$	$0.74 \pm 0.26_{stat} \pm 0.03_{syst}$		
Photons/sec (total spectrum) ^c	$(5.2 \pm 2.0) \times 10^2$	$(1.7 \pm 0.3) \times 10^3$		

Luo et al., Appl Phys B (2010) 101: 761–771

pulse on and off. The Nd:YAG laser and the electron beam repetition rates are 2.5 Hz and 5 Hz, respectively. We use

2. Properties & Scientific goals

Design
properties• Energy range:0.4-20 MeV• Energy resolution :~5%• Divergence angle:0.5mrad (milli-radian)• Flux :(0.2-4.2)×10⁷ phs/s

2. Properties & Scientific goals

Properties ----Comparison with similar beamline

Beamline name	SSRF-SLEGS (China)	TUNL-HIGS (USA)	UVAOR-II (Japan)	ETL/AIST (Japan)	NewSUBARU (Japan)	Spring-8 LEPSII (Japan)
Energy region (MeV)	0.4-20	2-100 (158)	<6.6	1-40	1.7-73	1500-2900 1500-2400
Resolution (∆E/E)	<5%	0.8-10%	-	-	-	<0.5%
Flux (phs/s)	0.2*10 ⁵ -0.2*10 ⁷	10 ⁸	>107	10 ⁴ -10 ⁵	10 ⁶	10 ⁶ -10 ⁷
Status	2020	running	running	running	running	running

Similar operating beamlines as SLEGS:

- (1) Same production mode: LEPS/LEPS2, external laser scattered by electrons of storage ring.
- (2) Similar Gamma energy region: ETL/AIST-LCS(1.6-40MeV), NewSUBARU(3.9-73MeV) and HIGS(1-158MeV).

Feature of SLEGS:

- (1) Back and slant scattering mode: Incident laser angle tuned from 20° to 160°, Energy also can tunded by Laser Type
- (2) Gamma Energy: Cover important region of nuclear physics and astrophysics
- (3) Gamma resolution and the flux: Reaching the advanced level of the current beamlines.

2. Properties & Scientific goals

•Photo-nuclear physics:

- Nuclear Astrophysics: nuclear reactions which have a critical impact on stellar evolution and nucleosynthesis of elements
- Nuclear structure GDR and NRF, etc.
- Research on the anti-γ radiation properties of aerospace device and calibration for the X/γ detector equiped on aerospace device
 Nuclear waste transmutation research and nuclear safety,
 Gamma-ray imaging techniques (in particular: isotope imaging technology), etc.

Space (radiation hardened)

Nuclear technology and data

nuclear explosion

Nuclear reactor

Isotope Detection

3.1 Operation mode

3.2 Layout

(1) light source: Electron, Laser, LCS chamber (slanting mode), mirror chamber (back scattering).

- (2) Front end of Beamline.
- (3) Beamline: gamma collimator, absorber, bend magnet, gamma monitor, gamma dump.
- (4) End station.

3.3 Gamma source-components-SSRF storage ring

Energy	3.5 GeV
Beam Size σ_x	276.9 um
Beam Size σ_y	12.24 um
Pulse RMS	3 mm
Current	300 mA
Q _e	1.44 nC
Emittance ε _x /ε _y	2.59 / 2.59E-2 nmrad
Divergence η _x /η _y	0.207 / 0 m
β_x/β_y	14. 86 / 5. 78 m
Energy spread	0. 944E-3
Pulse Number	500

Issues related to storage ring:

(1) Interaction LCS chamber

(2) Laser injection and gamma ray extraction

3.3 10.64um CO₂ Laser

DIAMOND GEI	Μ-100A (10.6 μm)	
Air-Cooled RF-Excited OEM Industrial CO ₂ Laser		
Features • Outstanding beam quality and stability • Direct air-cooling • Linear polarization • Highly compact • Low-cost OEM configuration • Fast rise/fall time • Up to 100% duty cycle operation	 All-metal seals for long life Interchangeable laser heads and RF power supplies Wide operating power range 	
DIAMOND GE	Μ-100L (10.6 μm)	

Liquid-Cooled RF-Excited OEM Industrial CO₂ Laser

EETH-00 @ coverent

Features

- Outstanding beam quality and stability
- Highly compact and lightweight, two-piece package
- All-metal seals for long life
- Low-cost OEM configuration
 Interchangeable laser heads and RF supplies
- Linear polarization

- Wide operating power range
- Fast rise/fall time
 - Up to 100% duty cycle operation

System spectification	Parameters
Wavelength(µm)(fixed)	10.55 to 10.63
Output power(W)	100
Power stablity(%)	± 5
Mode Quality	>90% TEM ₀₀ M ² <1.3
Beam size(mm)	3.8 ± 0.4mm
Beam Divergence(mrad,full angle)	<5.0
Polarization(fixed liner)	>100 to 1
Weight of head(kg)	11.8
Weight of power supply(kg)	8.2
Dimensions(mm ³)	591.9×150.4×163.3
Facilities Requirements	
Input power	48VDC 50A
Laser head (heat dissipation)(W)	1200
RF power supply(heat dissipation)(W)	800
Tempture(°C)	5-40
Altitude (m)	< 2000
Humidity	Non-condensing

3.3 Gamma source-simulation

The position deviation of laser vs photon Flux @ collision point, slanting scattering

Requirement of position fine adjustment @ Slanting Scattering

3.4 LCS chamber

The main function:

- Rotatable optical system can adjust the angle between laser and electron beam from 20° to 160°;
- Vacuum system can keep the LCS chamber at a 10⁻⁸ Pa ultra
 -high vacuum environment;
- Finger shielding is set to match the chamber's impedance and storage ring's impedance;
- 3D moving platform which is under the LCS chamber in air can help to adjust the relative position of laser with resolution of 5 μm;
- Flexible holder in the LCS chamber can achieve the electron bunch and laser's relative position adjustment with resolution of 5 µm.

Subsystem	Function and Purpose
3D moving platform	5 μm
Rotatable optical system	0.01°
Vacuum system	10 ⁻⁸ Pa
Finger shielding	impedance matching

3.3 Laser Monitor

The Laser is divided by beam splitter (BS1, 1:99) into many parts. mainly be used to interact with electron. One is used to laser power monitoring. One is used to conduct beam analysis by beam profiler (BP), Another is used to measure the polarization.

3.5 Mirror chamber

The main function:

keeping the electron beam and laser beam waist coincident with in a maximum deviation of 10 μ m in every direction in the 10⁻⁸ Pa ultra-high vacuum environment.

Compents:

It includes optical system, vacuum system, 3D moving platform to adjust the spot position and flexible holder.

Sub-system	Function and Purpose
3D moving platform	5 μm
Optical system	Focusing laser
Vacuum system	10 ⁻⁷ - 10 ⁻⁸ Pa
Water cooling system	Cooling the lens

3.6 Gamma properties @ Gamma source

3.7 Front End

Include: Valve1 (V1), Pre-Mask (Pre-M), Mirror chamber, Photon shutter1 (PS1), Valve2 (V2), Beam Position Monitor1(XBPM1), Fixed Mask1(FM1), Absobor,Safe shutter(SS), Valve3(V3).

Working mode of Front end:

- (1) Normal working mode;
- (2) Waitting Mode when user enter Laser hutch;
- (3) Stoping mode when front-end error occour

4.1 Beamline layout

Include:

Collimators, Attenuator, Bend magnet, Radiation shielding,

Monitor detector (Energy, position, flux detector) and gamma absorber

Gamma properties: Beam radius and collimater @ Beamline

4.2 Rough collimator

For security consideration, the rough lead collimators will be shaped into 200 mm long hollow cylinders with external radius of 100 mm and inner radius of 8 optional size: 5, 10, 15, 20, 25, 30, 35, 40 mm. They are used for a rough selection of gamma energy_o

Rough collimator		
Material	Pb	
Outside	100	
diameter (mm)	100	
Inner diameter (mm)	5, 10, 15, 20, 25,	
	30, 35, 40	
Long (mm)	200	

4.3 Fine collimator

The fine collimator's inner radius can be continuously adjusted from 0 to 40 mm to perform a fine selection of γ -ray's spot. like a carema shutter.

Fine collimator		
Material	Pb	
Outside diameter (mm)	100	
Inner diameter (mm)	0-40continuously adjustable	
Long (mm)	200	

4.4 Attenuator

Used for reduced gamma flux for HpGe and LaBr measurement

Material		Cu	
Material purity		>99.9%	
Outside diameter (mm)	50		
Inner diameter (mm)	100	25	15
Numaber	6	1	1

5.1 Physics and Experiment

PRL 113, 032506 (2014)

4) PHYSICAL REVIEW LETTERS

LETTERS

week ending 18 JULY 2014

Correspondence between GDR and $\alpha\,$ cluster configurations

GDR spectrum is highly fragmented into several apparent peaks due to the α structure

The different α cluster configurations in ¹²C and ¹⁶O have corresponding characteristic spectra of GDR
 The number and centroid energies of peaks in the GDR spectra can be reasonably explained by the geometrical and dynamical symmetries of α clustering configurations

¹Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China ²University of the Chinese Academy of Sciences, Beijing 100080, China ³Shanghai Tech University, Shanghai 200031, China (Received 6 May 2014; published 17 July 2014) (b) 12C_chain (a) 0.8 0.6 0.4 0.2 dP/dE (arb. units) 1 ¹²C_triangle (d) ¹⁶O_chain (C) 0.8 0.6 0.4 0.2 1 ¹⁶O_kite ¹⁶O_square (f) 0.8 (e) 0.6 0.4 0.2 0 30 20 10 20 40 50 10 30 40 50 (MeV) \mathbf{E}_{γ} - short-axis long-axis -

FIG. 2 (color online). ⁸Be, ¹²C, and ¹⁶O GDR spectra with different cluster configurations. The corresponding α cluster configuration in the present EQMD model calculation is drawn in each panel, in which blue and red balls indicate protons and neutrons, respectively. The dynamical dipole evolution of ⁸Be, ¹²C, and ¹⁶O with linear-chain configurations are shown in [51].

The p-process nuclei and GDR study

- ☞ p-nuclei: Containing more protons relative to other stable isotopes of the same element, stable nuclides with mass numbers A≥ 74.
- $^{\mbox{\scriptsize \ensuremath{\mathscr{C}}}}$ Aboundance are a factor of \approx 100 smaller to adjacent s- and r-nuclei.
- Their synthesis is still uncertain.
- Scenarios is Type-II supernovia
- [©] Underproduction of species as ⁹²Mo, ⁹⁴Mo, ¹¹³In, ¹¹⁵In
- ^{CF} Strong ependence on (γ,p) cross section, as ⁷⁴Se, ⁷⁸Kr, ⁸⁴Sr, ⁹²Mo, ⁹⁶Ru.

Nuclear Energy for TMSR (Gen-IV Reactor) & Gamma transmutation

5.2 Layout

- \Box (γ , n) Neutron detector
- \Box (γ , p/a) Charged particle detector
- \Box (γ , γ) Gamma detector

5.3 ³He tube for 4π neutron detector

- **\square** 4 π ³He proportional counter:
- □ Energy rang: 1keV~ 5MeV;
- □ Efficiency : ~45%@1keV~ 500keV, ~35%@5MeV

5.4 Fast neutron detector

□ BC702/EJ426(⁶LiF • ZnS):

```
Energy rang : 0.025eV-1keV; Efficiency: \sim 60%@Thermal neutro,
```

□ Lithium glass GS20:

```
Energy rang : 1 \text{keV}-1 \text{MeV}, Efficiency: 20\% 2252Cf
```

□ Liquid/Plastic scintillation detector BC501A/EJ301:

Energy rang :1-5MeV, Efficiency: $^{\sim}$ 10%@²⁵²Cf

5.5 Si strip detector & Vacuum Chamber

- **\square** Sensitive area :50mm \times 50mm;
- □ Thickness:100um-300um, Resolution: 0.1%@5.5MeV, Position resolution 3mm;
- □ Thickness: 500-1500um, Resolution: < 1. 5%@5. 5MeV;
- **\Box** Thickness of the non-position sensitive detector :1mm, Resolution: < 2.5%.

5.2 HPGe & LaBr₃ detectors

- \blacksquare Resolution (0.1% $^{\sim}$ 0.2%) ,
- \square Relative Efficiency > 90%@5MeV,
- □ High coincidence detection efficiency,
- □ Granularity: Clover HPGe +LaBr

LaBr:

Size $76mm \times 50mm$,

Resolution <10%@1.3MeV;

6. Summary

- SLEGS is one of the high quality gamma sources based on Laser Compton Scattering (LCS) at SSRF.
- The energy region and flux of SLEGS are 0.4-20 MeV and 10⁵-10⁷ phs/s, respectively.
- Based on the method of photonuclear reaction, SLEGS aims to nuclear structure researches such as NRF and GDR, nuclear astrophysics, measurement of nuclear data, atomic physics, and radiation physics.
- SLEGS also plans to carry out the applied research relating to aerospace, national defense, nuclear energy and other strategic demands of China, such as space radiation effect research of the aerospace electronic components, and accurate calibration of the gamma detector for aerospace.
- SLEGS will be constructed from this year, and be expected to open for users from 2022.

Outlook 1: LCS Gamma Sources at SxFEL@SINAP

A new proposal for LCS Gamma Source similar to ELI-NP @ SXFEL

Gamma Energy: 3.7MeV ~ 38.9MeV

Wu H et al. Nuclear Science and Techniques, Vol.26 (2015) 050103

New Opportunity in Hard X-ray FEL

Layout of the HXFEL: from SINAP to ShanghaiTech

New Opportunity in Hard X-ray FEL

Electron Parameters of HxFEL@ Shanghai

Parameter	Values
Electron Energy (GeV)	8
charge per pulse (pC)	20-200
Norlimalize Perpendicularslice eiitance (mm·mrad)	≤0.4
Peak current (A)	≥3000
Slice energy spread (rms)	<0.01%
Pulse duration (ps)	0.7
Frequency (MHz)	1
Beam bunchs diameter (um)	50
Energy dispersion	0.01%

The last four parameters are used to Laser Compton Gamma source calculation based on the Monte Carlo Code developed by our group.

Beam energy (GeV)	8
Peak current (kA)	4.4
Slice emittance	0.77
Slice energy spread	7.1e-5
Total charge (nC)	0.29
Bunch width (fs, FWHM)	55
Beam size at ID exit (um, rms)	35
Repetition rate (Hz)	60 (max) to 1 (min)

 Design Report of Shanghai Coherent Light Facility (SCLF- Hard X-ray FEL) ,2016.11.
 Nuclear Instruments and Methods in Physics Research A, Vol.726 (2013)67.

Outlook 2: Proposed LCGS @ HxFEL

Calculation based on the Different Lasers

Laser wavelength um/nm	Туре	Power /W	Duration fs/ps	Frequency /Hz	Single Pulse /J	Gamma Energy /MeV	Gamma flus photons/s/W
10.64um	CW	1				112.7	3.95×10^{1}
1.64um	CW	1				999.8	3.55×10 ²
800nm	Pulse		50fs	10Hz	5J	1277.4	3.6×10 ⁵
355nm	CW	1				2397.8	1.09×10 ³
266nm	CW	1				2908.0	4.19×10 ⁴
0.1keV@FEL	FEL		0.7ps	1MHz		7398.6	2.18×10 ¹⁴
1.0keV@FEL	FEL		0.7ps	1MHz		7937.8	4.13×10 ¹⁶

Preliminary calculation

(a) Use optical Laser, we can get 0.11-2.9 GeV gamma ray, and gamma fluxs per Watt from 10^{1 -} 10⁴ phs/s/W
(b) Use X-ray FEL, we can get ~ 8GeV high energy Gamma ray, and

integral gamma fluxs per pulse 10¹⁴ -10¹⁶ phs/s/pulse

The max allowed width of the slit on the shield give restriction on the infimum of laser waist radius

