SLAC AAC program and US roadmap

Vitaly Yakimenko April 24, 2017

Great Desire for Compact Access to High Energy Beams

High energy particle accelerators are the ultimate microscopes

- Reveal fundamental particles and forces in the universe at the energy frontier
- Enable x-ray lasers to look at the smallest elements of life on the molecular level Advanced concepts look to shrink the size and cost of these accelerators by factors of 10-1000

Combine efficient accelerator drivers with high-field dielectric and plasma structures to develop new generation of particle accelerators ~100MėV/m ~1GeV/m ~10GeV/m

New designs and materials push metal structures to the limit

Telecom and Semiconductor tools used to make an 'accelerator on a chip'

SLAC

Extremely high fields in 1,000°C lithium plasmas have doubled the energy of the 3km SLAC linac in just 1 meter

FEL R&D Papers

FACET Project History

Primary Goal:

Demonstrate a single-stage high-energy plasma accelerator for electrons

Timeline:

- CD-0 2008
- CD-4 2012, Commissioning (2011)
- Experimental program (2012-2016)

A National User Facility:

- Externally reviewed experimental program
- >200 Users, 25 experiments, 8 months/year operation

Key PWFA Milestones:

- ✓Mono-energetic e- acceleration
- ✓ High efficiency e⁻ acceleration (*Nature* 515, Nov. 2014)
- ✓ First high-gradient e⁺ PWFA (*Nature* **524**, Aug. 2015)
- Demonstrate required emittance, energy spread (FY16 in preparation for *Nature*)

Premier R&D facility for PWFA: Only facility capable of e+ acceleration Highest energy beams uniquely enable gradient > 1 GV/m

Litos et al., *Nature* November 2014 High-Efficiency Acceleration of an Electron Bunch in a Plasma Wakefield Accelerator

Narrow energy spread acceleration with high-efficiency has been demonstrated Next decade will focus on simultaneously preserving beam emittance

UCLA -SLAC

Multi-GeV Acceleration of Positrons

Injecting a single high-intensity positron bunch produced a very Positron PW

- Energy gain 4 GeV in 1.3 meters
- 1.8% energy spread
- Low beam divergence
- No halo

Development of High-Brightness Electron Sources

LCLS Style Photoinjector

- 100MeV/m field on cathode
- Laser triggered release
- ps beams multi-stage compressions & acceleration
 - Tricky to maintain beam quality (CSR, microbunching...)

Plasma Photoinjectors

- 100 GeV/m
- fs beams, µm size
- Promise orders of magnitude improvement in emittance
- Injection from: TH, Ionization, DDR, CP...

SLAC

2015/2016: Full Trojan Horse setup

electron beam driver

V. Yakimenko – Tsinghua April 24, 2017

Experimental Data from Trojan Horse Injection Experiment rechnologies Strathclyde

V. Yakimenko – Tsinghua April 24, 2017

UCLA -SLAC

V. Yakimenko –Tsinghua April 24, 2017

Latest High Impact Results from FACET

Four papers published in Nature Communications in 2016:

- S. Gessner et al. "Demonstration of a Positron Beam-Driven Hollow Channel PWFA" 7, 11785 (2016)
- S. Corde et al. "27 GeV plasma acceleration in a high-ionization-potential gas" 7, 11898 (2016)
- C.E. Clayton et al. "Self-Mapping the longitudinal field structure of a nonlinear PWFA cavity" 7, 12483 (2016)
- B. O'Shea et al. "Observation of acceleration and deceleration in frontier gradient DWFA" 7, 12763 (2016)

In process of submitting:

- A. Doche et al. "Acceleration of a trailing positron bunch in a PWFA" submitted to *Nature Communications*
- B. O'Shea et al. "High-Field Induced Damping in DWFA" submitted to *Nature Materials*
- A. Deng et al. "Laser-triggered injection in electron-beam driven PWFA" in preparation for *Nature*

FACET-II is an Exciting Place for Young Researchers

SLAC

High-impact science in a fast paced environment:

- National User Facility environment working closely with multiple collaborations of Faculty, Staff, Postdocs and PhD students from Universities, National Labs and different countries
- Typical PhD research includes theory, simulations and experimental effort

Track record with students & postdocs over the last two years:

- Spencer Gessner (Stanford PhD 2016) → CERN Fellow with offers from DESY, U.
 Chicago, UCLA. APS-DPB PhD Thesis Award
- Joel Frederico (Stanford PhD 2016) \rightarrow Hughes Research Laboratory
- Navid Vafaei-Najafabadi (UCLA PhD 2016) \rightarrow **Professor** Stony Brook University
- Michael Litos (SLAC Postdoc 2016) \rightarrow **Professor** University of Colorado Boulder
- Sebastien Corde (SLAC Postdoc 2015) \rightarrow **Professor** Ecole Polytechnique
- Erik Adli (SLAC Postdoc 2015) \rightarrow **Professor** University of Oslo
- Brendan O'Shea (UCLA PhD 2015) \rightarrow SLAC Research Associate

Beam Driven Plasma Accelerator Roadmap for HEP

	201	6		202	0	20	2025			2030				2035					20	40
	LHC	Physics	Prog	ram										End LHC Physics Program						
	Plas othe	ema Accel er Nationa	or R& nterna	D at Uni ational F																
PWFA Research & Development	PW	PW	PWFA-LC CDR PWFA-L					C TD	TDR PWFA-LC Construction											
	Bea	m Dynam	nics 8	, Tole	erance S	tudies														
	Plas	ma Sour	evelo	pment																
	FAC	ET-II Cor	nstruc	ction												Legend				
		FACET-II Oper				on									Theory/Simulatio				on/Desi	gn
	Experimental Design & Protoypin					ing	J										Engineering/Construct			
		Emittance Preservation													Experiments/Operations					
				Transformer Ratio > 1																
						Staging Studies						Multiple Stages								
	PWF & CI	PWFA App Dev. & CDR		PWF TDR	FA-App	PWFA-App Construction		PW	FA-A	pp O	pera	tion								
				Future Facility Des (FFTBD)			ign FFTBD Construction				FFTBD Operation 'String Test'				& Collider Prototype					
	Positron PWFA Concept Dev.			Positron PWFA in PWFA-LC Regime																
Driver Tech.	Euro XFEL Construction			Eurc	XFEL C	Operation														
	LCLS-II Construction		LCL	S-II Ope	ration															

V

1

•

FACET-II Project Plan

Timeline:

- ✓ Nov. 2013, FACET-II proposal, Comparative review
- Sep. 2015 **√** CD-0
- ✓ CD-1 Oct. 2015 (ESAAB, Dec.2015)
- ✓ CD-2/3A Sep. 2016
- Sep. 2017 CD-3B
- CD-4 2022

Experimental program (2019-2026)

Key R&D Goals:

- Beam quality preservation, high brightness beam generation, characterization
- e⁺ acceleration in e⁻ driven wakes
- Staging challenges with witness injector
- Generation of high flux gamma radiation

Three stages:

- Photoinjector
- •e+ damping ring
- (e- beam only) (e+ or e- beams)
- FY17-19
 - FY18-20
- "sailboat" chicane (e+ and e- beams)

FACET-II will operate as a National User Facility with an external program advisory committee reviewing proposals and recommending priorities for the experimental program

Extreme Beams: A Challenge and Opportunity!

-SLAC

V. Yakimenko – Tsinghua April 24, 2017

FACET-II Beam will Access New Regimes

SLAC

Low-emittance (state of the art photoinjector) and ultra-short (improved compression) beam will generate:

- >175 kA peak current (~1 µm long)
- ~100 nm focus by plasma ion column
- ~10¹² V/cm radial electric field (Es=1.3x10¹⁶ V/cm)
- ~10²³ cm⁻³ beam density

Next Generation High Field Facilities

 $I = 10^{22} - 10^{23} W/cm^2 \rightarrow 10^{25} W/cm^2$

 $E \ge 3.10^{12} - 10^{13} \text{V/cm} \rightarrow 10^{14} \text{V/cm}$

Some of the particular QED phenomena that will be studied at ELI are :

- Electron positron plasmas
- Vacuum birefringence
- Vacuum four wave mixing
- Vacuum polarisation
- Unruh radiation
- QED cascades : Inverse Compton Scattering
- Quark gluon plasmas

Schematic experimental setup to measure vacuum birefringence via an ellipticity signal

SLAC

Four Options to Study High Field QED at SLAC

Option 1: LCLS X rays and 1GeV LWFA beam $\Rightarrow \chi \sim 0.1$ ($\chi = E_p/E_s$) Experiments at MEC; Can start now - all hardware ~ exist

Option 2: Laser field and 10GeV beam $\Rightarrow \chi \sim 1-3$ ~300TW laser focussed to $I \sim 10^{21} W/cm^2$ (E ~3.10¹²V/cm) and Experiments at FACET-II or LCLS; can start in ~1-2 years

Option 3: 10GeV FACET-II beam and 300MeV "witness injector" 175kA FACET-II beam focused to 100nm ($E \sim 1.5 \cdot 10^{12}$ V/m) $\Rightarrow \chi \sim 0.1$ in e-beam field

Experiments at FACET-II; can start in ~3-5 years

Option 4: 100GeV collider e⁻e⁺ with $E_{\rho} \approx 10^{14}$ V/cm, $\chi \approx 10^{3}$!

Future facility ~20 year

Full breakdown of perturbation theory So far theoretical calculations are impossible

N.B. Narozhny, Phys. Rev. D 21, 1176 (1980)

 $\mathcal{O}(lpha^2\chi^{4/3})$

 $\mathcal{O}(\alpha \chi^{2/3})$

Option 4:

100GeV collider e⁻e⁺ (Future facility ~10-20 years)

Beam field:

 $\gamma \simeq 2 \ 10^{5}$, $I_b = 10^6 A$, $\sigma_r = 10 nm$, $\sigma_z = 0.3 \mu m$

$$E_r = \frac{I_b/c}{2\pi\varepsilon_0\sigma_r} \simeq 10^{14} \, V/_{cm}$$

$$\chi = \gamma \frac{E_r}{E_s} \simeq 1800$$

Field expansion parameter:

N.B. Narozhny, Phys. Rev. D 21, 1176 (1980)

$$g = \alpha \, \chi^{2/3} \simeq 1$$

Perturbation theory does not work HEP in the presence of extreme field is unexplored

Beamstrahlung parameter

R.J. Noble, Nucl. Instrum. Methods Phys. Res. A 256 (1987) 427

$$D = \frac{2r_e N_e \sigma_z}{\gamma \sigma_r^2} \simeq 15$$

$$\Upsilon = \frac{5}{12} \frac{r_e^2 N_e \gamma}{\alpha \sigma_r \sigma_z} \simeq 10^3$$

Average energy loss in quantum regime ($\Upsilon > 100$) *P. Chen and V. Telnov, Phys. Rev. Lett.* 63, 1796 (1989)

$$\delta = \frac{6}{5\sqrt{\pi}} \frac{\alpha \sigma_z}{\gamma \lambda_c} \simeq 3$$

Observables: beam energy spectrum, radiation spectrum, pair creation, ???